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Ranking Examples

Sports and Gaming:

Image source: www.psdcovers.com/wp-content/uploads/2012/07/NFL-vector-logos-1024x772.jpg
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Ranking Examples

Recommendation System and Web Search:

Image source: https://miro.medium.com/max/2400/1*dMR3xmufnmKiw4crlisQUA.png
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Ranking Examples

Ranked Voting:

www.mainepublic.org/sites/mpbn/files/styles/x_large/public/201805/DEMRCV2Contests20180420.jpg
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Ranking from Pairwise Comparisons

Team 4 is the strongest
Team 8 is the weakest

Other Teams
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Bradley-Terry-Luce (BTL) Model
• n teams
• A sorted skill parameter θ∗:
θ∗1 ≥ . . . ≥ θ∗n

• Rank vector r∗: a
permutation of 1, . . . , n

• For team i, its ranking
among the n teams is r∗i ,
and its skill parameter is θ∗r∗i
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Bradley-Terry-Luce (BTL) Model
P(i beats j) ∝ exp

(
θ∗r∗i

)
P(j beats i) ∝ exp

(
θ∗r∗j

)

P(i beats j) =
exp

(
θ∗r∗i

)
exp

(
θ∗r∗i

)
+ exp

(
θ∗r∗j

)
= ψ(θ∗r∗i − θ∗r∗j )

where ψ(x) = ex

ex+1

• Incomplete graph: Aij
iid∼ Ber(p)

• L outcomes for each observed pair (i, j):

yijl
ind∼ Ber

(
ψ(θ∗r∗i − θ∗r∗j )

)
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An Incomplete List of Prior Art
• Dwork, Kumar, Naor, and Sivakumar (2001)
• Hunter (2004)
• Jiang, Lim, Yao, and Ye (2011)
• Negahban and Wainwright (2012)
• Rajkumar and Agarwal (2014)
• Chen and Suh (2015)
• Jin, Zhang, Balakrishnan, Wainwright, and Jordan (2016)
• Shah, Balakrishnan, Guntuboyina, and Wainwright (2016)
• Shah and Wainwright (2017)
• Agarwal, Agarwal, Assadi, and Khanna (2017)
• Pananjady, Mao, Muthukumar, Wainwright, and

Courtade (2017)
• Balakrishnan, Wainwright, and Yu (2017)
• Negahban, Oh, and Shah (2017)
• Chen, Fan, Ma, and Wang (2019)
• Shah, Balakrishnan, and Wainwright (2019)
• Heckel, Shah, Ramchandran, and Wainwright (2019)
• …

Most focus on θ∗

Recovery of r∗?
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Two Tasks

• Top-k Ranking

• Full Ranking

10 / 50



Top-k Ranking
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Problem Statement

• Top-k subset S∗ ⊂ {1, 2, . . . , n}
▶ |S∗| = k
▶ For all i ∈ S∗, θ∗r∗i ≥ maxj /∈S∗ θ∗r∗j

• How to estimate / recover S∗?

Image source: https://en.wikipedia.org/wiki/Big_Three_(tennis)
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Problem Statement

• Top-k subset S∗ ⊂ {1, 2, . . . , n}
▶ |S∗| = k
▶ For all i ∈ S∗, θ∗r∗i ≥ maxj /∈S∗ θ∗r∗j

• How to estimate / recover S∗?

• A natural idea:
▶ Estimate {θ∗r∗1 , . . . , θ

∗
r∗n
} with {θ̂1, . . . , θ̂n}

▶ Find the top-k subset Ŝ ⊂ {1, 2, . . . , n} such that
▶ |Ŝ| = k
▶ For all i ∈ Ŝ, θ̂i ≥ maxj /∈Ŝ θ̂j
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Algorithm 1: MLE

Step 1: Compute ȳij = 1
L

∑L
l=1 yijl

Step 2: Find the MLE θ̂ by minimizing

ℓn(θ) =
∑

Aij

(
ȳij log

1

ψ(θi − θj)
+ (1− ȳij) log

1

1− ψ(θi − θj)

)

Step 3: Find the top-k subset Ŝ from θ̂

14 / 50



Algorithm 2: Spectral Method
(Rank Centrality Algorithm)

Step 1: Construct the Markov transition matrix

Pij =

{
1
dAij ȳji, i ̸= j

1− 1
d

∑
l ̸=iAilȳli, i = j

Step 2: Find the stationary distribution π̂

Step 3: Find the top-k subset Ŝ from π̂

15 / 50



Algorithm 2: Spectral Method
(Rank Centrality Algorithm)

Why spectral method works?
Population version:

Mij = E(Pij |A) =

{
1
dAijψ(θ

∗
r∗j

− θ∗r∗i
), i ̸= j

1− 1
d

∑
l ̸=iAilψ(θ

∗
r∗l

− θ∗r∗i
), i = j

π∗ =

 exp
(
θ∗
r∗1

)
∑

l exp
(
θ∗
r∗
l

) , . . . , exp
(
θ∗
r∗n

)
∑

l exp
(
θ∗
r∗
l

)
T

Easy to check π∗ is the stationary distribution ofM

16 / 50



Our Result 1: Exact Recovery
Exact recovery: Ŝ = S∗?

MLE is optimal

Spectral method is (in general) suboptimal, with a worse
constant

Our result complements Chen, Fan, Ma, Wang (2019):
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Assumptions: θ∗1 ≥ θ∗2 ≥ . . . ≥ θ∗n

Separation: θ∗k − θ∗k+1 ≥ ∆

Dynamic Range: θ∗1 − θ∗n ≤ κ = O(1)

Two variance functions:

MLE:

V (κ) = max
κ1+κ2≤κ
κ1,κ2≥0

n

kψ′(κ1) + (n− k)ψ′(κ2)

Spectral method:

V (κ) = max
κ1+κ2≤κ
κ1,κ2≥0

kψ′(κ1)(1 + eκ1)2 + (n− k)ψ′(κ2)(1 + e−κ2)2

(kψ(κ1) + (n− k)ψ(−κ2))2/n
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MLE

Theorem
Suppose

∆2 > 2.001V (κ)

(√
log k +

√
log(n− k)

)2
npL

.

Then the MLE recovers the top-k subset S∗ whp.
Suppose

∆2 < 1.999V (κ)

(√
log k +

√
log(n− k)

)2
npL

.

Then no algorithm works.

MLE is optimal
19 / 50



Spectral Method

Theorem
Suppose

∆2 > 2.001V (κ)

(√
log k +

√
log(n− k)

)2
npL

.

Then the spectral method recovers the top-k subset S∗ whp.
Suppose

∆2 < 1.999V (κ)

(√
log k +

√
log(n− k)

)2
npL

.

Then the spectral method fails.

20 / 50



Spectral Method

Lemma
V (κ) ≥ V (κ). The equality holds if and only if κ = 0.

When κ = o(1) the spectral method is optimal.

Otherwise the spectral method is suboptimal with a worse
constant.
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Simulation
n = 200, k = 50, p = 0.25, L = 20
θ∗1, . . . , θ

∗
50 ∼ Uniform[6, 10], θ∗51, . . . , θ

∗
200 ∼ Uniform[0, 6−∆]

⇒ κ = 10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Delta

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pa
rti

al
 re

co
ve

ry
 e

rro
r

MLE
Spectral

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Delta

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ac

t r
ec

ov
er

y 
pr

ob
ab

ilit
y

MLE
Spectral

22 / 50



Our Result 2: Partial Recovery

Partial recovery: Distance between Ŝ and S∗?

H(Ŝ, S∗) =
1

2k

(
|Ŝ ∩ S∗C |+ |ŜC ∩ S∗|

)

23 / 50



Our Result 2: Partial Recovery

Partial recovery: Distance between Ŝ and S∗?
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Minimax Rates

Theorem
The minimax rate of top-k ranking w.r.t. the loss H(Ŝ, S∗) is

exp

−1

2

(√
SNR
2

− 1√
SNR

log n− k

k

)2

+


where

SNR = (1 + o(1))
npL∆2

V (κ)
.

24 / 50



Minimax Rates

Theorem
The minimax rate of top-k ranking w.r.t. the loss H(Ŝ, S∗) is

exp

−1

2

(√
SNR
2

− 1√
SNR

log n− k

k

)2

+


where

SNR = (1 + o(1))
npL∆2

V (κ)
.

Similar to support recovery problem for variable selection in the
high-dimensional regression.

[Butucea, Ndaoud, Steppanova, and Tsybakov 2018]
[Ndaoud and Tsybakov 2020]
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MLE

Theorem
The minimax rate of top-k ranking w.r.t. the loss H(Ŝ, S∗) is

exp

−1

2

(√
SNR
2

− 1√
SNR

log n− k

k

)2

+


where

SNR = (1 + o(1))
npL∆2

V (κ)
.

Moreover, the MLE achieves the above rate.

MLE is optimal
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Spectral Method

Theorem
The error rate of the spectral method w.r.t. the loss H(Ŝ, S∗) is

exp

−1

2

(√
SNR
2

− 1√
SNR

log n− k

k

)2

+


where

SNR = (1 + o(1))
npL∆2

V (κ)
.

When κ = o(1) the spectral method is optimal.

Otherwise the spectral method is rate-suboptimal.
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Summary for the Top-k Ranking Task

For both exact recovery and partial recovery:

the MLE is optimal

the spectral method is (in general) suboptimal
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Full Ranking
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Goal: to estimate / recover r∗

“Power Ranking” in sports: to rank all teams.

sidelinespice.com/2018/11/29/week-12-2018-nfl-power-rankings/ 30 / 50
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• Loss Function: Kendall’s tau

K(r̂, r∗) = 1

n

∑
1≤i<j≤n

I
{
sign(r̂i − r̂j)sign(r∗i − r∗j ) < 0

}
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• Loss Function: Kendall’s tau

K(r̂, r∗) = 1

n

∑
1≤i<j≤n

I
{
sign(r̂i − r̂j)sign(r∗i − r∗j ) < 0

}

• Regularity of Parameter:

β ≤ θ∗i − θ∗i+1 ≤ C0β for all i
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Fundamental Limits

Theorem
Assume p/β ≫ logn. Then

inf
r̂
sup
r∗

EK(r̂, r∗)

≍


1

n−1

∑n−1
i=1 exp

(
− (1+δ)npL(θ∗i −θ∗i+1)

2

4Vi(θ∗)

)
, if Lpβ2

β∨n−1 > 1

n ∧
√

β∨n−1

Lpβ2 , if Lpβ2

β∨n−1 ≤ 1

where

Vi(θ
∗) =

n∑
j∈[n]\{i} ψ

′(θ∗i − θ∗j )
.
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Fundamental Limits

Special Case: β ≳ n−1

The minimax rate becomes

inf
r̂
sup
r∗

EK(r̂, r∗) ≍
{
exp (−Θ(Lpβ)) , Lpβ > 1,

n ∧
√

1
Lpβ , Lpβ ≤ 1.

33 / 50



Phase Transition

inf
r̂
sup
r∗

EK(r̂, r∗) ≍
{
exp (−Θ(Lpβ)) , Lpβ > 1,

n ∧
√

1
Lpβ , Lpβ ≤ 1.
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Pairwise Relation Matrix
Estimation of r∗ ⇔ Estimation of pairwise relation matrix R∗

R∗
ij = I

{
r∗i < r∗j

}
R∗ with rows and columns properly rearranged:
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Pairwise Relation Matrix

Estimation of r∗ ⇔ Estimation of pairwise relation matrix R∗

R∗
ij = I

{
r∗i < r∗j

}
Kendall’s tau

K(r̂, r∗) = 1

n

∑
1≤i<j≤n

I
{
sign(r̂i − r̂j)sign(r∗i − r∗j ) < 0

}
=

1

n

∑
1≤i<j≤n

I
{
R̂ij ̸= R∗

ij

}
R̂ij = I {r̂i < r̂j}
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Pairwise Relation Matrix

From R̂ to r̂:

Lemma
For any R̂ ∈ {0, 1}n×n, let r̂ be the rank obtained by sorting
{
∑

j ̸=i R̂i,j}i=1,...,n. Then

K(r̂, r∗) ≤ 4

n

∑
1≤i ̸=j≤n

I{R̂ij ̸= R∗
ij}.
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How to estimate R∗?

How to estimate I{r∗i < r∗j}?
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Algorithm: Divide-and-Conquer

Big Picture:

League Partition: Partition the teams into sev-
eral leagues. In each league, teams’ skills are
similar.

Pairwise Relation Matrix Estimation: Estimate
each R∗

ij = I{r∗i < r∗j} by local MLEs and
other methods.

Obtain r̂ from R̂

38 / 50



League Partition

National Football League (NFL)
Minor Football League
College Football
High School Football

39 / 50



League Partition

For each team i, count how many teams
“dominate” it:

wi =
∑
j

AijI {j : ȳij ≤ t}
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“dominate” it:

wi =
∑
j

AijI {j : ȳij ≤ t}

Find the top league S1 to include all teams
that are dominated by at most h opponents:

S1 = {i : wi ≤ h}

Remove all teams in S1, and repeat the above
procedure for the remaining teams.
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League Partition

For each team i, count how many teams
“dominate” it:

w
(2)
i =

∑
j /∈S1

AijI {j : ȳij ≤ t}

Find the top league S1 to include all teams
that are dominated by at most h opponents:

S1 = {i : wi ≤ h}
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League Partition

For each team i, count how many teams
“dominate” it:

w
(2)
i =

∑
j /∈S1

AijI {j : ȳij ≤ t}

Find the second top league S2 to include all
teams that are dominated by at most h
opponents:

S2 = {i /∈ S1 : w
(2)
i ≤ h}
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League Partition

We can show w.h.p.:

Teams have clear advantage against those who are at least
two leagues below.

Teams in the same or neighboring leagues have close skills.

Teams having close skills are in the same or neighboring
leagues.
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Pairwise Relation Matrix Estimation

42 / 50



Pairwise Relation R∗
ij = I{r∗i < r∗j} Estimation

Scenario 1: j is at least two leagues below of i.

R̂ij = 1

43 / 50



Pairwise Relation Matrix Estimation
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Pairwise Relation Matrix Estimation

44 / 50



Pairwise Relation R∗
ij = I{r∗i < r∗j} Estimation

Scenario 2: i, j are in the same or neighboring leagues.

Local MLE
• Find all teams with comparable skills to i or j
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Pairwise Relation R∗
ij = I{r∗i < r∗j} Estimation

Scenario 2: i, j are in the same or neighboring leagues.

Local MLE
• Find all teams in the same / neighboring leagues of i or j

▶ Ex. If i, j ∈ S1 ⇒ S1 ∪ S2

▶ Ex. If i ∈ S2, j ∈ S3 ⇒ S1 ∪ S2 ∪ S3 ∪ S4

• Perform MLE on these teams only. Estimate their skills
• R̂ij = I{θ̂i > θ̂j}

45 / 50



Pairwise Relation Matrix Estimation
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Pairwise Relation Matrix Estimation

46 / 50



Pairwise Relation Matrix Estimation
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Algorithm: Divide-and-Conquer

Statistically Efficient Computationally Efficient
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Summary for the Full Ranking Task

Minimax Rate: polynomial phase and exponential phase

Divide-and-conquer Algorithm

48 / 50



Summary

[Top-k Ranking]
For both exact recovery and partial recovery:

the MLE is optimal
the spectral method is (in general) suboptimal

[Full Ranking]

Minimax Rate: polynomial phase and exponential phaser
Divide-and-conquer Algorithm
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