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Ranking Examples

Sports and Gaming:

Image source: www.psdcovers.com/wp-content/uploads/2012/07/NFL-vector-logos-1024x772. jpg
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Ranking Examples

Recommendation System and Web Search:
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Ranking Examples

Ranked Voting:
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To vote, fill in the oval like this @ ¥ BIS|§|5|&| & %
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in the oval: Dion, Donna J. 0 0 0 0 0 0 0
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choice candidate. ot i -
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« In the 2nd column for your 2nd  [mins, Janet T. N 7
choice candidate, and so on. Farmington O |9~ 9]~ |9]- |9|- Of-]0
Russell, Diane Marie 0 0 0
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Continue until you have ranked as Swes Emah A - T -
many or as few candidates as you  Falovel ' 0|-|0|--|0]~|0|- 0~ 0]-|0
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Ranking from Pairwise Comparisons
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Bradley-Terry-Luce (BTL) Model

* n teams
Q @ Or; e A sorted skill parameter 6*:
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Bradley-Terry-Luce (BTL) Model

® n teams
Q @9:}‘ ¢ A sorted skill parameter 6*:
05 >...> 0
Q Q e Rank vector r*: a
Q permutation of 1,...,n
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Bradley-Terry-Luce (BTL) Model

* n teams
Q @9:}‘ ¢ A sorted skill parameter 6*:
0 >...>06;
Q Q e Rank vector r*: a

Q permutation of 1,...,n

@ Q e For team i, its ranking
Or; Q among the n teams is 77,
and its skill parameter is 6.

~



Bradley-Terry-Luce (BTL) Model

o W
O o .

Skills 6~

HHHHTT =

n teams

A sorted skill parameter 6*:
0y >...>06;

Rank vector r*; a
permutation of 1,...,n

For team 1, its ranking
among the n teams is 7,
and its skill parameter is 6.

Skills

~



Bradley-Terry-Luce (BTL) Model
P(i beats j) o exp (0;’}

)
P(j beats i) x exp <0;’;)

J




Bradley-Terry-Luce (BTL) Model
P(i beats j) o exp (0:3)
P(j beats i) x exp (0;’;)

J

exp (9;})

P(i beats ]) = exp (9;%) 4+ exp (‘9:;‘)
/ = P(0, —0rx)

T

where ¢ (x) = e}




Bradley-Terry-Luce (BTL) Model
P(i beats j) o exp (0:;)
P(j beats i) x exp (0;})

J

P(i beats j) = o0 <9:"*>

exp (9:;) + exp (0:;)
= P(0, —0rx)

T

where ¢ (x) = e}

® Incomplete graph: A;; u Ber(p)
e [ outcomes for each observed pair (i, j):

yig " Ber (vw(0: ~ 6;.))
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Most focus on 6*

Recovery of r*?




Two Tasks

® Top-k Ranking

e Full Ranking



Top-k Ranking



Problem Statement

The Big Three
Skills
or; .
03 N T
Or; 6y
] Tlrla 11 [ /
1 2 3 4 n S

Roger Federer Rafael Nadal Novak Djokovic

e Top-k subset S* C {1,2,...,n}
> |5 =k
> Forallie€ S*, 0;. > max;gg- 0

® How to estimate / recover S*?

Image source: https://en.wikipedia.org/wiki/Big_Three_(tennis)
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Problem Statement

e Top-k subset S* C {1,2,...,n}
> |5 =k
> Foralli e S*, 0. > max;¢g- 0}

e How to estimate / recover S*?

® A natural idea:
> Estimate {07, ..., 05 } with {61,...,6,}
> Find the top-k subset S c {1,2,...,n} such that
> 1S=k X
> Forallie S, 60, > max; 4 & 0;



Algorithm 1: MLE

Step 1: Compute ¥;; = %Zle Yijl

Step 2: Find the MLE 6 by minimizing

B 1
= X s (100 gy + (1~ )00 75— )

Step 3: Find the top-k subset S from 6



Algorithm 2: Spectral Method

(Rank Centrality Algorithm)

Step 1: Construct the Markov transition matrix

P L4754, i F]
1] — — . .
T - Aa, =

Step 2: Find the stationary distribution 7

Step 3: Find the top-k subset S from #



Algorithm 2: Spectral Method

(Rank Centrality Algorithm)

Why spectral method works?
Population version:

éAiﬂﬁ(H:; B 6:;)7 i F ]

Mi.:E(pi,‘A):{ 7
’ ’ 1= %Zl# Ailw(e;fl* - 9;}), i=3j

T = ( exp(e:f> e (07 )

> exp(@:l*) ’ ’ > exp (9;“;))

Easy to check 7* is the stationary distribution of M

16/50



Our Result 1: Exact Recovery
Exact recovery: S = S§*?
© MLE is optimal

Spectral method is (in general) suboptimal, with a worse
constant



Our Result 1: Exact Recovery
Exact recovery: § = §*?
© MLE is optimal

Spectral method is (in general) suboptimal, with a worse
constant

Our result complements Chen, Fan, Ma, Wang (2019):

The Annals of Statistics
2019, Vol. 47, No. 4, 2204-2235

https://doi.org/10.1214/18-A0S1745 .

© Institute of Mathematical Statistics, 2019 rate‘ Opt ima ‘

SPECTRAL METHOD AND REGULARIZED MLE ARE BOTH
OPTIMAL FOR TOP-K RANKING'

BY YUXIN CHEN*Z, JIANQING FANT*3, CONG MA* AND KAIZHENG WANG*

Princeton University* and Fudan University’




Assumptions: 67 > 65 > ... > 60}
Separation: 0;; — 07, > A

Dynamic Range: 07 — 6} < rx = 0(1)



Assumptions: 67 > 65 > ... > 60}
Separation: 0;; — 07, > A
Dynamic Range: 07 — 6} < rx = 0(1)
Two variance functions:

MLE:

n
s wrbrerss k! (1) + (n— k)07 (o)

K1,k2>0

Spectral method:

V() = /(1) (1 + €2 o+ (0 — k) (1) (1 + e77)?
V(:‘i) B anﬁa;(Sn (kq/;(,%l) + (TL _ k)w(_52)>2/n

K1,k22>0



MLE

Theorem
Suppose

(\/Iog k+ /log(n — k)>2

A% > 2.001V (k)

npL

Then the MLE recovers the top-k subset S* whp.
Suppose

Vi0ogk + /log(n — k)>2

A% < 1.999V(/¢)(
npL

Then no algorithm works.

© MLE is optimal



Spectral Method

Theorem
Suppose

(\/Iog k + /log(n — k:)>2

A% > 2001V (x
> (k) oL

Then the spectral method recovers the top-k subset S* whp.

Suppose

(\/Iog k+ /log(n — k:)>2

npL

A? < 1.999V (k)

Then the spectral method fails.

20/50



Spectral Method

V(k) > V(r). The equality holds if and only if k = 0.

21/50



Spectral Method

Lemma
V (k) > V (k). The equality holds if and only if k = 0.

© When « = o(1) the spectral method is optimal.

A\ Otherwise the spectral method is suboptimal with a worse
constant.

21/50



Simulation

n =200, k =50,p=0.25, L =20

07, ..
= kr =10

1.0

Exact recovery probability
o
Y

0.0 A

., 0%, ~ Uniform[6, 10],

- 0500 ~ Uniform[0,6 — A]

o
©
s

o
o
L

o
N
N

—— MLE

Spectral

T
0.00

T
0.25

T
0.50

075 100 125 150 175  2.00
Delta



Our Result 2: Partial Recovery

Partial recovery: Distance between S and S*?

~ 1 N ~
H(S,5%) = o (|S NS +158° n S*|)

N

w



Our Result 2: Partial Recovery

Partial recovery: Distance between S and §*?

. 1 / . .
H(S,5%) = o <\Sﬁ 5%+ 189 n 5*\)

© MLE is optimal

Spectral method is (in general) rate-suboptimal

N
w



Minimax Rates

The minimax rate of top-k ranking w.rt. the loss H(S, S*) is
oxo [ _L(YSVR_ 1 -k ’
2 2 VSNR k N

npLA?
V()

where

SNR = (1 + o(1))

24/50



Minimax Rates

Theorem

The minimax rate of top-k ranking w.r.t. the loss H (S, S*) is

exp

_L(YSNR_ 1 n—k i
2 2 V' SNR k

where

npLA?

SNR = (1 + o(1))

V(r)

Similar to support recovery problem for variable selection in the
high-dimensional regression.
[Butucea, Ndaoud, Steppanova, and Tsybakov 2018]
[Ndaoud and Tsybakov 2020]

24/50



MLE

Theorem
The minimax rate of top-k ranking w.r.t. the loss H (S, S*) is

oo [ L(VSVR_ 1 on—k 2
o\ 2 T enrR 0k

+
where

npLA?
Vik)

SNR = (1 + o(1))

Moreover, the MLE achieves the above rate.

© MLE is optimal

25/50



Spectral Method

The error rate of the spectral method w.r.t. the loss H (S, S*) is
— 2
exp _1 SNR B 1 g n—=k
2 2 V'SNR k N

npLA?
V (k)

where

SNR = (1 +0(1))
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Spectral Method

Theorem

The error rate of the spectral method w.r.t. the loss H(S, S*) is

— 2
exp _1 SNR B 1 log n—=k
2 2 V' SNR k N

- 2
SNR = (1 + o(1))"PEA”.

V(k)

where

© When k = o(1) the spectral method is optimal.

A\ Otherwise the spectral method is rate-suboptimal.

26/50



Simulation

n =200, k =50,p=0.25, L =20
05,...,0% ~ Uniform[6,10], 6%,...,05,, ~ Uniform[0,6 — A]
= k=10

0.040 —— MLE
Spectral
0.035

o
o
@
S

0.025 -

0.020 4

0.015 4

Partial recovery error

o
o
2
5

0.005 4

0.000 - ———4

T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00

N
~



Summary for the Top-k Ranking Task

For both exact recovery and partial recovery:

© the MLE is optimal

the spectral method is (in general) suboptimal



Full Ranking



Goal: to estimate / recover r*

“Power Ranking” in sports: to rank all teams.

SIDELINE SPICE POWER RANKINGS

new orteans sams £ ff
105 ANGELES RAMS S
KANSAS CITY CHIEFS '

NEW ENGLAND PATRIOTS I

LA CHARGERS ’

CHICAGO BEARS I

PITTSBURGH STEE.LER-S'

1
2
3
4
5 HOUSTON TEXANS I
6
7
8
9

MINNESOTA VIKINGS '
10 BALTIMORE RAVENS '
11 INDIANAPOLIS COLTS '
12  SEATTLE SEAHAWKS
13 (¥) CAROLINA PANTHERS I
14@ pALLAs cowsoYs 4 I
15 DENVER BRONCOS I
16  PHILADELPHIA EAGLES I

@SIDELINESPICE

K3 /sIDELINESPICE

AFTER WEEK 12
17  oreen Bay packers SO

18 WASHINGTON REDSKINS ’
19  CINCINNATI BENGALS I
20 TENNESSEE TITANS

21 A CLEVELAND BROWNS I
22 ATLANTA FALCONS I
23 MIAMI DOLPHINS I
24 DETROIT LIONS ’
25 TAMPA BAY BUCS

26 NEW YORK GIANTS I
27 surrAoBiLLs - ff
28 ¥ JACKSONVILLE JAGS

29 SAN FRAN 49ERS

30  ARIZONA CARDINALS I
31 NEW YORK JET '
32 OAKLAND RAIDER: '

N /SIDELINESPICE

sidelinespice.com/2018/11/29/week-12-2018-nfl-power-rankings/

30/

50


sidelinespice.com/2018/11/29/week-12-2018-nfl-power-rankings/

® | 0ss Function: Kendall’s tau

K(7,1*) = % Z I {sign(#; — 7;)sign(r; —r}) < 0}

1<i<j<n




e | oss Function: Kendall’s tau
1
K(#,r*) == Y I{sign(f; — #;)sign(rf —r}) < 0}

1<i<j<n

Yia % Ber (v}, — 05,))

e Regularity of Parameter:

<67 —6;, <Cypforalli



Fundamental Limits

Assume p/ > logn. Then
infsup EK(7, )
T opx
- (14+8)npL(0: =0, )2\ . 2
{"11 S exo (-G ) s i gk > 1

1 . 2
nA \/ B[\//]:Lﬁﬁ s if /5’[\//1:?—1 <1

~
—~

where

n

ety V'O = 67)

Vi(o) =

32/50



Fundamental Limits

Special Case: > n~*

The minimax rate becomes

exp (—O(LpB)) .,

nA L

infsup EK(7, r*) =< {
ror LpB’

Lps > 1,
Lpp < 1.

(&)



Phase Transition

. - exp (=O(Lpp)), Lpb>1,
infsup EK(7, r*) =< N
sy V=

Polynomialé

> Lpg

i phase Exact recovery
1/n : phase
1/n? 1 — 6(log))
Random Exponential

guess phase phase



Pairwise Relation Matrix
Estimation of r* < Estimation of pairwise relation matrix R*

Rfj =I[{7’;k < 7’;‘}

R* with rows and columns properly rearranged:

om0 006
Strongest (=) 1 1111
™m0 1111
® 00 1 1 1
/000 1 1
©/0 000 1

weakest @ [0 0 0 0 O

35/50



Pairwise Relation Matrix

Estimation of r* < Estimation of pairwise relation matrix R*

Rfj = I[{r;k < 7“;‘}

R*:

"~
&b
9
Weakest 9

Strongest Q
©
a

I
&

"eH00O

R O R O R

0

o O = O

1
1

0
0
0

1

1
0
1

0

1
0
1
0

35/50



Pairwise Relation Matrix

Estimation of r* < Estimation of pairwise relation matrix R*

Ry =1{rf <r}}

Kendall’s tau
1
K(#,7%) = — I {sign(f; — #;)sign(r® —r*) < 0

n J ( J
1<i<j<n

1

~n Z H{RU # R }
1<i<j<n

Rij = H{fi < fj}



Pairwise Relation Matrix

From R to 7

For anyAR € {0,1}"*", let # be the rank obtained by sorting
{224 Rijli=1,..n- Then

L4 o
K(#,r*) < - > IRy # Ry}

1<i#j<n
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GO0DHO

How to estimate R*?

omesoe

7777
A
I
7T 7
77077
77777

‘?

How to estimate I{r; < r}}?

37/50



Algorithm: Divide-and-Conquer

Big Picture:

‘ League Partition: Partition the teams into sev-
STEP eral leagues. In each league, teams’ skills are
similar.

Pairwise Relation Matrix Estimation: Estimate

Sll=F © each R;; = I{r; < r}} by local MLEs and
other methods.

SIEE  Optain 7 from R

38/50



League Partition

National Football League (NFL)
Minor Football League

College Football

High School Football

39/50



League Partition

(&>
LA

NEW YORK

(’Ed's
. wi =Y Ayl{j: gy <t}
: j

For each team ¢, count how many teams
“dominate” it:

P

40/50



League Partition

(&>

L For each team ¢, count how many teams

@ “dominate” it:
: w = Ayl{j: gy <t}
NEW voRK .7

JETS
Find the top league S to include all teams

P

S1={i:w; <h}

that are dominated by at most h opponents:

40/50



League Partition

For each team i, count how many teams
“dominate” it:

wi =Y Ayl{j: gij < t}
J

Find the top league 57 to include all teams

that are dominated by at most h opponents:

Slz{i:wifh}

40/50



League Partition

For each team ¢, count how many teams
“dominate” it:

w =Y Ayl{j: g <t}
J
Find the top league 57 to include all teams
that are dominated by at most h opponents:
S1={i:w; <h}

Remove all teams in S, and repeat the above
procedure for the remaining teams.

40/50



League Partition

NEW YORK

JEYS

P

For each team ¢, count how many teams
“dominate” it:

w = Ayl{j: gy <t}
J

Find the top league S to include all teams

that are dominated by at most h opponents:

S1={i:w; <h}

40/50



League Partition

For each team i, count how many teams

“dominate” it:
wl(2) = Z A”H {] : gij < t}
NEW voRK ]§é5’1
JETS

Find the top league S to include all teams

P

Slz{i:wigh}

that are dominated by at most h opponents:

40/50



League Partition

NEW YORK

JETS
Sy

P

For each team ¢, count how many teams
“dominate” it:

wl@) = Z A”H {] : Z’jij < t}
J¢S1

Find the second top league Ss to include all
teams that are dominated by at most A
opponents:

Sy ={i¢ S w? <h}

40/50



League Partition

We can show w.h.p.:

© Teams have clear advantage against those who are at least
two leagues below.

® Teams in the same or neighboring leagues have close skills.

© Teams having close skills are in the same or neighboring
leagues.

41/50



Pairwise Relation Matrix Estimation

Sg

Ss

Sy

S3

o~
w0

—~
w0

000cO® OCOOC 00OCO OO0 0OOCE €CwEd

—

w0

o~

w2

o
w2

<
wn

0

w2

©

wn
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Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 1: j is at least two leagues below of i.

© Teams have clear advantage against those who are at least
two leagues below.

Rij:1



Pairwise Relation Matrix Estimation

Sg

Ss

Sy

S3

Sy

—
w0

cocooo

000©0 0000C 00OOCO ©OP00 OCDCE CCwEl

—

»n

o~

n

o
[92]

~t

n

0

n

©
[97]
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Pairwise Relation Matrix Estimation

o~
w0

—~
w0

cocooo
cocooo
cocooo
cocooo
cocooo

000©0 0000C 00OOCO ©OP00 OCDCE CCwEl

—

w0

™~
w2

o
w2

<
wn

w2

©
w2
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Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 2: i, j are in the same or neighboring leagues.

Local MLE
e [ind all teams with comparable skills to ¢ or j

@ LA

S leks "

45/50



Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 2: i, j are in the same or neighboring leagues.

Local MLE
¢ Find all teams with comparable skills to ¢ or j

-
, 1
Il /!
! J
1 ’
! ’
f ’
I p e
1 .
] 4 4
I
1
\ g /= 2
| S
|
1 ,I
\ NEW vORNK h
\
]
\ JETS /
\ ;
N .
- .-

45/50



Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 2: 1, j are in the same or neighboring leagues.

Local MLE
¢ Find all teams with comparable skills to ¢ or j

¢ Perform MLE on these teams only. Estimate their skills
* Rij=1{6; > 6;}



Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 2: 4, j are in the same or neighboring leagues.

Local MLE
¢ Find all teams with comparable skills to ¢ or j

© Teams in the same or neighboring leagues have close skills.

© Teams having close skills are in the same or neighboring
leagues.

e Perform MLE on these teams only. Estimate their skills
L4 ﬁij = H{él > é]}



Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 2: i, 7 are in the same or neighboring leagues.
Local MLE
¢ Find all teams in the same / neighboring leagues of ¢ or j
@ Teams in the same or neighboring leagues have close skills.

O Teams having close skills are in the same or neighboring
leagues.

e Perform MLE on these teams only. Estimate their skills
o Rij=1{0; > 0;}

45/50



Pairwise Relation R;; = I{r; < r}} Estimation

Scenario 2: i, j are in the same or neighboring leagues.

Local MLE

¢ Find all teams in the same / neighboring leagues of ¢ or j
> Ex. Ifi,j €S = S1US,
> Ex. Ifie Se,j€8S3=5USyUS3US,

@ Teams in the same or neighboring leagues have close skills.

O Teams having close skills are in the same or neighboring
leagues.

e Perform MLE on these teams only. Estimate their skills
o Rij=1{0; > 0;}

45/50



Pairwise Relation Matrix Estimation

~
wn

—
n

0C0cOO0C00C 00000 D000 0O0DCC €CwEO

—

95}

~
w2

cocoo
cocoo
cocoo
cocoo
o ooo

on
w2

<
95}

0

95}

©
wn
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Pairwise Relation Matrix Estimation

000©0 0000C 00OCO ©O000 OCDCE CCwEl

— o~ o ~t L0 ©

w0 w02 w2 w0 w0 w0
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Pairwise Relation Matrix Estimation

Se

S5

Sy

S3

™~
w0

cococoo
cocooo
cocooo
cocooo
o ocooo

—
w0

000©0 0C00C 00OCC DOOO0 OODCE €CCwER

— o~ o ~t L0 ©

w0 w2 w2 wn w2 w2
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Pairwise Relation Matrix Estimation

0C0cO® 0C00C 00000 D000 OO0OCEC €CwEed

— o~ o N L0 ©

w0 w2 w2 wn w2 wn
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Pairwise Relation Matrix Estimation

000©0 0000C 00OCO ©OO00 OO0OCE CCnmeEd

— o~ o ~t L0 ©

[92] [92] [92] [92] [92] [97]

46/50



Pairwise Relation Matrix Estimation

000©0 0000C 00OCO ©OO00 OO0OCE CCnmeEd

—

w0

™~
w2

o
w2

<
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o
w2

©
w2
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Algorithm: Divide-and-Conquer
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Algorithm: Divide-and-Conquer

Statistically Efficient Computationally Efficient

47/50



Summary for the Full Ranking Task

© Minimax Rate: polynomial phase and exponential phase

© Divide-and-conquer Algorithm
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Summary

[Top-k Ranking]
For both exact recovery and partial recovery:
© the MLE is optimal

the spectral method is (in general) suboptimal

[Full Ranking]

© Minimax Rate: polynomial phase and exponential phaser

© Divide-and-conquer Algorithm
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