Optimal Ranking Recovery from Pairwise Comparisons

Anderson Ye Zhang
Department of Statistics
University of Pennsylvania

Pinhan Chen UChicago Stat

Chao Gao
UChicago Stat

Ranking Examples

Sports and Gaming:

Image source: www.psdcovers.com/wp-content/uploads/2012/07/NFL-vector-logos-1024x772.jpg

Ranking Examples

Recommendation System and Web Search:

Ranking Examples

Ranked Voting:

Instructions to Voters

To vote, fill in the oval like this
To rank your candidate choices, fill in the oval:

- In the 1st column for your 1st choice candidate.
- In the 2nd column for your 2nd choice candidate, and so on.

Continue until you have ranked as many or as few candidates as you like.

Governor			$\begin{aligned} & \stackrel{0}{0} \\ & \text { O } \\ & \text { D } \\ & \text { M } \end{aligned}$		$\begin{aligned} & \text { ® } \\ & 0 \\ & 0 \\ & \text { B } \\ & \text { ㄴ } \end{aligned}$		$\begin{aligned} & \text { ® } \\ & 0 . \\ & \text { O } \\ & \text { ㄷ } \end{aligned}$	\% 0 0 ¢ ¢
Cote, Adam Roland Sanford	0	0	0	0	0	0	0	0
$\begin{array}{\|l\|} \hline \text { Dion, Donna J. } \\ \text { Biddeford } \end{array}$	0	0	0	0	0	0	0	0
Dion, Mark N. Portland	0	0	0	0	0	0	0	0
Eves, Mark W. North Berwick	0	0	0	0	0	0	0	0
Mills, Janet T. Farmington	0	0	0	0	0	0	0	0
Russell, Diane Marie Portland	0	0	0	0	0	0	0	0
Sweet, Elizabeth A. Hallowell	0	0	- 0	0	0	0	0	0
Write-in	0	0	0	0	0	0	0	0

Ranking from Pairwise Comparisons

() Team 4 is the strongest
() Team 8 is the weakest
(?) Other Teams

Winner \longrightarrow Loser

Bradley-Terry-Luce (BTL) Model

- n teams

- A sorted skill parameter θ^{*} : $\theta_{1}^{*} \geq \ldots \geq \theta_{n}^{*}$

Bradley-Terry-Luce (BTL) Model

- n teams

- A sorted skill parameter θ^{*} : $\theta_{1}^{*} \geq \ldots \geq \theta_{n}^{*}$
- Rank vector r^{*} : a permutation of $1, \ldots, n$

Bradley-Terry-Luce (BTL) Model

- n teams

- A sorted skill parameter θ^{*} : $\theta_{1}^{*} \geq \ldots \geq \theta_{n}^{*}$
- Rank vector r^{*} : a permutation of $1, \ldots, n$
- For team i, its ranking among the n teams is r_{i}^{*}, and its skill parameter is $\theta_{r_{i}^{*}}^{*}$

Bradley-Terry-Luce (BTL) Model

- n teams
- A sorted skill parameter θ^{*} : $\theta_{1}^{*} \geq \ldots \geq \theta_{n}^{*}$
- Rank vector r^{*} : a permutation of $1, \ldots, n$
- For team i, its ranking among the n teams is r_{i}^{*}, and its skill parameter is $\theta_{r_{i}^{*}}^{*}$

Bradley-Terry-Luce (BTL) Model

$\mathbb{P}(i$ beats $j) \propto \exp \left(\theta_{r_{i}^{*}}^{*}\right)$

$\mathbb{P}(j$ beats $i) \propto \exp \left(\theta_{r_{j}^{*}}^{*}\right)$

Bradley-Terry-Luce (BTL) Model

$\mathbb{P}(i$ beats $j) \propto \exp \left(\theta_{r_{i}^{*}}^{*}\right)$

$\mathbb{P}(j$ beats $i) \propto \exp \left(\theta_{r_{j}^{*}}^{*}\right)$
$\begin{aligned} \mathbb{P}(i \text { beats } j) & =\frac{\exp \left(\theta_{r_{i}^{*}}^{*}\right)}{\exp \left(\theta_{r_{i}^{*}}^{*}\right)+\exp \left(\theta_{r_{j}^{*}}^{*}\right)} \\ & =\psi\left(\theta_{r_{i}^{*}}^{*}-\theta_{r_{j}^{*}}^{*}\right)\end{aligned}$
where $\psi(x)=\frac{e^{x}}{e^{x}+1}$

Bradley-Terry-Luce (BTL) Model

$\mathbb{P}(i$ beats $j) \propto \exp \left(\theta_{r_{i}^{*}}^{*}\right)$

$\mathbb{P}(j$ beats $i) \propto \exp \left(\theta_{r_{j}^{*}}^{*}\right)$
$\begin{aligned} \mathbb{P}(i \text { beats } j) & =\frac{\exp \left(\theta_{r_{i}^{*}}^{*}\right)}{\exp \left(\theta_{r_{i}^{*}}^{*}\right)+\exp \left(\theta_{r_{j}^{*}}^{*}\right)} \\ & =\psi\left(\theta_{r_{i}^{*}}^{*}-\theta_{r_{j}^{*}}^{*}\right)\end{aligned}$
where $\psi(x)=\frac{e^{x}}{e^{x}+1}$

- Incomplete graph: $A_{i j} \stackrel{i i d}{\sim} \operatorname{Ber}(p)$
- L outcomes for each observed pair (i, j) :

$$
y_{i j l} \stackrel{i n d}{\sim} \operatorname{Ber}\left(\psi\left(\theta_{r_{i}^{*}}^{*}-\theta_{r_{j}^{*}}^{*}\right)\right)
$$

An Incomplete List of Prior Art

- Dwork, Kumar, Naor, and Sivakumar (2001)
- Hunter (2004)
- Jiang, Lim, Yao, and Ye (2011)
- Negahban and Wainwright (2012)
- Rajkumar and Agarwal (2014)
- Chen and Suh (2015)
- Jin, Zhang, Balakrishnan, Wainwright, and Jordan (2016)
- Shah, Balakrishnan, Guntuboyina, and Wainwright (2016)
- Shah and Wainwright (2017)
- Agarwal, Agarwal, Assadi, and Khanna (2017)
- Pananjady, Mao, Muthukumar, Wainwright, and

Courtade (2017)

- Balakrishnan, Wainwright, and Yu (2017)
- Negahban, Oh, and Shah (2017)
- Chen, Fan, Ma, and Wang (2019)
- Shah, Balakrishnan, and Wainwright (2019)
- Heckel, Shah, Ramchandran, and Wainwright (2019)
- ...

An Incomplete List of Prior Art

- Dwork, Kumar, Naor, and Sivakumar (2001)
- Hunter (2004)
- Jiang, Lim, Yao, and Ye (2011)
- Negahban and Wainwright (2012)
- Rajkumar and Agarwal (2014)
- Chen and Suh (2015)
- Jin, Zhang, Balakrishnan, Wainwright, and Jordan (2016)
- Shah, Balakrishnan, Guntuboyina, and Wainwright (2016)

Most focus on θ^{*}

- Shah and Wainwright (2017)
- Agarwal, Agarwal, Assadi, and Khanna (2017)
- Pananjady, Mao, Muthukumar, Wainwright, and Courtade (2017)
- Balakrishnan, Wainwright, and Yu (2017)
- Negahban, Oh, and Shah (2017)
- Chen, Fan, Ma, and Wang (2019)
- Shah, Balakrishnan, and Wainwright (2019)
- Heckel, Shah, Ramchandran, and Wainwright (2019)
- ...

Two Tasks

- Top- k Ranking
- Full Ranking

Top- k Ranking

Problem Statement

Rafael Nadal

Novak Djokovic

- Top- k subset $S^{*} \subset\{1,2, \ldots, n\}$
- $\left|S^{*}\right|=k$
- For all $i \in S^{*}, \theta_{r_{i}^{*}}^{*} \geq \max _{j \notin S^{*}} \theta_{r_{j}^{*}}^{*}$
- How to estimate / recover S^{*} ?

Problem Statement

- Top- k subset $S^{*} \subset\{1,2, \ldots, n\}$
- $\left|S^{*}\right|=k$
- For all $i \in S^{*}, \theta_{r_{i}^{*}}^{*} \geq \max _{j \notin S^{*}} \theta_{r_{j}^{*}}^{*}$
- How to estimate / recover S^{*} ?
- A natural idea:
- Estimate $\left\{\theta_{r_{1}^{*}}^{*}, \ldots, \theta_{r_{n}^{*}}^{*}\right\}$ with $\left\{\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}\right\}$
- Find the top- k subset $\hat{S} \subset\{1,2, \ldots, n\}$ such that
- $|\hat{S}|=k$
- For all $i \in \hat{S}, \hat{\theta}_{i} \geq \max _{j \notin \hat{S}} \hat{\theta}_{j}$

Algorithm 1: MLE

Step 1: Compute $\bar{y}_{i j}=\frac{1}{L} \sum_{l=1}^{L} y_{i j l}$
Step 2: Find the MLE $\hat{\theta}$ by minimizing
$\ell_{n}(\theta)=\sum A_{i j}\left(\bar{y}_{i j} \log \frac{1}{\psi\left(\theta_{i}-\theta_{j}\right)}+\left(1-\bar{y}_{i j}\right) \log \frac{1}{1-\psi\left(\theta_{i}-\theta_{j}\right)}\right)$

Step 3: Find the top-k subset \hat{S} from $\hat{\theta}$

Algorithm 2: Spectral Method

(Rank Centrality Algorithm)

Step 1: Construct the Markov transition matrix

$$
P_{i j}= \begin{cases}\frac{1}{d} A_{i j} \bar{y}_{j i}, & i \neq j \\ 1-\frac{1}{d} \sum_{l \neq i} A_{i l} \bar{y}_{l i}, & i=j\end{cases}
$$

Step 2: Find the stationary distribution $\hat{\pi}$
Step 3: Find the top- k subset \hat{S} from $\hat{\pi}$

Algorithm 2: Spectral Method

(Rank Centrality Algorithm)

Why spectral method works?
Population version:

$$
\begin{aligned}
& M_{i j}=\mathbb{E}\left(P_{i j} \mid A\right)= \begin{cases}\frac{1}{d} A_{i j} \psi\left(\theta_{r_{j}^{*}}^{*}-\theta_{r_{i}^{*}}^{*}\right), & i \neq j \\
1-\frac{1}{d} \sum_{l \neq i} A_{i l} \psi\left(\theta_{r_{l}^{*}}^{*}-\theta_{r_{i}^{*}}^{*}\right), & i=j\end{cases} \\
& \pi^{*}=\left(\frac{\exp \left(\theta_{r_{1}^{*}}^{*}\right)}{\sum_{l} \exp \left(\theta_{r_{l}^{*}}^{*}\right)}, \ldots, \frac{\exp \left(\theta_{r_{n}^{*}}^{*}\right)}{\sum_{l} \exp \left(\theta_{r_{l}^{*}}^{*}\right)}\right)^{T}
\end{aligned}
$$

Easy to check π^{*} is the stationary distribution of M

Our Result 1: Exact Recovery

Exact recovery: $\hat{S}=S^{*}$?
(3) MLE is optimal
() Spectral method is (in general) suboptimal, with a worse constant

Our Result 1: Exact Recovery

Exact recovery: $\hat{S}=S^{*}$?
() MLE is optimal
() Spectral method is (in general) suboptimal, with a worse constant

Our result complements Chen, Fan, Ma, Wang (2019):

SPECTRAL METHOD AND REGULARIZED MLE ARE BOTH OPTIMAL FOR TOP-K RANKING ${ }^{1}$

exact recovery
By Yuxin Chen ${ }^{*, 2}$, JIANQing Fan ${ }^{\dagger, *, 3}$, Cong MA* and Kaizheng Wang* Princeton University* and Fudan University ${ }^{\dagger}$

Assumptions: $\theta_{1}^{*} \geq \theta_{2}^{*} \geq \ldots \geq \theta_{n}^{*}$
Separation: $\theta_{k}^{*}-\theta_{k+1}^{*} \geq \Delta$
Dynamic Range: $\theta_{1}^{*}-\theta_{n}^{*} \leq \kappa=O(1)$

Assumptions: $\theta_{1}^{*} \geq \theta_{2}^{*} \geq \ldots \geq \theta_{n}^{*}$
Separation: $\theta_{k}^{*}-\theta_{k+1}^{*} \geq \Delta$
Dynamic Range: $\theta_{1}^{*}-\theta_{n}^{*} \leq \kappa=O(1)$
Two variance functions:
MLE:

$$
V(\kappa)=\max _{\substack{\kappa_{1}+\kappa_{2} \leq \kappa \\ \kappa_{1}, \kappa_{2} \geq 0}} \frac{n}{k \psi^{\prime}\left(\kappa_{1}\right)+(n-k) \psi^{\prime}\left(\kappa_{2}\right)}
$$

Spectral method:
$\bar{V}(\kappa)=\max _{\substack{\kappa_{1}+\kappa_{2} \leq \kappa \\ \kappa_{1}, \kappa_{2} \geq 0}} \frac{k \psi^{\prime}\left(\kappa_{1}\right)\left(1+e^{\kappa_{1}}\right)^{2}+(n-k) \psi^{\prime}\left(\kappa_{2}\right)\left(1+e^{-\kappa_{2}}\right)^{2}}{\left(k \psi\left(\kappa_{1}\right)+(n-k) \psi\left(-\kappa_{2}\right)\right)^{2} / n}$

MLE

Theorem
Suppose

$$
\Delta^{2}>2.001 V(\kappa) \frac{(\sqrt{\log k}+\sqrt{\log (n-k)})^{2}}{n p L}
$$

Then the MLE recovers the top- k subset S^{*} whp.
Suppose

$$
\Delta^{2}<1.999 V(\kappa) \frac{(\sqrt{\log k}+\sqrt{\log (n-k)})^{2}}{n p L}
$$

Then no algorithm works.
().) MLE is optimal

Spectral Method

Theorem

Suppose

$$
\Delta^{2}>2.001 \bar{V}(\kappa) \frac{(\sqrt{\log k}+\sqrt{\log (n-k)})^{2}}{n p L}
$$

Then the spectral method recovers the top- k subset S^{*} whp. Suppose

$$
\Delta^{2}<1.999 \bar{V}(\kappa) \frac{(\sqrt{\log k}+\sqrt{\log (n-k)})^{2}}{n p L}
$$

Then the spectral method fails.

Spectral Method

Lemma
$\bar{V}(\kappa) \geq V(\kappa)$. The equality holds if and only if $\kappa=0$.

Spectral Method

Lemma
$\bar{V}(\kappa) \geq V(\kappa)$. The equality holds if and only if $\kappa=0$.
(-) When $\kappa=o(1)$ the spectral method is optimal.
4 Otherwise the spectral method is suboptimal with a worse constant.

Simulation

$n=200, k=50, p=0.25, L=20$
$\theta_{1}^{*}, \ldots, \theta_{50}^{*} \sim$ Uniform $[6,10], \quad \theta_{51}^{*}, \ldots, \theta_{200}^{*} \sim \operatorname{Uniform}[0,6-\Delta]$
$\Rightarrow \kappa=10$

Our Result 2: Partial Recovery

Partial recovery: Distance between \hat{S} and S^{*} ?

$$
H\left(\hat{S}, S^{*}\right)=\frac{1}{2 k}\left(\left|\hat{S} \cap S^{* C}\right|+\left|\hat{S}^{C} \cap S^{*}\right|\right)
$$

Our Result 2: Partial Recovery

Partial recovery: Distance between \hat{S} and S^{*} ?

$$
H\left(\hat{S}, S^{*}\right)=\frac{1}{2 k}\left(\left|\hat{S} \cap S^{* C}\right|+\left|\hat{S}^{C} \cap S^{*}\right|\right)
$$

(3) MLE is optimal
(-) Spectral method is (in general) rate-suboptimal

Minimax Rates

Theorem

The minimax rate of top- k ranking w.r.t. the loss $H\left(\hat{S}, S^{*}\right)$ is

$$
\exp \left(-\frac{1}{2}\left(\frac{\sqrt{S N R}}{2}-\frac{1}{\sqrt{S N R}} \log \frac{n-k}{k}\right)_{+}^{2}\right)
$$

where

$$
S N R=(1+o(1)) \frac{n p L \Delta^{2}}{V(\kappa)} .
$$

Minimax Rates

Theorem

The minimax rate of top-k ranking w.r.t. the loss $H\left(\hat{S}, S^{*}\right)$ is

$$
\exp \left(-\frac{1}{2}\left(\frac{\sqrt{S N R}}{2}-\frac{1}{\sqrt{S N R}} \log \frac{n-k}{k}\right)_{+}^{2}\right)
$$

where

$$
S N R=(1+o(1)) \frac{n p L \Delta^{2}}{V(\kappa)} .
$$

Similar to support recovery problem for variable selection in the high-dimensional regression.
[Butucea, Ndaoud, Steppanova, and Tsybakov 2018] [Ndaoud and Tsybakov 2020]

MLE

Theorem

The minimax rate of top- k ranking w.r.t. the loss $H\left(\hat{S}, S^{*}\right)$ is

$$
\exp \left(-\frac{1}{2}\left(\frac{\sqrt{S N R}}{2}-\frac{1}{\sqrt{S N R}} \log \frac{n-k}{k}\right)_{+}^{2}\right)
$$

where

$$
S N R=(1+o(1)) \frac{n p L \Delta^{2}}{V(\kappa)} .
$$

Moreover, the MLE achieves the above rate.
().) MLE is optimal

Spectral Method

Theorem
The error rate of the spectral method w.r.t. the loss $H\left(\hat{S}, S^{*}\right)$ is

$$
\exp \left(-\frac{1}{2}\left(\frac{\sqrt{\overline{S N R}}}{2}-\frac{1}{\sqrt{\overline{S N R}}} \log \frac{n-k}{k}\right)_{+}^{2}\right)
$$

where

$$
\overline{S N R}=(1+o(1)) \frac{n p L \Delta^{2}}{\bar{V}(\kappa)} .
$$

Spectral Method

Theorem

The error rate of the spectral method w.r.t. the loss $H\left(\hat{S}, S^{*}\right)$ is

$$
\exp \left(-\frac{1}{2}\left(\frac{\sqrt{\overline{S N R}}}{2}-\frac{1}{\sqrt{S N R}} \log \frac{n-k}{k}\right)_{+}^{2}\right)
$$

where

$$
\overline{S N R}=(1+o(1)) \frac{n p L \Delta^{2}}{\bar{V}(\kappa)} .
$$

(-) When $\kappa=o(1)$ the spectral method is optimal.
4 Otherwise the spectral method is rate-suboptimal.

Simulation

$n=200, k=50, p=0.25, L=20$
$\theta_{1}^{*}, \ldots, \theta_{50}^{*} \sim$ Uniform $[6,10], \quad \theta_{51}^{*}, \ldots, \theta_{200}^{*} \sim \operatorname{Uniform}[0,6-\Delta]$ $\Rightarrow \kappa=10$

Summary for the Top- k Ranking Task

For both exact recovery and partial recovery:
(). the MLE is optimal
() the spectral method is (in general) suboptimal

Full Ranking

Goal: to estimate / recover r^{*}

"Power Ranking" in sports: to rank all teams.

- Loss Function: Kendall's tau

$$
\mathrm{K}\left(\hat{r}, r^{*}\right)=\frac{1}{n} \sum_{1 \leq i<j \leq n} \mathbb{I}\left\{\operatorname{sign}\left(\hat{r}_{i}-\hat{r}_{j}\right) \operatorname{sign}\left(r_{i}^{*}-r_{j}^{*}\right)<0\right\}
$$

- Loss Function: Kendall's tau

$$
\mathrm{K}\left(\hat{r}, r^{*}\right)=\frac{1}{n} \sum_{1 \leq i<j \leq n} \mathbb{I}\left\{\operatorname{sign}\left(\hat{r}_{i}-\hat{r}_{j}\right) \operatorname{sign}\left(r_{i}^{*}-r_{j}^{*}\right)<0\right\}
$$

$$
Y_{i j l} \stackrel{i n d}{\sim} \operatorname{Ber}\left(\psi\left(\theta_{r_{i}^{*}}^{*}-\theta_{r_{j}^{*}}^{*}\right)\right)
$$

- Regularity of Parameter:

$$
\beta \leq \theta_{i}^{*}-\theta_{i+1}^{*} \leq C_{0} \beta \text { for all } i
$$

Fundamental Limits

Theorem

Assume $p / \beta \gg \log n$. Then
$\inf _{\hat{r}} \sup _{r^{*}} \mathbb{E} K\left(\hat{r}, r^{*}\right)$

$$
\asymp \begin{cases}\frac{1}{n-1} \sum_{i=1}^{n-1} \exp \left(-\frac{(1+\delta) n p L\left(\theta_{i}^{*}-\theta_{i+1}^{*}\right)^{2}}{4 V_{i}\left(\theta^{*}\right)}\right), & \text { if } \frac{L p \beta^{2}}{\beta \vee n^{-1}}>1 \\ n \wedge \sqrt{\frac{\beta \vee n^{-1}}{L p \beta^{2}}}, & \text { if } \frac{L p \beta^{2}}{\beta \vee n^{-1}} \leq 1\end{cases}
$$

where

$$
V_{i}\left(\theta^{*}\right)=\frac{n}{\sum_{j \in[n] \backslash\{i\}} \psi^{\prime}\left(\theta_{i}^{*}-\theta_{j}^{*}\right)} .
$$

Fundamental Limits

Special Case: $\beta \gtrsim n^{-1}$
The minimax rate becomes

$$
\inf _{\hat{r}} \sup _{r^{*}} \mathbb{E} K\left(\hat{r}, r^{*}\right) \asymp \begin{cases}\exp (-\Theta(L p \beta)), & L p \beta>1, \\ n \wedge \sqrt{\frac{1}{L p \beta}}, & L p \beta \leq 1 .\end{cases}
$$

Phase Transition

$$
\inf _{\hat{r}} \sup _{r^{*}} \mathbb{E} \mathrm{~K}\left(\hat{r}, r^{*}\right) \asymp \begin{cases}\exp (-\Theta(L p \beta)), & L p \beta>1 \\ n \wedge \sqrt{\frac{1}{L p \beta}}, & L p \beta \leq 1\end{cases}
$$

Pairwise Relation Matrix

Estimation of $r^{*} \Leftrightarrow$ Estimation of pairwise relation matrix R^{*}

$$
R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}
$$

R^{*} with rows and columns properly rearranged:

Pairwise Relation Matrix

Estimation of $r^{*} \Leftrightarrow$ Estimation of pairwise relation matrix R^{*}

$$
R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}
$$

R^{*} :

Pairwise Relation Matrix

Estimation of $r^{*} \Leftrightarrow$ Estimation of pairwise relation matrix R^{*}

$$
R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}
$$

Kendall's tau

$$
\begin{aligned}
& \mathrm{K}\left(\hat{r}, r^{*}\right)=\frac{1}{n} \sum_{1 \leq i<j \leq n} \mathbb{I}\left\{\operatorname{sign}\left(\hat{r}_{i}-\hat{r}_{j}\right) \operatorname{sign}\left(r_{i}^{*}-r_{j}^{*}\right)<0\right\} \\
&=\frac{1}{n} \sum_{1 \leq i<j \leq n} \mathbb{I}\left\{\hat{R}_{i j} \neq R_{i j}^{*}\right\} \\
& \hat{R}_{i j}=\mathbb{I}\left\{\hat{r}_{i}<\hat{r}_{j}\right\}
\end{aligned}
$$

Pairwise Relation Matrix

From \hat{R} to \hat{r} :

Lemma

For any $\hat{R} \in\{0,1\}^{n \times n}$, let \hat{r} be the rank obtained by sorting $\left\{\sum_{j \neq i} \hat{R}_{i, j}\right\}_{i=1, \ldots, n}$. Then

$$
K\left(\hat{r}, r^{*}\right) \leq \frac{4}{n} \sum_{1 \leq i \neq j \leq n} \mathbb{I}\left\{\hat{R}_{i j} \neq R_{i j}^{*}\right\} .
$$

How to estimate R^{*} ?

How to estimate $\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$?

Algorithm: Divide-and-Conquer

Big Picture:

League Partition: Partition the teams into several leagues. In each league, teams' skills are similar.

Pairwise Relation Matrix Estimation: Estimate each $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ by local MLEs and other methods.

STEP 3
 Obtain \hat{r} from \hat{R}

League Partition

National Football League (NFL)
 Minor Football League
 College Football
 High School Football

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}=\sum_{j} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}=\sum_{j} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

Find the top league S_{1} to include all teams that are dominated by at most h opponents:

$$
S_{1}=\left\{i: w_{i} \leq h\right\}
$$

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}=\sum_{j} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

Find the top league S_{1} to include all teams that are dominated by at most h opponents:

$$
S_{1}=\left\{i: w_{i} \leq h\right\}
$$

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}=\sum_{j} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

Find the top league S_{1} to include all teams that are dominated by at most h opponents:

$$
S_{1}=\left\{i: w_{i} \leq h\right\}
$$

Remove all teams in S_{1}, and repeat the above procedure for the remaining teams.

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}=\sum_{j} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

Find the top league S_{1} to include all teams that are dominated by at most h opponents:

$$
S_{1}=\left\{i: w_{i} \leq h\right\}
$$

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}^{(2)}=\sum_{j \notin S_{1}} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

Find the top league S_{1} to include all teams that are dominated by at most h opponents:

$$
S_{1}=\left\{i: w_{i} \leq h\right\}
$$

League Partition

For each team i, count how many teams "dominate" it:

$$
w_{i}^{(2)}=\sum_{j \notin S_{1}} A_{i j} \mathbb{I}\left\{j: \bar{y}_{i j} \leq t\right\}
$$

Find the second top league S_{2} to include all teams that are dominated by at most h opponents:

$$
S_{2}=\left\{i \notin S_{1}: w_{i}^{(2)} \leq h\right\}
$$

League Partition

We can show w.h.p.:
(1) Teams have clear advantage against those who are at least two leagues below.

2 Teams in the same or neighboring leagues have close skills.
3 Teams having close skills are in the same or neighboring leagues.

Pairwise Relation Matrix Estimation

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 1: j is at least two leagues below of i.
(1) Teams have clear advantage against those who are at least two leagues below.
$\hat{R}_{i j}=1$

Pairwise Relation Matrix Estimation

Pairwise Relation Matrix Estimation

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$\begin{array}{lll} & 0 \\ & \\ \mathrm{~S}_{1} & 0 \\ & 0 \\ & 0 \\ & 0 \end{array}$						
$\begin{array}{ll} \mathrm{S}_{2} & \mathbf{0} \\ & 0 \\ 0 \end{array}$						
	\cdots 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
$\begin{array}{lll} & 0 \\ & \mathrm{~S}_{4} & 0 \\ & 0 \\ & 0 \end{array}$						
$\begin{array}{ll} & 0 \\ \mathrm{~S}_{5} & 0 \\ 0 \\ \hline 0 \end{array}$						

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 2: i, j are in the same or neighboring leagues.
Local MLE

- Find all teams with comparable skills to i or j

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 2: i, j are in the same or neighboring leagues.
Local MLE

- Find all teams with comparable skills to i or j

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 2: i, j are in the same or neighboring leagues.
Local MLE

- Find all teams with comparable skills to i or j

- Perform MLE on these teams only. Estimate their skills
- $\hat{R}_{i j}=\mathbb{I}\left\{\hat{\theta}_{i}>\hat{\theta}_{j}\right\}$

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 2: i, j are in the same or neighboring leagues.
Local MLE

- Find all teams with comparable skills to i or j

2 Teams in the same or neighboring leagues have close skills.
(3) Teams having close skills are in the same or neighboring leagues.

- Perform MLE on these teams only. Estimate their skills
- $\hat{R}_{i j}=\mathbb{I}\left\{\hat{\theta}_{i}>\hat{\theta}_{j}\right\}$

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 2: i, j are in the same or neighboring leagues.
Local MLE

- Find all teams in the same / neighboring leagues of i or j

2 Teams in the same or neighboring leagues have close skills.
(3) Teams having close skills are in the same or neighboring leagues.

- Perform MLE on these teams only. Estimate their skills
- $\hat{R}_{i j}=\mathbb{I}\left\{\hat{\theta}_{i}>\hat{\theta}_{j}\right\}$

Pairwise Relation $R_{i j}^{*}=\mathbb{I}\left\{r_{i}^{*}<r_{j}^{*}\right\}$ Estimation

Scenario 2: i, j are in the same or neighboring leagues.
Local MLE

- Find all teams in the same / neighboring leagues of i or j
- Ex. If $i, j \in S_{1} \Rightarrow S_{1} \cup S_{2}$
- Ex. If $i \in S_{2}, j \in S_{3} \Rightarrow S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$

2 Teams in the same or neighboring leagues have close skills.
(3) Teams having close skills are in the same or neighboring leagues.

- Perform MLE on these teams only. Estimate their skills
- $\hat{R}_{i j}=\mathbb{I}\left\{\hat{\theta}_{i}>\hat{\theta}_{j}\right\}$

Pairwise Relation Matrix Estimation

Algorithm: Divide-and-Conquer

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
$\begin{aligned} & \\ & \mathrm{s}_{1} \stackrel{\circ}{\circ} \\ & \hline 8 \\ & \hline 8 \end{aligned}$						
$\begin{aligned} & \stackrel{\circ}{8} \\ & \mathrm{~S}_{2} \\ & \hline 8 \\ & \hline 8 \end{aligned}$						
$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \mathrm{S}_{3} \\ & \hline \end{aligned}$						
$\begin{array}{ll} & \stackrel{\circ}{8} \\ & \mathrm{~S}_{4} \\ \mathrm{~S}_{8}^{8} \\ \hline 8 \end{array}$						
$\begin{array}{r} 0 \\ \\ \mathrm{~S}_{5} \\ \hline 8 \\ \hline 8 \\ \hline 8 \end{array}$						
$\begin{aligned} & \\ & \\ & \mathrm{S}_{6} \\ & \stackrel{0}{0} \\ & \\ & \\ & \hline \end{aligned}$						

Algorithm: Divide-and-Conquer

Statistically Efficient
Computationally Efficient

Summary for the Full Ranking Task

(). Minimax Rate: polynomial phase and exponential phase
(). Divide-and-conquer Algorithm

Summary

[Top- k Ranking]
For both exact recovery and partial recovery:
(-) the MLE is optimal
-) the spectral method is (in general) suboptimal
[Full Ranking]
(-) Minimax Rate: polynomial phase and exponential phaser
(). Divide-and-conquer Algorithm

References

Pinhan Chen, Chao Gao, and Anderson Y Zhang. Partial recovery for top- k ranking: Optimality of mle and sub-optimality of spectral method. arXiv preprint arXiv:2006.16485, 2020

Pinhan Chen, Chao Gao, and Anderson Y Zhang. Optimal full ranking from pairwise comparisons.
arXiv preprint arXiv:2101.08421, 2021

