# Uncertainty Quantification in The Bradley-Terry-Luce Model



Anderson Ye Zhang

Department of Statistics University of Pennsylvania



Yandi Shen UChicago



Chao Gao UChicago

## Ranking Examples

Sports and Gaming:



Image SOURCE: www.psdcovers.com/wp-content/uploads/2012/07/NFL-vector-logos-1024x772.jpg

## **Ranking Examples**

### Recommendation System and Web Search:



Image source: https://miro.medium.com/max/2400/1\*dMR3xmufnmKiw4crlisQUA.png

# Ranking Examples

#### Ranked Choice Voting:

#### Instructions to Voters

To vote, fill in the oval like this ●

To rank your candidate choices, fill in the oval:

- In the 1st column for your 1st choice candidate.
- In the 2nd column for your 2nd choice candidate, and so on.

Continue until you have ranked as many or as few candidates as you like.

| Governor<br>Cote, Adam Roland<br>Sanford | 1st Choice | 2nd Choice |   | 3rd Choice |   | 4th Choice |   | 5th Choice |   | 6th Choice |   | 7th Choice |   | 8th Choice |   |
|------------------------------------------|------------|------------|---|------------|---|------------|---|------------|---|------------|---|------------|---|------------|---|
|                                          | 0          |            | 0 |            | 0 |            | 0 |            | 0 |            | 0 |            | 0 |            | 0 |
| Dion, Donna J.<br>Biddeford              | 0          |            | 0 | -          | 0 |            | 0 |            | 0 | 1          | 0 | ~          | 0 | -          | 0 |
| Dion, Mark N.<br>Portland                | 0          | -          | 0 | -          | 0 | -          | 0 |            | 0 |            | 0 |            | 0 | -          | 0 |
| Eves, Mark W.<br>North Berwick           | 0          |            | 0 | <u></u>    | 0 | 4          | 0 |            | 0 | -          | 0 |            | 0 | -          | 0 |
| Mills, Janet T.<br>Farmington            | 0          | -          | 0 | -          | 0 | 2          | 0 |            | 0 | 1          | 0 |            | 0 | 69.K       | 0 |
| Russell, Diane Marie                     | 0          | 1000       | 0 | ÷.         | 0 |            | 0 | 1.423      | 0 | -          | 0 |            | 0 |            | 0 |
| Sweet, Elizabeth A.<br>Hallowell         | 0          | 270        | 0 |            | 0 |            | 0 |            | 0 |            | 0 | -          | 0 | ~          | 0 |
| Write-in                                 | 0          |            | 0 | 2          | 0 | -          | 0 |            | 0 |            | 0 | -          | 0 | -          | 0 |

## Ranking from Pairwise Comparisons



- Player 4 is the strongest
   Player 8 is the weakest
- Other Players?



- n players
- A skill parameter vector  $\theta^* \in \mathbb{R}^n$ . For player *i*, her skill is  $\theta_i^*$



- n players
- A skill parameter vector  $\theta^* \in \mathbb{R}^n$ . For player *i*, her skill is  $\theta_i^*$
- Rank vector  $r^*$ : a permutation of  $1, \ldots, n$  such that  $\theta_i^* = \theta_{(r_i^*)}^*$ . For player *i*, her rank is  $r_i^*$



- n players
- A skill parameter vector  $\theta^* \in \mathbb{R}^n$ . For player *i*, her skill is  $\theta_i^*$
- Rank vector  $r^*$ : a permutation of  $1, \ldots, n$  such that  $\theta_i^* = \theta_{(r_i^*)}^*$ . For player *i*, her rank is  $r_i^*$





- n players
- A skill parameter vector  $\theta^* \in \mathbb{R}^n$ . For player *i*, her skill is  $\theta_i^*$
- Rank vector  $r^*$ : a permutation of  $1, \ldots, n$  such that  $\theta_i^* = \theta_{(r_i^*)}^*$ . For player *i*, her rank is  $r_i^*$





 $\mathbb{P}(i \text{ beats } j) \propto \exp(\theta_i^*)$  $\mathbb{P}(j \text{ beats } i) \propto \exp(\theta_j^*)$ 



 $\mathbb{P}(i \text{ beats } j) \propto \exp(\theta_i^*)$  $\mathbb{P}(j \text{ beats } i) \propto \exp(\theta_i^*)$ 

$$\begin{split} \mathbb{P}(i \text{ beats } j) &= \frac{\exp\left(\theta_{i}^{*}\right)}{\exp\left(\theta_{i}^{*}\right) + \exp\left(\theta_{j}^{*}\right)} \\ &= \psi(\theta_{i}^{*} - \theta_{j}^{*}) \end{split}$$

where 
$$\psi(x) = \frac{e^x}{e^x + 1}$$



 $\mathbb{P}(i \text{ beats } j) \propto \exp(\theta_i^*)$  $\mathbb{P}(j \text{ beats } i) \propto \exp(\theta_i^*)$ 

$$\begin{split} \mathbb{P}(i \text{ beats } j) &= \frac{\exp\left(\theta_{i}^{*}\right)}{\exp\left(\theta_{i}^{*}\right) + \exp(\theta_{j}^{*})} \\ &= \psi(\theta_{i}^{*} - \theta_{j}^{*}) \end{split}$$

where 
$$\psi(x) = \frac{e^x}{e^x + 1}$$

- Missing Data: comparison graph  $A_{ij} \stackrel{iid}{\sim} Ber(p)$
- L outcomes for each observed pair (i, j):

$$y_{ijl}|A_{ij} = 1 \stackrel{ind}{\sim} \mathsf{Ber}\left(\psi(\theta_i^* - \theta_j^*)\right)$$

# An Incomplete List of Prior Art

- Dwork, Kumar, Naor, and Sivakumar (2001)
- Hunter (2004)
- Jiang, Lim, Yao, and Ye (2011)
- Negahban and Wainwright (2012)
- Rajkumar and Agarwal (2014)
- Chen and Suh (2015)
- Jin, Zhang, Balakrishnan, Wainwright, and Jordan (2016)
- Shah, Balakrishnan, Guntuboyina, and Wainwright (2016)
- Shah and Wainwright (2017)
- Agarwal, Agarwal, Assadi, and Khanna (2017)
- Pananjady, Mao, Muthukumar, Wainwright, and Courtade (2017)
- Mao, Pananjady, and Wainwright (2018a)
- Mao, Weed, and Rigollet (2018b)
- Balakrishnan, Wainwright, and Yu (2017)
- Negahban, Oh, and Shah (2017)
- Chen, Fan, Ma, and Wang (2019)
- Shah, Balakrishnan, and Wainwright (2019)
- Heckel, Shah, Ramchandran, and Wainwright (2019)

## **Existing Literature**

Focuses on the estimation of  $\theta^*$ :

$$\|\hat{ heta}- heta^*\|, \quad \|\hat{ heta}- heta^*\|_\infty$$

It remains unclear

- Uncertainty quantification for  $\theta^*$ 
  - Entrywise distribution of  $\hat{\theta}$ ?
  - Confidence interval and hypothesis testing for  $\theta_i^*$ ?
  - Confidence interval and hypothesis testing for  $r_i^*$ ?

• Recovery of r\*?

## **Existing Literature**

Focuses on the estimation of  $\theta^*$ :

$$\|\hat{\theta} - \theta^*\|, \quad \|\hat{\theta} - \theta^*\|_{\infty}$$

It remains unclear

- Uncertainty quantification for  $\theta^*$  Focus of this talk
  - Entrywise distribution of  $\hat{\theta}$ ?
  - Confidence interval and hypothesis testing for  $\theta_i^*$ ?
  - Confidence interval and hypothesis testing for  $r_i^*$ ?

• Recovery of r\*?

# Uncertainty Quantification for MLE

## Maximum Likelihood Estimator

Step 2: Obtain the negative log-likelihood function

$$\ell(\theta) = \sum_{i,j:i < j} A_{ij} \left( \bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \theta_j)} + (1 - \bar{y}_{ij}) \log \frac{1}{1 - \psi(\theta_i - \theta_j)} \right)$$

Step 3: Find the MLE  $\hat{\theta}$  by convex optimization

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^n : \mathbf{1}_n^\top \theta = 0} \ell(\theta)$$

Identifiability:  $\theta$  is identifiable up to a global shift  $a \in \mathbb{R}$ , i.e.,  $\ell(\theta) = \ell(\theta + a\mathbb{1}_n)$ 

## Existing Results

The skill parameter  $\theta^*$  is assumed to satisfy

• Dynamic range:

$$\max_{i \in [n]} \theta_i^* - \min_{i \in [n]} \theta_i^* \le \kappa = \mathcal{O}(1)$$

• Identifiability:  $\mathbf{1}_n^{\top} \theta^* = 0$ 

## Proposition (CFMW19, CGZ20)

Assume  $np \ge \log n$ , then w.h.p.,

$$\|\hat{\theta} - \theta^*\|^2 \lesssim \frac{1}{pL} \quad \text{and} \quad \|\hat{\theta} - \theta^*\|_{\infty}^2 \lesssim \frac{\log n}{npL}$$

 $np \ge \log n$  is necessary as otherwise the comparison graph  $A \sim G(n, p)$  is disconnected.

## **Existing Results**

## Proposition (CFMW19, CGZ20)

Assume  $np \ge \log n$ , then w.h.p.,

$$\|\hat{\theta} - \theta^*\|^2 \lesssim \frac{1}{pL} \quad \text{and} \quad \|\hat{\theta} - \theta^*\|_{\infty}^2 \lesssim \frac{\log n}{npL}$$

 $np\gtrsim \log n$  is necessary as otherwise the comparison graph  $A\sim G(n,p)$  is disconnected.



## Entrywise Distribution



Histogram of  $\hat{\theta}_1$  from 100 independent datasets generated from  $\theta^*$ 

## Existing Results

## Proposition (SY99, HYTC20)

Assume  $n^{1/10}p \rightarrow \infty$ , then for any fixed  $k \ge 1$ ,

$$(\hat{\theta}_1 - \theta_1^*, \dots, \hat{\theta}_k - \theta_k^*)^\top \xrightarrow{d} \mathcal{N}_k(0, S)$$

Questions:

- Weaker assumption on *p*?
- Non-asymptotic results?

#### Theorem

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any  $i \in [n]$ ,

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \frac{\sum_{j: j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j: j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} + \eta_i.$$

Here 
$$\epsilon, \eta \in \mathbb{R}^n$$
 such that  $\|\epsilon\|_{\infty} = \mathfrak{o}(1), \|\eta\|_{\infty} = \mathfrak{o}\left(\frac{1}{\sqrt{npL}}\right)$  w.h.p..

#### Theorem

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any  $i \in [n]$ ,

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} + \eta_i.$$
Here  $\epsilon, \eta \in \mathbb{R}^n$  such that  $\|\epsilon\|_{\infty} = \mathfrak{o}(1), \|\eta\|_{\infty} = \mathfrak{o}\left(\frac{1}{\sqrt{npL}}\right)$  w.h.p..

the main error term  $\, \asymp \, rac{1}{\sqrt{npL}}$ 

### Theorem

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any  $i \in [n]$ ,

$$\hat{\theta}_{i} - \theta_{i}^{*} = (1 + \epsilon_{i}) \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_{i}^{*} - \theta_{j}^{*}) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_{i}^{*} - \theta_{j}^{*})} + \eta_{i}.$$
Here  $\epsilon, \eta \in \mathbb{R}^{n}$  such that  $\|\epsilon\|_{\infty} = \mathfrak{o}(1), \|\eta\|_{\infty} = \mathfrak{o}\left(\frac{1}{\sqrt{npL}}\right)$  w.h.p..



the main error term 
$$\, symp \, rac{1}{\sqrt{npL}}$$

$$\bigoplus \xrightarrow{\text{win ratio}}_{\overline{y}_{ij}} \bigoplus j$$

$$\mathbb{E}\bar{y}_{ij} = \psi(\theta_i^* - \theta_j^*)$$
$$Var(\bar{y}_{ij}) = L^{-1}\psi'(\theta_i^* - \theta_j^*)$$

#### Theorem

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any  $i \in [n]$ ,

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \frac{\sum_{j: j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j: j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} + \eta_i.$$

Here 
$$\epsilon, \eta \in \mathbb{R}^n$$
 such that  $\|\epsilon\|_{\infty} = \mathfrak{o}(1), \|\eta\|_{\infty} = \mathfrak{o}\left(\frac{1}{\sqrt{npL}}\right)$  w.h.p..

Remarks:

- Uniform, Explicit
- Near optimal assumption on p
- No assumption on L (we can let L = 1)
- Immediately imply bounds on  $\|\hat{\theta} \theta^*\|^2$ ,  $\|\hat{\theta} \theta^*\|_{\infty}^2$ , and the asymptotic normality

## Consequence I: $\ell_2$ , $\ell_\infty$ bounds

## Our result

$$\hat{\theta}_i - \theta_i^* \approx \frac{\sum_{j:j \neq i} A_{ij} (\bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*))}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} \approx \frac{1}{\sqrt{npL}}$$

It explains why

$$\|\hat{\theta} - \theta^*\|^2 = \sum_{i=1}^n (\hat{\theta}_i - \theta_i^*)^2 \lesssim \frac{n}{npL} = \frac{1}{pL}$$

$$\|\hat{\theta} - \theta^*\|_{\infty}^2 = \max_{i \in [n]} |\hat{\theta}_i - \theta_i^*|^2 \lesssim \frac{\log n}{npL}$$

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \quad \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} \quad + \eta_i.$$

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \quad \mathcal{N}\left(0, \frac{1}{L\sum_{j:j \neq i} A_{ij}\psi'(\theta_i^* - \theta_j^*)}\right) \quad + \eta_i.$$

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \quad \mathcal{N}\left(0, \frac{1}{L\sum_{j:j \neq i} A_{ij}\psi'(\theta_i^* - \theta_j^*)}\right) + \eta_i.$$

$$\sqrt{L\sum_{j:j\neq i}A_{ij}\psi'(\theta_i^*-\theta_j^*)} \ (\hat{\theta}_i-\theta_i^*) \xrightarrow{d} \mathcal{N}(0,1).$$

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \quad \mathcal{N}\left(0, \frac{1}{L\sum_{j:j \neq i} A_{ij}\psi'(\theta_i^* - \theta_j^*)}\right) + \eta_i.$$

$$\sqrt{L\sum_{j:j\neq i}A_{ij}\psi'(\theta_i^*-\theta_j^*)} \ (\hat{\theta}_i-\theta_i^*) \xrightarrow{d} \mathcal{N}(0,1).$$

## Corollary

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any fixed  $k \ge 1$ ,

$$\left(\rho_1(\theta^*)(\hat{\theta}_1 - \theta_1^*), \dots, \rho_k(\theta^*)(\hat{\theta}_k - \theta_k^*)\right)^\top \xrightarrow{d} \mathcal{N}_k(0, I_k)$$

where  $\rho_i(\theta^*) = \sqrt{L \sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)}$ .

$$\hat{\theta}_i - \theta_i^* = (1 + \epsilon_i) \quad \mathcal{N}\left(0, \frac{1}{L\sum_{j:j \neq i} A_{ij}\psi'(\theta_i^* - \theta_j^*)}\right) + \eta_i.$$

$$\sqrt{L\sum_{j:j\neq i}A_{ij}\psi'(\theta_i^*-\theta_j^*)} \ (\hat{\theta}_i-\theta_i^*) \xrightarrow{d} \mathcal{N}(0,1).$$

## Corollary

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any fixed  $k \ge 1$ ,

$$\left(\rho_1(\hat{\theta})(\hat{\theta}_1 - \theta_1^*), \dots, \rho_k(\hat{\theta})(\hat{\theta}_k - \theta_k^*)\right)^\top \xrightarrow{d} \mathcal{N}_k(0, I_k)$$

where  $\rho_i(\hat{\theta}) = \sqrt{L \sum_{j:j \neq i} A_{ij} \psi'(\hat{\theta}_i - \hat{\theta}_j)}$ .

## Application I: CI/HT for Skills $\theta^*$



- Cl for  $\theta_i^* \theta_j^*$
- HT for  $\mathbb{H}_0: \theta_i^* = \theta_j^*, \quad \mathbb{H}_1: \theta_i^* \neq \theta_j^*$

$$\begin{pmatrix} \rho_i(\hat{\theta})(\hat{\theta}_i - \theta_i^*) \\ \rho_j(\hat{\theta})(\hat{\theta}_j - \theta_j^*) \end{pmatrix} \stackrel{d}{\to} \mathcal{N}_2(0, I_2)$$

## Application II: CI for Rank $r^*$

Statistical inference for the rank of a player of interest  $r_i^*$ 

- $r_i^*$  is the order of  $\theta_i^*$  in  $\theta^*$
- Point estimation:  $\hat{r}_i$  is the order of  $\hat{\theta}_i$  in  $\hat{\theta}$



## Application II: CI for Rank $r^*$

What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

## Application II: CI for Rank $r^*$

What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

• Use the  $\ell_{\infty}$  result from existing literature:  $\|\hat{\theta} - \theta^*\|_{\infty}^2 \leq \frac{C \log n}{npL}$
What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

• Use the  $\ell_{\infty}$  result from existing literature:  $\|\hat{\theta} - \theta^*\|_{\infty}^2 \leq \frac{C \log n}{n p L}$ 



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

• Use the  $\ell_{\infty}$  result from existing literature:  $\|\hat{\theta} - \theta^*\|_{\infty}^2 \leq \frac{C \log n}{n p L}$ 



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

• Use the  $\ell_{\infty}$  result from existing literature:  $\|\hat{\theta} - \theta^*\|_{\infty}^2 \leq \frac{C \log n}{npL}$ 



Cl:  $[n_1 + 1, n - n_2]$ 

What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

• Use the  $\ell_{\infty}$  result from existing literature:  $\|\hat{\theta} - \theta^*\|_{\infty}^2 \leq \frac{C \log n}{n p L}$ 



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?



What about constructing an  $(1 - \alpha)$  Cl for  $r_i^*$ ?

• Use our new result



 $\label{eq:clim} \mbox{Cl:} \left[n_1'+1,n-n_2'\right] \qquad \qquad \mathbb{P}\left(r_i^*\in [n_1'+1,n-n_2']\right)\approx 1-\alpha$ 

Our result revisit

$$\hat{\theta}_i - \theta_i^* \approx \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)}$$

Intuition for the main error term?

Our result revisit

$$\hat{\theta}_i - \theta_i^* \approx \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)}$$

Intuition for the main error term?

The global likelihood function  $\hat{\theta} = \operatorname{argmin}_{\theta} \ell(\theta)$  $\ell(\theta) = \sum_{i,j:i < j} A_{ij} \left( \bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \theta_j)} + (1 - \bar{y}_{ij}) \log \frac{1}{1 - \psi(\theta_i - \theta_j)} \right)$ 

#### Our result revisit

$$\hat{\theta}_i - \theta_i^* \approx \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)}$$

Intuition for the main error term?

The global likelihood function  $\hat{\theta} = \operatorname{argmin}_{\theta} \ell(\theta)$  $\ell(\theta) = \sum_{i,j:i < j} A_{ij} \left( \bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \theta_j)} + (1 - \bar{y}_{ij}) \log \frac{1}{1 - \psi(\theta_i - \theta_j)} \right)$ 

The local likelihood function  $\hat{\theta}_i = \operatorname{argmin}_{\theta_i} \ell(\theta_i; \hat{\theta}_{-i})$ 

$$\ell_i(\theta_i; \theta_{-i}) = \sum_{j: j \neq i} A_{ij} \left( \bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \theta_j)} + (1 - \bar{y}_{ij}) \log \frac{1}{1 - \psi(\theta_i - \theta_j)} \right)$$

$$\begin{split} \hat{\theta}_i &= \operatorname{argmin}_{\theta_i} \ell(\theta_i; \hat{\theta}_{-i}) \text{ where} \\ \ell_i(\theta_i; \hat{\theta}_{-i}) &= \sum_{j: j \neq i} A_{ij} \left( \bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \hat{\theta}_j)} + (1 - \bar{y}_{ij}) \log \frac{1}{1 - \psi(\theta_i - \hat{\theta}_j)} \right) \end{split}$$



$$\begin{split} \hat{\theta}_i &= \operatorname{argmin}_{\theta_i} \ell(\theta_i; \hat{\theta}_{-i}) \text{ where} \\ \ell_i(\theta_i; \hat{\theta}_{-i}) &= \sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \hat{\theta}_j)} + (1 - \bar{y}_{ij}) \log \frac{1}{1 - \psi(\theta_i - \hat{\theta}_j)} \right) \end{split}$$



$$\begin{split} \hat{\theta}_i &\approx \operatorname*{argmin}_{\theta_i} \left( \ell_i(\theta_i^*; \hat{\theta}_{-i}) + \ell_i'(\theta_i^*; \hat{\theta}_{-i})(\theta_i - \theta_i^*) + \frac{1}{2} \ell_i''(\theta_i^*; \hat{\theta}_{-i})(\theta_i - \theta_i^*)^2 \right) \\ &= \theta_i^* - \frac{\ell_i'(\theta_i^*; \hat{\theta}_{-i})}{\ell_i''(\theta_i^*; \hat{\theta}_{-i})} = \theta_i^* + \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \hat{\theta}_j) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \hat{\theta}_j)} \\ &\approx \theta_i^* + \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} \end{split}$$



$$\begin{split} \hat{\theta}_i &\approx \operatorname*{argmin}_{\theta_i} \left( \ell_i(\theta_i^*; \hat{\theta}_{-i}) + \ell_i'(\theta_i^*; \hat{\theta}_{-i})(\theta_i - \theta_i^*) + \frac{1}{2} \ell_i''(\theta_i^*; \hat{\theta}_{-i})(\theta_i - \theta_i^*)^2 \right) \\ &= \theta_i^* - \frac{\ell_i'(\theta_i^*; \hat{\theta}_{-i})}{\ell_i''(\theta_i^*; \hat{\theta}_{-i})} = \theta_i^* + \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \hat{\theta}_j) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \hat{\theta}_j)} \\ &\approx \theta_i^* + \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j \neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)} \end{split}$$



# Uncertainty Quantification for Spectral Method

#### Spectral Method

(Rank Centrality Algorithm [NW12, NOS17])

Step 1: Construct the Markov transition matrix

$$P_{ij} = \begin{cases} \frac{1}{d} A_{ij} \bar{y}_{ji}, & i \neq j\\ 1 - \frac{1}{d} \sum_{l \neq i} A_{il} \bar{y}_{li}, & i = j \end{cases}$$

Step 2: Find the stationary distribution  $\hat{\pi}$ 

Step 3: Obtain the spectral estimator  $\tilde{\theta}$  by

$$\tilde{\theta}_i = \log \hat{\pi}_i - \frac{1}{n} \sum_{j=1}^n \log \hat{\pi}_j$$

#### Spectral Method

(Rank Centrality Algorithm [NW12, NOS17])

Why spectral method works?

Population version:

$$M_{ij} = \mathbb{E}(P_{ij}|A) = \begin{cases} \frac{1}{d}A_{ij}\psi(\theta_j^* - \theta_i^*), & i \neq j\\ 1 - \frac{1}{d}\sum_{l \neq i}A_{il}\psi(\theta_l^* - \theta_i^*), & i = j \end{cases}$$

$$\pi^* = \left(\frac{\exp(\theta_1^*)}{\sum_l \exp(\theta_l^*)}, \dots, \frac{\exp(\theta_n^*)}{\sum_l \exp(\theta_l^*)}\right)^\top$$

- Easy to check  $\pi^*$  is the stationary distribution of M
- $\theta_i^* = \log(\pi_i^*)$  up to a global shift

## Spectral Method

(Rank Centrality Algorithm [NW12, NOS17])

Step 1: Construct the Markov transition matrix

$$P_{ij} = \begin{cases} \frac{1}{d} A_{ij} \bar{y}_{ji}, & i \neq j\\ 1 - \frac{1}{d} \sum_{l \neq i} A_{il} \bar{y}_{li}, & i = j \end{cases}$$

Step 2: Find the stationary distribution  $\hat{\pi}$ 

Step 3: Obtain the spectral estimator  $\tilde{\theta}$  by

$$\tilde{\theta}_i = \log \hat{\pi}_i - \frac{1}{n} \sum_{j=1}^n \log \hat{\pi}_j$$

Identifiability:  $\mathbb{1}_n^{\top} \tilde{\theta} = 0$ 

#### Existing Results for The Spectral Method

#### Proposition (NOS17, CFMW19)

Assume  $np \ge \log n$ , then w.h.p.,

$$\|\tilde{\theta} - \theta^*\|^2 \lesssim \frac{1}{pL}$$
 and  $\|\tilde{\theta} - \theta^*\|_{\infty}^2 \lesssim \frac{\log n}{npL}$ 

### Entrywise Distribution of The Spectral Method



Histogram of  $\tilde{\theta}_1$  from 100 independent datasets generated from  $\theta^*$ 

#### Our Result for The Spectral Method

#### Theorem

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any  $i \in [n]$ ,

$$\begin{split} \tilde{\theta}_{i} - \theta_{i}^{*} &= (1 + \tilde{\epsilon}_{i}) \frac{\sum_{j:j \neq i} A_{ij} (e^{\theta_{i}^{*}} + e^{\theta_{j}^{*}}) \left( \bar{y}_{ij} - \psi(\theta_{i}^{*} - \theta_{j}^{*}) \right)}{e^{\theta_{i}^{*}} \cdot \sum_{j:j \neq i} A_{ij} \psi(\theta_{j}^{*} - \theta_{i}^{*})} + \tilde{\eta}_{i}. \end{split}$$

$$\begin{aligned} \text{Here } \tilde{\epsilon}, \tilde{\eta} \in \mathbb{R}^{n} \text{ such that } \|\tilde{\epsilon}\|_{\infty} &= \mathfrak{o}(1), \|\tilde{\eta}\|_{\infty} = \mathfrak{o}\left(\frac{1}{\sqrt{npL}}\right) \text{ w.h.p..} \end{aligned}$$

$$\begin{aligned} \text{the main error term} &\asymp \frac{1}{\sqrt{npL}} \end{aligned}$$

#### Our Result for The Spectral Method

#### Theorem

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any  $i \in [n]$ ,

$$\tilde{\theta}_{i} - \theta_{i}^{*} = (1 + \tilde{\epsilon}_{i}) \frac{\sum_{j:j \neq i} A_{ij} (e^{\theta_{i}^{*}} + e^{\theta_{j}^{*}}) \left( \bar{y}_{ij} - \psi(\theta_{i}^{*} - \theta_{j}^{*}) \right)}{e^{\theta_{i}^{*}} \cdot \sum_{j:j \neq i} A_{ij} \psi(\theta_{j}^{*} - \theta_{i}^{*})} + \tilde{\eta}_{i}.$$
Here  $\tilde{\epsilon}, \tilde{\eta} \in \mathbb{R}^{n}$  such that  $\|\tilde{\epsilon}\|_{\infty} = \mathfrak{o}(1), \|\tilde{\eta}\|_{\infty} = \mathfrak{o}\left(\frac{1}{\sqrt{npL}}\right)$  w.h.p..  
the main error term  $\approx \frac{1}{\sqrt{npL}}$ 

• Recall: the main error term of the MLE

$$\frac{\sum_{j:j\neq i} A_{ij} \left( \bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*) \right)}{\sum_{j:j\neq i} A_{ij} \psi'(\theta_i^* - \theta_j^*)}$$

### Asymptotic Normality of The Spectral Method

#### Corollary

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any fixed  $k \ge 1$ ,

$$\begin{pmatrix} \tilde{\rho}_1(\theta^*)(\tilde{\theta}_1 - \theta_1^*), \dots, \tilde{\rho}_k(\theta^*)(\tilde{\theta}_k - \theta_k^*) \end{pmatrix}^\top \xrightarrow{d} \mathcal{N}_k(0, I_k),$$
where  $\tilde{\rho}_i(\theta^*) = \sqrt{L \cdot \frac{\left(\sum_{j:j \neq i} A_{ij}(e^{\theta_i^*} + e^{\theta_j^*})\psi'(\theta_i^* - \theta_j^*)\right)^2}{\sum_{j:j \neq i} A_{ij}(e^{\theta_i^*} + e^{\theta_j^*})^2\psi'(\theta_i^* - \theta_j^*)}}.$ 

### Asymptotic Normality of The Spectral Method

#### Corollary

Assume  $np \gg (\log n)^{\frac{3}{2}}$ , then for any fixed  $k \ge 1$ ,

$$\begin{pmatrix} \tilde{\rho}_1(\tilde{\theta})(\tilde{\theta}_1 - \theta_1^*), \dots, \tilde{\rho}_k(\tilde{\theta})(\tilde{\theta}_k - \theta_k^*) \end{pmatrix}^\top \stackrel{d}{\to} \mathcal{N}_k(0, I_k),$$
where  $\tilde{\rho}_i(\tilde{\theta}) = \sqrt{L \cdot \frac{\left(\sum_{j:j \neq i} A_{ij}(e^{\tilde{\theta}_i} + e^{\tilde{\theta}_j})\psi'(\tilde{\theta}_i - \tilde{\theta}_j)\right)^2}{\sum_{j:j \neq i} A_{ij}(e^{\tilde{\theta}_i} + e^{\tilde{\theta}_j})^2\psi'(\tilde{\theta}_i - \tilde{\theta}_j)}}.$ 

## MLE vs. Spectral Method

### Asymptotic Entrywise Variances



Histogram of  $\hat{\theta}_1$  from 100 datasets generated from  $\theta^*$ 

Histogram of  $\tilde{\theta}_1$  from 100 datasets generated from  $\theta^*$ 

$$\rho_i(\theta^*)(\hat{\theta}_i - \theta_i^*) \xrightarrow{d} \mathcal{N}(0, 1) \qquad \tilde{\rho}_i(\theta^*)(\tilde{\theta}_i - \theta_i^*) \xrightarrow{d} \mathcal{N}(0, 1)$$

Cauchy-Schwarz yields

$$\tilde{\rho}_i(\theta^*) \le \rho_i(\theta^*)$$

### Asymptotic Entrywise Variances



Histogram of  $\hat{\theta}_1$  from 100 datasets generated from  $\theta^*$ 

Histogram of  $\tilde{\theta}_1$  from 100 datasets generated from  $\theta^*$ 

$$\tilde{\rho}_i(\theta^*) \le \rho_i(\theta^*)$$

#### Conclusion 1

The MLE has a smaller entrywise asymptotic variance than the spectral method.

#### Proposition (NOS17, CFMW19, CGZ20)

Assume  $np \ge \log n$ , then w.h.p.,

$$\begin{aligned} & \textit{MLE:} \quad \|\hat{\theta} - \theta^*\|^2 \lesssim \frac{1}{pL} \\ & \textit{Spectral:} \quad \|\tilde{\theta} - \theta^*\|^2 \lesssim \frac{1}{pL} \end{aligned}$$

- $\frac{1}{pL}$  is the optimal rate for the  $\ell_2$  estimation
- Both methods are rate-optimal

#### Theorem

Assume  $np \gg \log n$ , then w.h.p.,

$$MLE: \quad \|\hat{\theta} - \theta^*\|^2 = \frac{1 + \mathfrak{o}(1)}{pL} \cdot \sum_{i=1}^n \Big(\sum_{k:k \neq i} \psi'(\theta_i^* - \theta_k^*)\Big)^{-1}$$

Spectral:

$$\|\tilde{\theta} - \theta^*\|^2 = \frac{1 + \mathfrak{o}(1)}{pL} \cdot \sum_{i=1}^n \frac{\sum_{j:j \neq i} (e^{\theta^*_i} + e^{\theta^*_j})^2 \psi'(\theta^*_i - \theta^*_j)}{\left(\sum_{j:j \neq i} (e^{\theta^*_i} + e^{\theta^*_j}) \psi'(\theta^*_i - \theta^*_j)\right)^2}$$

#### Theorem

Assume  $np \gg \log n$ , then w.h.p.,

$$MLE: \quad \|\hat{\theta} - \theta^*\|^2 = \frac{1 + \mathfrak{o}(1)}{pL} \cdot \sum_{i=1}^n \Big(\sum_{k:k \neq i} \psi'(\theta_i^* - \theta_k^*)\Big)^{-1}$$

Spectral:

$$\|\tilde{\theta} - \theta^*\|^2 = \frac{1 + \mathfrak{o}(1)}{pL} \cdot \sum_{i=1}^n \frac{\sum_{j:j \neq i} (e^{\theta^*_i} + e^{\theta^*_j})^2 \psi'(\theta^*_i - \theta^*_j)}{\left(\sum_{j:j \neq i} (e^{\theta^*_i} + e^{\theta^*_j}) \psi'(\theta^*_i - \theta^*_j)\right)^2}$$

- Sharp constants with both upper and lower bounds
- MLE is better with a smaller constant

Q: Is the MLE optimal?

A: Yes, it achieves the exact asymptotic minimax error.

Theorem

$$\inf_{\hat{\theta}} \sup_{\theta \in B(\theta^*)} \mathbb{E}_{\theta} \| \hat{\theta} - \theta \|^2 \geq \frac{1 + \mathfrak{o}(1)}{pL} \cdot \sum_{i=1}^n \Big( \sum_{j: j \neq i} \psi'(\theta_i^* - \theta_j^*) \Big)^{-1}$$

Q: Is the MLE optimal?

A: Yes, it achieves the exact asymptotic minimax error.

Theorem

$$\inf_{\hat{\theta}} \sup_{\theta \in B(\theta^*)} \mathbb{E}_{\theta} \| \hat{\theta} - \theta \|^2 \ge \frac{1 + \mathfrak{o}(1)}{pL} \cdot \sum_{i=1}^n \Big( \sum_{j: j \neq i} \psi'(\theta_i^* - \theta_j^*) \Big)^{-1}$$

#### Conclusion 2

The MLE is optimal in  $\ell_2$  estimation; the spectral method is sub-optimal with a worse constant.

### Intuition for The Spectral Method

Our result revisit

$$\tilde{\theta}_i - \theta_i^* \approx \frac{\sum_{j:j \neq i} A_{ij}(\pi_i^* + \pi_j^*) (\bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*))}{\pi_i^* \cdot \sum_{j:j \neq i} A_{ij} \psi(\theta_j^* - \theta_i^*)}$$

Intuition for the main error term?
## Intuition for The Spectral Method

Our result revisit

$$\tilde{\theta}_i - \theta_i^* \approx \frac{\sum_{j:j \neq i} A_{ij} (\pi_i^* + \pi_j^*) (\bar{y}_{ij} - \psi(\theta_i^* - \theta_j^*))}{\pi_i^* \cdot \sum_{j:j \neq i} A_{ij} \psi(\theta_j^* - \theta_i^*)}$$

Intuition for the main error term?

$$\begin{split} \tilde{\theta}_i &= \log \hat{\pi}_i - \frac{1}{n} \sum_{j=1}^n \log \hat{\pi}_j \\ \theta_i^* &= \log \pi_i^* - \frac{1}{n} \sum_{j=1}^n \log \pi_j^* \\ \tilde{\theta}_i - \theta_i^* &= \log \left( 1 + \frac{\hat{\pi}_i - \pi^*}{\pi^*} \right) - \frac{1}{n} \sum_{j=1}^n \left( 1 + \frac{\hat{\pi}_j - \pi_i^*}{\pi_i^*} \right) \\ &\approx \frac{\hat{\pi}_i - \pi_i^*}{\pi_i^*} \end{split}$$

## Intuition for The Spectral Method

$$\hat{\pi}^{\top} = \hat{\pi}^{\top} P$$
$$\hat{\pi}_{i} = \frac{\sum_{j:j \neq i} A_{ij} \bar{y}_{ij} \hat{\pi}_{j}}{\sum_{j:j \neq i} A_{ij} \bar{y}_{ji}} \approx \frac{\sum_{j:j \neq i} A_{ij} \bar{y}_{ij} \pi_{j}^{*}}{\sum_{j:j \neq i} A_{ij} \bar{y}_{ji}}$$

$$\begin{split} \tilde{\theta}_{i} - \theta_{i}^{*} &\approx \frac{\hat{\pi}_{i} - \pi_{i}^{*}}{\pi_{i}^{*}} = \frac{\sum_{j:j \neq i} A_{ij} \left( \bar{y}_{ij} \pi_{j}^{*} - \bar{y}_{ji} \pi_{i}^{*} \right)}{\pi_{i}^{*} \cdot \sum_{j:j \neq i} A_{ij} \bar{y}_{ji}} \\ &= \frac{\sum_{j:j \neq i} A_{ij} (\pi_{i}^{*} + \pi_{j}^{*}) \left( \bar{y}_{ij} - \psi(\theta_{i}^{*} - \theta_{j}^{*}) \right)}{\pi_{i}^{*} \cdot \sum_{j:j \neq i} A_{ij} \bar{y}_{ji}} \\ &\approx \frac{\sum_{j:j \neq i} A_{ij} (\pi_{i}^{*} + \pi_{j}^{*}) \left( \bar{y}_{ij} - \psi(\theta_{i}^{*} - \theta_{j}^{*}) \right)}{\pi_{i}^{*} \cdot \sum_{j:j \neq i} A_{ij} \psi(\theta_{j}^{*} - \theta_{i}^{*})} \end{split}$$

## Summary: Uncertainty Quantification in BTL Model



- Non-asymptotic expansion for the MLE
  HT/Cl for θ<sup>\*</sup><sub>i</sub> and r<sup>\*</sup><sub>i</sub>
- Non-asymptotic expansion for the spectral method
  - MLE vs. spectral method

Chao Gao, Yandi Shen, and Anderson Y Zhang. Uncertainty quantification in the bradley-terry-luce model. *arXiv preprint arXiv:2110.03874*, 2021

## Thank You