Exact Minimax Optimality of Spectral Methods in Phase Synchronization and Orthogonal Group Synchronization

Anderson Ye Zhang

Department of Statistics and Data Science University of Pennsylvania

Phase Synchronization

Problem Setup:

- n unit complex numbers z₁^{*},..., z_n^{*} ∈ C, each one corresponds to a phase / angle in (0, 2π]
- We want to estimate them from their incomplete and noisy pairwise comparisons

If not missing, X_{jk} = noisy version of $z_j^* \overline{z_k^*}$

Motivation: Single Particle Cryo-EM

Schematic drawing of the imaging process:

The standard cryo-EM reconstruction problem:

Model

For
$$1 \leq j < k \leq n$$
,
$$X_{jk} := \begin{cases} z_j^* \overline{z_k^*} + \sigma W_{jk}, \text{ if } A_{jk} = 1, \\ 0, & \text{ if } A_{jk} = 0, \end{cases}$$

where $A_{jk} \sim \text{Bernoulli}(p)$ and $W_{jk} \sim \mathcal{CN}(0, 1)$.

Matrix Form: Let
$$z^* = (z_1^*, \dots, z_n^*)^T$$
. Then
 $X = A \circ (z^* z^{*H} + \sigma W) = A \circ (z^* z^{*H}) + \sigma A \circ W$

Spectral Method (aka Eigenvector Method [Singer, A. (2011)])

Motivation: $\mathbb{E}X = pz^*z^{*H} - pI_n$. Its leading eigenvector is z^*/\sqrt{n} .

Step 1: Let *u* be the leading eigenvector of *X*. Step 2: The spectral estimator \hat{z} is defined as

$$\hat{z}_j = \begin{cases} \frac{u_j}{|u_j|}, \text{ if } u_j \neq 0, \\ 1, \text{ if } u_j = 0. \end{cases}$$

Eigendecomposition + Normalization

To measure its performance:

$$\ell(\hat{z}, z^*) := \frac{1}{n} \min_{a \in \mathbb{C}_1} \sum_{j=1}^n |\hat{z}_j - z_j^* a|^2$$

Existing Results

With high probability, if $\frac{np}{\log n} \to \infty$, then

$$\ell(\hat{z}, z^*) \le C\left(\frac{\sigma^2}{np} + \frac{1}{np}\right).$$

Two sources of errors:

- 1. $\frac{\sigma^2}{np}$: from additive Gaussian noises
- 2. $\frac{1}{np}$: from missing data

However, the minimax risk is

$$\inf_{z \in \mathbb{C}^n} \sup_{z^* \in \mathbb{C}^n_1} \mathbb{E}\ell(z, z^*) \ge (1 - o(1)) \frac{1}{2} \frac{\sigma^2}{np}.$$

(If we consider all possible methods, how small the error can be?)

New Result 1: Exact Recovery for No-additive-noise Case

$$X_{jk} = \begin{cases} z_j^* \overline{z_k^*}, \text{ if } A_{jk} = 1, \\ 0, \text{ if } A_{jk} = 0. \end{cases}$$

Matrix form:
$$X = A \circ (z^* z^{*H})$$

Lemma

When $\sigma = 0$:

If $\sigma = 0$ and $\frac{np}{\log n} \to \infty$. With high probability, $\ell(\hat{z}, z^*) = 0$, i.e., the spectral method achieves the exact recovery.

New Result 2: Exact Minimax Optimality

Theorem (Z. 2024)

Assume $\frac{np}{\sigma^2} \to \infty$ and $\frac{np}{\log n} \to \infty$. With high probability

$$\ell(\hat{z}, z^*) \le (1 + o(1)) \frac{1}{2} \frac{\sigma^2}{np}.$$

Remarks:

- Achieves the exact minimax risk
- $\frac{np}{\sigma^2} \to \infty$ is for consistency
- $\frac{np}{\log n}\gtrsim 1$ is for the comparison graph $A\sim {\rm Erd}\ddot{\rm os}{\rm -R}\acute{\rm enyi}(n,p)$ to be connected

New Result 2: Exact Minimax Optimality

Theorem (Z. 2024)

Assume $\frac{np}{\sigma^2} \to \infty$ and $\frac{np}{\log n} \to \infty$. With high probability

$$\ell(\hat{z}, z^*) \le (1 + o(1)) \frac{1}{2} \frac{\sigma^2}{np}.$$

Remarks:

 As good as more sophisticated procedures including maximum likelihood estimation (MLE), generalized power method (GPM), and semidefinite programming (SDP), under this parameter regime.

Novelty 1: Choice of the "population matrix"

• In literature, X is viewed as a perturbation of $\mathbb{E}X$

- Consequently, u is viewed as a perturbation of z^*/\sqrt{n} , the leading eigenvector of $\mathbb{E}X$.
- The distance between u and z^*/\sqrt{n} can be upper bounded by the Davis-Kahan Theorem, which leads to the existing loose bound.

Novelty 1: Choice of the "population matrix"

• In our analysis, recall $X = A \circ (z^* z^{*H}) + \sigma A \circ W$. We view X as a perturbation of $A \circ (z^* z^{*H})$.

- Consequently, we view u as a perturbation of u^{*}, the leading eigenvector of A ∘ (z^{*}z^{*H}).
- u is closer to u^* than to z^*/\sqrt{n} .

Novelty 2: Approximating eigenvectors by their first-order approximations

- Classical matrix perturbation theory such as Davis-Kahan Theorem focuses on analyzing $\inf_{b \in \mathbb{C}_1} \|u - u^*b\|$.
- We show *u* can be well-approximated by its first-order approximation \tilde{u} defined as

$$\tilde{u} := \frac{Xu^*}{\|Xu^*\|},$$

- $\inf_{b \in \mathbb{C}_1} \|u \tilde{u}b\|$ is much smaller than $\inf_{b \in \mathbb{C}_1} \|u u^*b\|$, meaning u is closer to \tilde{u} than to u^* .
- We study \tilde{u} to understand behavior of u and the performance of the spectral method.

Novelty 2: Approximating eigenvectors by their first-order approximations

A general perturbation result:

Lemma (Z. 2024)

Consider two Hermitian matrices $Y, Y^* \in \mathbb{C}^{n \times n}$. Let $\mu_1^* \ge \mu_2^* \ge \ldots \ge \mu_n^*$ be the eigenvalues of Y^* . Let v^* (resp. v) be the eigenvector of Y^* (resp. Y) corresponding to its largest eigenvalue. If $||Y - Y^*|| \le \min\{\mu_1^* - \mu_2^*, \mu_1^*\}/4$, we have

$$\inf_{b \in \mathbb{C}_1} \left\| v - \frac{Yv^*}{\|Yv^*\|} b \right\| \leq \frac{40\sqrt{2}}{9(\mu_1^* - \mu_2^*)} \left(\left(\frac{4}{\mu_1^* - \mu_2^*} + \frac{2}{\mu_1^*} \right) \|Y - Y^*\|^2 + \frac{\max\{|\mu_2^*|, |\mu_n^*|\}}{\mu_1^*} \|Y - Y^*\| \right)$$

If Y^* is rank-one, it gives $||Y - Y^*||^2 / (\mu_1^*)^2$ vs. $||Y - Y^*|| / \mu_1^*$ from Davis-Kahan.

Generalization to Orthogonal Group Synchronization

 $Z_1^*, \ldots, Z_n^* \in \mathcal{O}(d)$ are $d \times d$ orthogonal matrices

For $1 \leq j < k \leq n$,

$$X_{jk} := \begin{cases} Z_j^* (Z_k^*)^T + \sigma W_{jk}, & \text{if } A_{jk} = 1, \\ 0, & \text{if } A_{jk} = 0, \end{cases}$$

where $A_{jk} \sim \text{Bernoulli}(p)$ and $W_{jk} \sim \mathcal{MN}(0, I_d, I_d)$.

Generalization to Orthogonal Group Synchronization

Spectral Method:

Step 1: $U = (u_1, \ldots, u_d) \in \mathbb{R}^{nd \times d}$ to include the leading d eigenvectors of X. Write

$$U = \begin{pmatrix} U_1 \\ U_2 \\ \dots \\ U_n \end{pmatrix}$$

such that $U_j \in \mathbb{R}^{d \times d}$ is its *j*th block. Step 2:

$$\hat{Z}_j := \begin{cases} \mathcal{P}(U_j), \text{ if } \det(U_j) \neq 0, \\ I_d, \quad \text{ if } \det(U_j) = 0, \end{cases}$$

Here the mapping $\mathcal{P}: \mathbb{R}^{d \times d} \to \mathcal{O}(d)$ is from the polar decomposition.

Exact Minimax Optimality in Orthogonal Group Synchronization

Theorem (Z. 2024)

Assume d = O(1). Assume $\frac{np}{\sigma^2} \to \infty$ and $\frac{np}{\log n} \to \infty$. With high probability

$$\ell^{od}(\hat{Z}, Z^*) \le (1 + o(1)) \frac{d(d-1)\sigma^2}{2np}.$$

The minimax risk is

$$\inf_{Z \in \mathbb{R}^{nd \times d}} \sup_{Z^* \in \mathcal{O}(d)^n} \mathbb{E}\ell^{\mathrm{od}}(Z, Z^*) \ge (1 - o(1)) \, \frac{d(d-1)\sigma^2}{2np}.$$

Anderson Ye Zhang. Exact minimax optimality of spectral methods in phase synchronization and orthogonal group synchronization.

Annals of Statistics. Accepted, 2024