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Phase Synchronization
Problem Setup:

• n unit complex numbers z∗1 , . . . , z∗n ∈ C, each one
corresponds to a phase / angle in (0, 2π]

• We want to estimate them from their incomplete and noisy
pairwise comparisons

If not missing, Xjk = noisy version of z∗j z∗k
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Motivation: Single Particle Cryo-EM
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Model

For 1 ≤ j < k ≤ n,

Xjk :=

{
z∗j z

∗
k + σWjk, if Ajk = 1,

0, if Ajk = 0,

where Ajk ∼ Bernoulli(p) and Wjk ∼ CN (0, 1).

Matrix Form: Let z∗ = (z∗1 , . . . , z
∗
n)

T . Then
X = A ◦ (z∗z∗H + σW ) = A ◦ (z∗z∗H) + σA ◦W
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Spectral Method
(aka Eigenvector Method [Singer, A. (2011)])
Motivation: EX = pz∗z∗H − pIn. Its leading eigenvector is z∗/√n.

Step 1: Let u be the leading eigenvector of X.
Step 2: The spectral estimator ẑ is defined as

ẑj =

{
uj

|uj | , if uj ̸= 0,

1, if uj = 0.

Eigendecomposition + Normalization

To measure its performance:

ℓ(ẑ, z∗) :=
1

n
min
a∈C1

n∑
j=1

∣∣ẑj − z∗j a
∣∣2
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Existing Results

With high probability, if np
logn → ∞, then

ℓ(ẑ, z∗) ≤ C

(
σ2

np
+

1

np

)
.

Two sources of errors:
1. σ2

np : from additive Gaussian noises
2. 1

np : from missing data

However, the minimax risk is

inf
z∈Cn

sup
z∗∈Cn

1

Eℓ(z, z∗) ≥ (1− o(1))
1

2

σ2

np
.

(If we consider all possible methods, how small the error can be?)
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New Result 1: Exact Recovery for No-additive-noise
Case

When σ = 0:

Xjk =

{
z∗j z

∗
k, if Ajk = 1,

0, if Ajk = 0.

Matrix form: X = A ◦ (z∗z∗H)

Lemma
If σ = 0 and np

logn → ∞. With high probability, ℓ(ẑ, z∗) = 0, i.e.,
the spectral method achieves the exact recovery.
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New Result 2: Exact Minimax Optimality

Theorem (Z.. 2024)
Assume np

σ2 → ∞ and np
logn → ∞. With high probability

ℓ(ẑ, z∗) ≤ (1 + o(1))
1

2

σ2

np
.

Remarks:
• Achieves the exact minimax risk
• np

σ2 → ∞ is for consistency
• np

logn ≳ 1 is for the comparison graph A ∼ Erdös-Rényi(n, p)
to be connected
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New Result 2: Exact Minimax Optimality

Theorem (Z.. 2024)
Assume np

σ2 → ∞ and np
logn → ∞. With high probability

ℓ(ẑ, z∗) ≤ (1 + o(1))
1

2

σ2

np
.

Remarks:
• As good as more sophisticated procedures including
maximum likelihood estimation (MLE), generalized power
method (GPM), and semidefinite programming (SDP), under
this parameter regime.
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Technical Tools: Eigenvector Perturbation Analysis

Novelty 1: Choice of the “population matrix”

• In literature, X is viewed as a perturbation of EX

• Consequently, u is viewed as a perturbation of z∗/√n, the
leading eigenvector of EX.

• The distance between u and z∗/
√
n can be upper bounded

by the Davis-Kahan Theorem, which leads to the existing
loose bound.
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Technical Tools: Eigenvector Perturbation Analysis
Novelty 1: Choice of the “population matrix”

• In our analysis, recall X = A ◦ (z∗z∗H) + σA ◦W . We view X
as a perturbation of A ◦ (z∗z∗H).

• Consequently, we view u as a perturbation of u∗, the leading
eigenvector of A ◦ (z∗z∗H).

• u is closer to u∗ than to z∗/
√
n.
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Technical Tools: Eigenvector Perturbation Analysis

Novelty 2: Approximating eigenvectors by their first-order
approximations

• Classical matrix perturbation theory such as Davis-Kahan
Theorem focuses on analyzing infb∈C1 ∥u− u∗b∥.

• We show u can be well-approximated by its first-order
approximation ũ defined as

ũ :=
Xu∗

∥Xu∗∥
,

• infb∈C1 ∥u− ũb∥ is much smaller than infb∈C1 ∥u− u∗b∥,
meaning u is closer to ũ than to u∗.

• We study ũ to understand behavior of u and the
performance of the spectral method.
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Technical Tools: Eigenvector Perturbation Analysis
Novelty 2: Approximating eigenvectors by their first-order approximations

A general perturbation result:

Lemma (Z.. 2024)
Consider two Hermitian matrices Y, Y ∗ ∈ Cn×n. Let
µ∗
1 ≥ µ∗

2 ≥ . . . ≥ µ∗
n be the eigenvalues of Y ∗. Let v∗ (resp. v) be

the eigenvector of Y ∗ (resp. Y ) corresponding to its largest
eigenvalue. If ∥Y − Y ∗∥ ≤ min{µ∗

1 − µ∗
2, µ

∗
1}/4, we have

inf
b∈C1

∥∥∥∥v − Y v∗

∥Y v∗∥
b

∥∥∥∥ ≤ 40
√
2

9(µ∗
1 − µ∗

2)

((
4

µ∗
1 − µ∗

2

+
2

µ∗
1

)
∥Y − Y ∗∥2

+
max{|µ∗

2|, |µ∗
n|}

µ∗
1

∥Y − Y ∗∥

)
.

If Y ∗ is rank-one, it gives ∥Y − Y ∗∥2 /(µ∗
1)

2 vs. ∥Y − Y ∗∥ /µ∗
1

from Davis-Kahan.
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Generalization to Orthogonal Group Synchronization
Z∗
1 , . . . , Z

∗
n ∈ O(d) are d× d orthogonal matrices

For 1 ≤ j < k ≤ n,

Xjk :=

{
Z∗
j (Z

∗
k)

T + σWjk, if Ajk = 1,

0, if Ajk = 0,

where Ajk ∼ Bernoulli(p) and Wjk ∼ MN (0, Id, Id).
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Generalization to Orthogonal Group Synchronization
Spectral Method:

Step 1: U = (u1, . . . , ud) ∈ Rnd×d to include the leading d
eigenvectors of X. Write

U =


U1

U2

. . .
Un


such that Uj ∈ Rd×d is its jth block.
Step 2:

Ẑj :=

{
P(Uj), if det(Uj) ̸= 0,

Id, if det(Uj) = 0,

Here the mapping P : Rd×d → O(d) is from the polar
decomposition.
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Exact Minimax Optimality in Orthogonal Group
Synchronization

Theorem (Z.. 2024)
Assume d = O(1). Assume np

σ2 → ∞ and np
logn → ∞. With high

probability

ℓod(Ẑ, Z∗) ≤ (1 + o(1))
d(d− 1)σ2

2np
.

The minimax risk is

inf
Z∈Rnd×d

sup
Z∗∈O(d)n

Eℓod(Z,Z∗) ≥ (1− o(1))
d(d− 1)σ2

2np
.
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