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Phase Synchronization

Problem Setup:
® n unit complex numbers =7, ..., z; € C, each one
corresponds to a phase / angle in (0, 2]

* \We want to estimate them from their incomplete and noisy
pairwise comparisons

If not missing, X = noisy version of 2z
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Motivation: Single Particle Cryo-EM

Schematic drawing of the imaging process:

electron beam
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Model
7 )—

Forl1<j<k<n,
Xjklz

where A;;, ~ Bernoulli(p) and Wy, ~ CN(0,1).

Matrix Form: Let z* = (2§,...,2)T. Then
X=Ao0 ("2 +oW)=A0 (z*2") + Ao W

{/ o\

Z;Z_Z—i- oWk, if Ajk =1,
0, it Ay = 0,
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Spectral Method
(aka Eigenvector Method [Singer, A. (2011)])

Motivation: EX = pz*2*" — pI,. Its leading eigenvector is z*/+/n.

Step 1: Let u be the leading eigenvector of X.
Step 2: The spectral estimator % is defined as

2_] = [u,]° if U 7é O7
1, if ’LLj =0.

Eigendecomposition + Normalization
To measure its performance:

0z, 2" — min Z ‘zj z-a

n aE(Cl
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Existing Results

With high probability, if ~£- — oo, then

logn

2
K(i,z*)SC(J—F 1).

np ' np

Two sources of errors:
2 e . .
1. Z: from additive Gaussian noises

np

2. -L: from missing data

np

However, the minimax risk is

inf sup Ef(z,2%) > (1 —o(1)) =—.
A SR, (2,27) 2 (1 —o()) 5

(If we consider all possible methods, how small the error can be?)
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New Result 1: Exact Recovery for No-additive-noise

Case
When ¢ = 0:
zj * S z
/‘///\ o EE A=
O3 7o, Ay =0
.>< Matrix form: X = A o (z*2*")

Lemma
Ifo=0and - — oc. With high probability, ¢(Z,z*) =0, i.e.,

logn

the spectral methoo’ achieves the exact recovery.

|
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New Result 2: Exact Minimax Optimality

Theorem (Z.. 2024)

Assume " — oo and ‘O’é”” — oo, With high probability

102
2np

02,2") < (1+40(1))=

Remarks:

e Achieves the exact minimax risk

" — oo is for consistency
* b’éj’“ — 1 is for the comparison graph A ~ Erdés-Rényi(n, p)
to be connected
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New Result 2: Exact Minimax Optimality

Theorem (Z.. 2024)

Assume and . With high probability
1 2
0(2,2°) < (14 0(1))5%.
Remarks:

® As good as more sophisticated procedures including
maximum likelihood estimation (MLE), generalized power

method (GPM), and semidefinite programming (SDP), under
this parameter regime.
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Technical Tools: Eigenvector Perturbation Analysis

Novelty 1: Choice of the “population matrix”

® |n literature, X is viewed as a perturbation of EX

Sample Population
Matrix X EX
perturbation
Eigenvector U 2*/\/n

e Consequently, u is viewed as a perturbation of z*/\/n, the
leading eigenvector of EX.

¢ The distance between u and z*/+/n can be upper bounded
by the Davis-Kahan Theorem, which leads to the existing
loose bound.



Technical Tools: Eigenvector Perturbation Analysis

Novelty 1: Choice of the “population matrix”

¢ In our analysis, recall X = Ao (2*2*") + 0 A o W. We view X
as a perturbation of Ao (z*2™").

This is the data matrix if
Sample Population there was no additive noise

Matrix X Ao (z72™)
perturbation

Eigenvector u Uu
g T~ No explicit formula but can be

shown to be well-behaved

e Consequently, we view u as a perturbation of «*, the leading
eigenvector of A o (z*z*").

e v is closer to u* than to z*//n.
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Technical Tools: Eigenvector Perturbation Analysis

Novelty 2: Approximating eigenvectors by their first-order
approximations

e (Classical matrix perturbation theory such as Davis-Kahan
Theorem focuses on analyzing infyec, ||lu — ©*b||.

* \We show u can be well-approximated by its first-order
approximation u defined as

. Xu*
U= —-
[ Xwr||”
® infyec, ||u — @b|| is much smaller than infyec, ||lu — ©*b||,

meaning u is closer to @ than to u*.

® \We study « to understand behavior of v and the
performance of the spectral method.
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Technical Tools: Eigenvector Perturbation Analysis
Novelty 2: Approximating eigenvectors by their first-order approximations

A general perturbation result:

Lemma (Z.. 2024)

Consider two Hermitian matrices Y,Y™* € C™*", Let

wy > ps > ... >y be the eigenvalues of Y*. Let v* (resp. v) be
the eigenvector of Y* (resp. Y) corresponding to its largest
eigenvalue. If ||Y — Y*|| < min{u] — ub, ui}/4, we have

40[ 4 2 .2
|| v H —p3) \ \pi —ps  p

inf
beCy

max

1

v

If Y* is rank-one, it gives ||Y — Y*||* /()2 vs. ||Y — Y*|| /u}
from Davis-Kahan.



Generalization to Orthogonal Group Synchronization

Zy,...,Z € O(d) are d x d orthogonal matrices

W — %

Forl1<j<k<n,

ZX(ZH)T + oWy, if Aj, =1,
Xjk = J X
0, if Ajk =0,

where A;;, ~ Bernoulli(p) and Wy, ~ MN (0, I4, I4).
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Generalization to Orthogonal Group Synchronization

Spectral Method:
Step 1: U = (uy, .. .,uq) € R™*? to include the leading d
eigenvectors of X. Write
Ux
v= |
Un
such that U; € R™*? s its jth block.
Step 2:
5 [P, denwy) £ 0
71y, i det(U;) =0,

Here the mapping P : R¥¢ — O(d) is from the polar
decomposition.



Exact Minimax Optimality in Orthogonal Group
Synchronization

Theorem (Z.. 2024)

Assume d = O(1). Assume "% — ocand [ — oc. With high
probability ‘

d(d —1)o?

©°NZ,72*) < (14 0(1)) o

The minimax risk is

— 12
it sup EY(Z,2%) > (1—o(1)) X1
ZERMXd zxco(g)n 2np
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