Exact Minimax Optimality of Spectral Methods in Phase Synchronization and Orthogonal Group Synchronization

Anderson Ye Zhang

Department of Statistics and Data Science University of Pennsylvania

Phase Synchronization

Problem Setup:

- \bullet *n* unit complex numbers $z_1^*, \ldots, z_n^* \in \mathbb{C}$, each one corresponds to a phase / angle in (0*,* 2*π*]
	- つめ の (つの)
- *•* We want to estimate them from their incomplete and noisy pairwise comparisons

If not missing, $X_{jk} =$ noisy version of $z_j^* \overline{z_k^*}$

Motivation: Single Particle Cryo-EM

Schematic drawing of the imaging process:

The standard cryo-EM reconstruction problem:

Model

For
$$
1 \le j < k \le n
$$
,
\n
$$
X_{jk} := \begin{cases} z_j^* \overline{z_k^*} + \sigma W_{jk}, & \text{if } A_{jk} = 1, \\ 0, & \text{if } A_{jk} = 0, \end{cases}
$$

where A_{jk} ∼ Bernoulli (p) and W_{jk} ∼ $CN(0, 1)$.

Matrix Form: Let
$$
z^* = (z_1^*, \dots, z_n^*)^T
$$
. Then
\n $X = A \circ (z^* z^{*H} + \sigma W) = A \circ (z^* z^{*H}) + \sigma A \circ W$

Spectral Method (aka Eigenvector Method [Singer, A. (2011)])

Motivation: $\mathbb{E}X = pz^*z^{*H} - pI_n$. Its leading eigenvector is z^*/\sqrt{n} .

Step 1: Let *u* be the leading eigenvector of *X*. Step 2: The spectral estimator \hat{z} is defined as

$$
\hat{z}_j = \begin{cases} \frac{u_j}{|u_j|}, \text{ if } u_j \neq 0, \\ 1, \quad \text{if } u_j = 0. \end{cases}
$$

Eigendecomposition + Normalization

To measure its performance:

$$
\ell(\hat{z},z^*):=\frac{1}{n}\min_{a\in\mathbb{C}_1}\sum_{j=1}^n\big|\hat{z}_j-z_j^*a\big|^2
$$

Existing Results

With high probability, if $\frac{np}{\log n} \to \infty$, then

$$
\ell(\hat{z},z^*) \leq C\left(\frac{\sigma^2}{np} + \frac{1}{np}\right).
$$

Two sources of errors:

- 1. $\frac{\sigma^2}{n r}$ $\frac{\sigma^2}{np}$: from additive Gaussian noises
- 2. $\frac{1}{np}$: from missing data

However, the minimax risk is

$$
\inf_{z \in \mathbb{C}^n} \sup_{z^* \in \mathbb{C}^n_1} \mathbb{E}\ell(z, z^*) \ge (1 - o(1)) \frac{1}{2} \frac{\sigma^2}{np}.
$$

(If we consider all possible methods, how small the error can be?)

New Result 1: Exact Recovery for No-additive-noise Case

When $\sigma = 0$: Z_i z_k^*

$$
X_{jk} = \begin{cases} z_j^* \overline{z_k^*}, & \text{if } A_{jk} = 1, \\ 0, & \text{if } A_{jk} = 0. \end{cases}
$$

Matrix form:
$$
X = A \circ (z^* z^{*H})
$$

Lemma

If $\sigma = 0$ and $\frac{np}{\log n} \to \infty$. With high probability, $\ell(\hat{z}, z^*) = 0$, i.e., *the spectral method achieves the exact recovery.*

New Result 2: Exact Minimax Optimality

Theorem (**Z.**. 2024)

 $\textit{Assume}\ \frac{np}{\sigma^2}\rightarrow\infty$ and $\frac{np}{\text{log}\,n}\rightarrow\infty.$ With high probability

$$
\ell(\hat{z}, z^*) \le (1 + o(1)) \frac{1}{2} \frac{\sigma^2}{np}.
$$

Remarks:

- *•* Achieves the exact minimax risk
- **•** $\frac{np}{σ^2}$ → ∞ is for consistency
- *• np* log *ⁿ* ≳ 1 is for the comparison graph *A ∼* Erdös-Rényi(*n, p*) to be connected

New Result 2: Exact Minimax Optimality

Theorem (**Z.**. 2024)

 $\textit{Assume}\ \frac{np}{\sigma^2}\rightarrow\infty$ and $\frac{np}{\text{log}\,n}\rightarrow\infty$. With high probability

$$
\ell(\hat{z}, z^*) \le (1 + o(1)) \frac{1}{2} \frac{\sigma^2}{np}.
$$

Remarks:

• As good as more sophisticated procedures including maximum likelihood estimation (MLE), generalized power method (GPM), and semidefinite programming (SDP), under this parameter regime.

Novelty 1: Choice of the "population matrix"

• In literature, *X* is viewed as a perturbation of E*X*

- *•* Consequently, *u* is viewed as a perturbation of *z ∗*/ *√ n*, the leading eigenvector of E*X*.
- *•* The distance between *u* and *z ∗*/ *√ n* can be upper bounded by the Davis-Kahan Theorem, which leads to the existing loose bound.

Novelty 1: Choice of the "population matrix"

• In our analysis, recall $X = A \circ (z^* z^{*H}) + \sigma A \circ W$. We view X as a perturbation of $A \circ (z^*z^{*\mathsf{H}})$.

- *•* Consequently, we view *u* as a perturbation of *u ∗* , the leading eigenvector of $A \circ (z^*z^{*\mathsf{H}})$.
- *u* is closer to u^* than to z^*/\sqrt{n} .

Novelty 2: Approximating eigenvectors by their first-order approximations

- *•* Classical matrix perturbation theory such as Davis-Kahan Theorem focuses on analyzing inf $_{b \in \mathbb{C}_1} ||u - u^*b||$.
- *•* We show *u* can be well-approximated by its first-order approximation \tilde{u} defined as

$$
\tilde{u}:=\frac{Xu^*}{\|Xu^*\|},
$$

- $\inf_{b \in \mathbb{C}_1} ||u \tilde{u}b||$ is much smaller than $\inf_{b \in \mathbb{C}_1} ||u u^*b||$, meaning u is closer to \tilde{u} than to u^* .
- We study \tilde{u} to understand behavior of u and the performance of the spectral method.

Novelty 2: Approximating eigenvectors by their first-order approximations

A general perturbation result:

Lemma (**Z.**. 2024)

Consider two Hermitian matrices $Y, Y^* \in \mathbb{C}^{n \times n}$. Let $\mu_1^* \ge \mu_2^* \ge \ldots \ge \mu_n^*$ be the eigenvalues of Y^* . Let v^* (resp. v) be *the eigenvector of Y ∗ (resp. Y) corresponding to its largest eigenvalue. If* $||Y - Y^*|| \le \min\{\mu_1^* - \mu_2^*, \mu_1^*\}/4$ *, we have*

$$
\inf_{b \in \mathbb{C}_1} \left\| v - \frac{Yv^*}{\|Yv^*\|}b \right\| \le \frac{40\sqrt{2}}{9(\mu_1^* - \mu_2^*)} \Bigg(\left(\frac{4}{\mu_1^* - \mu_2^*} + \frac{2}{\mu_1^*} \right) \|Y - Y^*\|^2 + \frac{\max\{|\mu_2^*|, |\mu_n^*|\}}{\mu_1^*} \|Y - Y^*\| \Bigg).
$$

If Y[∗] is rank-one, it gives $\|Y-Y^*\|^2/(\mu_1^*)^2$ vs. $\|Y-Y^*\|/\mu_1^*$ from Davis-Kahan.

Generalization to Orthogonal Group Synchronization

 $Z_1^*, \ldots, Z_n^* \in \mathcal{O}(d)$ are $d \times d$ orthogonal matrices

For $1 \leq i \leq k \leq n$,

$$
X_{jk}:=\begin{cases} Z_j^*(Z_k^*)^T+\sigma W_{jk}, \text{ if } A_{jk}=1,\\ 0, \text{ if } A_{jk}=0, \end{cases}
$$

where A_{jk} ∼ Bernoulli (p) and W_{jk} ∼ $\mathcal{MN}(0, I_d, I_d)$.

Generalization to Orthogonal Group Synchronization

Spectral Method:

Step 1: $U = (u_1, \ldots, u_d) \in \mathbb{R}^{nd \times d}$ to include the leading d eigenvectors of *X*. Write

$$
U = \begin{pmatrix} U_1 \\ U_2 \\ \dots \\ U_n \end{pmatrix}
$$

such that $U_j \in \mathbb{R}^{d \times d}$ is its *j*th block. Step 2:

$$
\hat{Z}_j := \begin{cases} \mathcal{P}(U_j), & \text{if } \det(U_j) \neq 0, \\ I_d, & \text{if } \det(U_j) = 0, \end{cases}
$$

Here the mapping $\mathcal{P}:\mathbb{R}^{d\times d}\to\mathcal{O}(d)$ is from the polar decomposition.

Exact Minimax Optimality in Orthogonal Group **Synchronization**

Theorem (**Z.**. 2024)

 $\textit{Assume}\ d = O(1).$ Assume $\frac{np}{\sigma^2}\to\infty$ and $\frac{np}{\log n}\to\infty.$ With high *probability*

$$
\ell^{od}(\hat{Z}, Z^*) \le (1 + o(1)) \frac{d(d-1)\sigma^2}{2np}.
$$

The minimax risk is

$$
\inf_{Z \in \mathbb{R}^{nd \times d}} \sup_{Z^* \in \mathcal{O}(d)^n} \mathbb{E} \ell^{\text{od}}(Z, Z^*) \ge (1 - o(1)) \, \frac{d(d-1)\sigma^2}{2np}.
$$

Anderson Ye Zhang. Exact minimax optimality of spectral methods in phase synchronization and orthogonal group synchronization. *Annals of Statistics. Accepted*, 2024