Fundamental Limits of Spectral Clustering in Stochastic Block Models

Anderson Ye Zhang

Department of Statistics and Data Science University of Pennsylvania

Outline

• Introduction to Community Detection and Spectral Clustering

Sharp Statistical Analysis

Introduction to Community Detection and Spectral Clustering

Networks and Community Detection

Human Gene-gene Co-association Network

Networks and Community Detection

Human Gene-gene Co-association Network

• Idea: dimension reduction and embedding.

• Spectral Clustering: Spectral Decomposition + Clustering

Input: Data matrix $A \in \{0,1\}^{n \times n}$, number of communities k

1. Perform eigendecomposition on A to have $A = \sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

Input: Data matrix $A \in \{0,1\}^{n \times n}$, number of communities k

1. Perform eigendecomposition on A to have $A = \sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

2. Let $U = (u_1, \ldots, u_k) \in \mathbb{R}^{n \times k}$, $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_k\} \in \mathbb{R}^{k \times k}$.

Input: Data matrix $A \in \{0,1\}^{n \times n}$, number of communities k

1. Perform eigendecomposition on A to have $A = \sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

2. Let $U = (u_1, \ldots, u_k) \in \mathbb{R}^{n \times k}$, $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_k\} \in \mathbb{R}^{k \times k}$.

3. Apply k-means to rows of $U\Lambda \in \mathbb{R}^{n \times k}$.

Input: Data matrix $A \in \{0,1\}^{n \times n}$, number of communities k

1. Perform eigendecomposition on A to have $A = \sum_i \lambda_i u_i u_i^T$.

2. Let $U = (u_1, \ldots, u_k) \in \mathbb{R}^{n \times k}$, $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_k\} \in \mathbb{R}^{k \times k}$.

3. Apply *k*-means to rows of $U\Lambda \in \mathbb{R}^{n \times k}$. Remark: Eigenvectors are weighted as they are not equally important.

Spectral Clustering for Dense Networks

Input: Data matrix $A \in \{0,1\}^{n \times n}$, number of communities k

1. Perform eigendecomposition on A to have $A = \sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

2. Let $U = (u_1, \ldots, u_k) \in \mathbb{R}^{n \times k}$, $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_k\} \in \mathbb{R}^{k \times k}$.

3. Apply *k*-means to rows of $U\Lambda \in \mathbb{R}^{n \times k}$. Remark: Needs an additional step for sparse networks.

Spectral Clustering for Sparse/Dense Networks

Input: Data matrix $A \in \{0,1\}^{n \times n}$, number of communities k

1. [Trim the network by removing high-degree nodes.] Let d_i be the degree of node i. Define $\tilde{A} \in \{0,1\}^{n \times n}$ such that

$$\tilde{A}_{i,j} = \begin{cases} A_{i,j}, \text{ if } d_i, d_j \leq \tau, \\ 0, \text{ o.w.}. \end{cases}$$

Perform eigendecomposition on Ã to have Ã = Σ_i λ_iu_iu_i^T.
 Let U = (u₁,..., u_k) ∈ ℝ^{n×k}, Λ = diag{λ₁,...,λ_k} ∈ ℝ^{k×k}.
 Apply k-means to rows of UΛ ∈ ℝ^{n×k}.

- is computationally appealing
- often has remarkably good performance
- has been widely used in various problems

Q: Why does spectral clustering work? How well does it perform?

Sharp Statistical Analysis

Stochastic Block Model

- $A \in \{0,1\}^{n \times n}$
- k communities
- $z^* \in [k]^n$: underlying true community assignment vector
- Each edge is generated independently as follows:

$$\mathbb{E}A_{i,j} \sim \begin{cases} p, \text{ if } z_i^* = z_j^*, \\ q, \text{ o.w.} \end{cases}$$

where p > q.

• Goal: Recover the community assignment z^*

Stochastic Block Model

 Loss l(ẑ, z*): the proportion of nodes misclustered, considering all label permutations:

$$\ell(\hat{z}, z^*) = \frac{1}{n} \min_{\phi \in \Phi} \sum_{i \in [n]} \mathbb{I}\left\{\phi\left(\hat{z}_i\right) \neq z_i^*\right\},$$

where $\Phi = \{\phi : \text{ bijection from } [k] \text{ to } [k]\}.$

Assumptions

For simplicity, in this talk we assume

- The number of communities k is finite
- The communities sizes are all in the same order
- The probabilities p, q are in the same order

Polynomial Error Rate

Proposition

Assume $\frac{n(p-q)^2}{p} \to \infty$. We have w.h.p.

$$\ell(\hat{z}, z^*) \le C \frac{p}{n(p-q)^2},$$

for some constant C > 0.

Remarks:

- $\frac{n(p-q)^2}{p}$ can be understood as the signal-to-noise ratio (SNR).
- $\ell(\hat{z}, z^*) \lesssim 1/\text{SNR}.$

Polynomial Error Rate

$\ell(\hat{z},z^*) \lesssim 1/{\sf SNR}$

Minimax Rate for Community Detection: If we consider all possible methods, how small the community detection error can be?

 $\exp\left(-c\mathrm{SNR}\right)$

In literature, spectral clustering is often used as an initialization for sophisticated algorithms to achieve the minimax rate.

Puzzling: But numerically such improvement is often marginal.

Q: Can we obtain a sharp upper bound for spectral clustering?

Exponential Error Rate

Theorem (Abbe, Fan, Wang, Zhong, 2020)

Assume $p = a \frac{\log n}{n}$ and $q = b \frac{\log n}{n}$ where a, b are constants. Assume the SBM has two equal-sized communities. Then

$$\mathbb{E}\ell(\hat{z}, z^*) \le \exp\left(-(1+o(1))(\sqrt{a}-\sqrt{b})^2(\log n)/2\right)$$

Q: Can we study sparse SBMs?

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector analysis of random matrices with low expected rank. Annals of statistics, 48(3):1452, 2020

Main Result

Theorem (Z. 2023)

Assume $\frac{n(p-q)^2}{p} \to \infty$. We have $\mathbb{E}\ell(\hat{z}, z^*) \leq \exp\left(-(1-o(1))J_{\min}\right) + 2n^{-3},$ $\mathbb{E}\ell(\hat{z}, z^*) \geq \exp\left(-(1+o(1))J_{\min}\right) - 2n^{-3},$

where J_{\min} is a function of p, q, and the community sizes n_1, n_2, \ldots, n_k .

 $2n^{-3}$ can be replaced by n^{-C} for an arbitrarily large constant C > 0, and in general is negligible.

Main Result

Theorem (Z. 2023) Assume $\frac{n(p-q)^2}{p} \to \infty$. We have $\mathbb{E}\ell(\hat{z}, z^*) \le \exp\left(-(1 - o(1))J_{\min}\right) + 2n^{-3},$ $\mathbb{E}\ell(\hat{z}, z^*) \ge \exp\left(-(1 + o(1))J_{\min}\right) - 2n^{-3},$

where J_{\min} is a function of p, q, and the community sizes n_1, n_2, \ldots, n_k .

Remarks:

- Holds for both sparse ($np \ll \log n$) and dense networks.
- Holds for multi-community and imbalanced SBMs.
- Matching lower and upper bounds.
- Case-wise analysis.

Exponents

 J_{\min} is a function of p, q, and community sizes $\{n_i\}_{i \in [k]}$.

• Definition:

$$\min_{1 \le a \ne b \le k} \max_{t} \left((n_a - n_b) t \frac{p+q}{2} - n_a \log \left(q e^t + 1 - q \right) - n_b \log \left(p e^{-t} + 1 - p \right) \right)$$

• Interpretation: tail probability of Bernoulli random variables

$$\min_{1 \le a \ne b \le k} - \log \mathbb{P}\left(\sum_{i \in [n_a]} X_i - \sum_{j \in [n_b]} Y_j \ge (n_a - n_b) \frac{p+q}{2}\right) = (1 + o(1))J_{\min}$$

where $\{X_i\} \stackrel{iid}{\sim} Ber(q)$ and $\{Y_j\} \stackrel{iid}{\sim} Ber(p)$.

Intuition

Recall: Apply k-means to rows of $U\Lambda \in \mathbb{R}^{n \times k}$, ie., $\{U_i \cdot \Lambda\}_{i \in [n]} \in \mathbb{R}^{1 \times k}$.

Intuition

Recall: Apply *k*-means to rows of $U\Lambda \in \mathbb{R}^{n \times k}$, ie., $\{U_i \cdot \Lambda\}_{i \in [n]} \in \mathbb{R}^{1 \times k}$.

Since $U\Lambda = \tilde{A}U$, then

$$U_{i} \cdot \Lambda = \tilde{A}_{i, \cdot} U = A_{i, \cdot} U \approx A_{i, \cdot} U^*,$$

where U^* the leading eigenspace of $\mathbb{E}A$.

Intuition

 $\mathbb{P}(i$ th node wrongly clustered) $\approx \mathbb{P}(A_{i}, U^* \text{ is closer to } \theta_2^* \text{ than to } \theta_1^*)$

$$= \mathbb{P}\left(\sum_{j:z_j^*=1} A_{ij} - \sum_{j \neq i: z_j^*=2} A_{ij} \ge (n_1 - n_2) \frac{p+q}{2}\right)$$
$$= \mathbb{P}\left(\sum_{l \in [n_1]} X_l - \sum_{j \in [n_2]} Y_j \ge (n_1 - n_2) \frac{p+q}{2}\right),$$

where $\{X_i\} \stackrel{iid}{\sim} \operatorname{Ber}(q), \{Y_j\} \stackrel{iid}{\sim} \operatorname{Ber}(p).$

Key technical tool: entrywise perturbation analysis for eigenvector/eigenspaces.

From previous slide:

$$U_{i} \cdot \Lambda = \tilde{A}_{i,\cdot} U = A_{i,\cdot} U \approx A_{i,\cdot} U^*,$$

Q: How to make \approx rigorous? For simplicity, consider the vector case

$$A_{i,\cdot}u \approx A_{i,\cdot}u^*$$

where u, u^* are the leading sample and population eigenvector.

Challenge: $A_{i,\cdot}$ and u are not independent. Remedy: Use the leave-one-out technique

For simplicity, consider the vector case

 $A_{i,\cdot}u \approx A_{i,\cdot}u^*$

where u, u^* are the leading sample and population eigenvector. If $A_{i,.}$ and u were independent, then

$$A_{i,\cdot}u = \sum_j A_{i,j}u_j$$

would be a weighted average of Bernoulli random variables. Challenge: Sharp tail probability for $A_{i,.u}$.

The use of Bernstein inequality / Chernoff bound involves $||u||_{\infty}$, which comes with an log *n* factor, resulting in the assumption $np \ge \log n$ as in Abbe, Fan, Wang, Zhong, 2020.

$$A_{i,\cdot}u = \sum_j A_{i,j}u_j.$$

To avoid the appearance of $||u||_{\infty}$, we truncate the eigenvectors:

$$u_j = u_j \mathbb{I}\{|u_j| \le t\} + (u_j - u_j \mathbb{I}\{|u_j| \le t\}).$$

Then

$$A_{i,\cdot} u = \sum_{j \in [n]} A_{i,j} u_j \mathbb{I} \{ |u_j| \le t \} + \sum_{j \in [n]} A_{i,j} (u_j - u_j \mathbb{I} \{ |u_j| \le t \} \}$$

$$A_{i,\cdot} u = \sum_{j \in [n]} A_{i,j} u_j \mathbb{I}\left\{ |u_j| \le t \right\}$$

Chernoff bound can now be applied.

The ℓ_{∞} norm of the truncated eigenvector is *t*.

$$+\sum_{j\in[n]}A_{i,j}\left(u_j-u_j\mathbb{I}\left\{|u_j|\leq t\right\}\right)$$

Related to $\sum_{j\in [n]} u_j^2 \mathbb{I}\left\{|u_j|>t
ight\}$, a truncated

 ℓ_2 norm of u. Can be shown to be negligible. $pprox A_{i,\cdot} u^*$

Novelty: an "eigenvector truncation" idea and a truncated ℓ_2 perturbation analysis.

Summary

- Sharp analysis for the performance of spectral clustering under SBMs
- Works for sparse networks
- Exponential error rates

Anderson Ye Zhang. Fundamental limits of spectral clustering in stochastic block models.

arXiv preprint arXiv:2301.09289, 2023

Thank You