# Fundamental Limits of Spectral Clustering in Stochastic Block Models 



Anderson Ye Zhang

Department of Statistics and Data Science
University of Pennsylvania

## Outline

- Introduction to Community Detection and Spectral Clustering
- Sharp Statistical Analysis


# Introduction to Community Detection and Spectral Clustering 

## Networks and Community Detection



Human Gene-gene Co-association Network

## Networks and Community Detection



Human Gene-gene Co-association Network

## Spectral Clustering

- Idea: dimension reduction and embedding.

- Spectral Clustering: Spectral Decomposition + Clustering


## Spectral Clustering

Input: Data matrix $A \in\{0,1\}^{n \times n}$, number of communities $k$

1. Perform eigendecomposition on $A$ to have $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

$A \in\{0,1\}^{n \times n}$

## Spectral Clustering

Input: Data matrix $A \in\{0,1\}^{n \times n}$, number of communities $k$

1. Perform eigendecomposition on $A$ to have $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

$A \in\{0,1\}^{n \times n}$
2. Let $U=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{n \times k}, \Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \in \mathbb{R}^{k \times k}$.

$U \Lambda \in \mathbb{R}^{n \times k} \quad U \in \mathbb{R}^{n \times k} \quad \Lambda \in \mathbb{R}^{k \times k}$

## Spectral Clustering

Input: Data matrix $A \in\{0,1\}^{n \times n}$, number of communities $k$

1. Perform eigendecomposition on $A$ to have $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

$A \in\{0,1\}^{n \times n}$
2. Let $U=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{n \times k}, \Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \in \mathbb{R}^{k \times k}$.

$U \Lambda \in \mathbb{R}^{n \times k} \quad U \in \mathbb{R}^{n \times k} \quad \Lambda \in \mathbb{R}^{k \times k}$
3. Apply $k$-means to rows of $U \Lambda \in \mathbb{R}^{n \times k}$.

## Spectral Clustering

Input: Data matrix $A \in\{0,1\}^{n \times n}$, number of communities $k$

1. Perform eigendecomposition on $A$ to have $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

$A \in\{0,1\}^{n \times n}$
2. Let $U=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{n \times k}, \Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \in \mathbb{R}^{k \times k}$.

$U \Lambda \in \mathbb{R}^{n \times k} \quad U \in \mathbb{R}^{n \times k} \quad \Lambda \in \mathbb{R}^{k \times k}$
3. Apply $k$-means to rows of $U \Lambda \in \mathbb{R}^{n \times k}$.

Remark: Eigenvectors are weighted as they are not equally important.

## Spectral Clustering for Dense Networks

Input: Data matrix $A \in\{0,1\}^{n \times n}$, number of communities $k$

1. Perform eigendecomposition on $A$ to have $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.

$A \in\{0,1\}^{n \times n}$
2. Let $U=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{n \times k}, \Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \in \mathbb{R}^{k \times k}$.

$U \Lambda \in \mathbb{R}^{n \times k} \quad U \in \mathbb{R}^{n \times k} \quad \Lambda \in \mathbb{R}^{k \times k}$
3. Apply $k$-means to rows of $U \Lambda \in \mathbb{R}^{n \times k}$.

Remark: Needs an additional step for sparse networks.

## Spectral Clustering for Sparse/Dense Networks

Input: Data matrix $A \in\{0,1\}^{n \times n}$, number of communities $k$

1. [Trim the network by removing high-degree nodes.] Let $d_{i}$ be the degree of node $i$. Define $\tilde{A} \in\{0,1\}^{n \times n}$ such that

$$
\tilde{A}_{i, j}=\left\{\begin{array}{l}
A_{i, j}, \text { if } d_{i}, d_{j} \leq \tau \\
0, \text { o.w.. }
\end{array}\right.
$$


2. Perform eigendecomposition on $\tilde{A}$ to have $\tilde{A}=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$.
3. Let $U=\left(u_{1}, \ldots, u_{k}\right) \in \mathbb{R}^{n \times k}, \Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \in \mathbb{R}^{k \times k}$.
4. Apply $k$-means to rows of $U \Lambda \in \mathbb{R}^{n \times k}$.

## Spectral Clustering

- is computationally appealing
- often has remarkably good performance
- has been widely used in various problems

Q: Why does spectral clustering work? How well does it perform?

## Sharp Statistical Analysis

## Stochastic Block Model

- $A \in\{0,1\}^{n \times n}$
- $k$ communities
- $z^{*} \in[k]^{n}$ : underlying true community assignment vector
- Each edge is generated independently as follows:

$$
\mathbb{E} A_{i, j} \sim\left\{\begin{array}{l}
p, \text { if } z_{i}^{*}=z_{j}^{*}, \\
q, \text { o.w. }
\end{array}\right.
$$

where $p>q$.

- Goal: Recover the community assignment $z^{*}$



## Stochastic Block Model

- Loss $\ell\left(\hat{z}, z^{*}\right)$ : the proportion of nodes misclustered, considering all label permutations:

$$
\ell\left(\hat{z}, z^{*}\right)=\frac{1}{n} \min _{\phi \in \Phi} \sum_{i \in[n]} \mathbb{I}\left\{\phi\left(\hat{z}_{i}\right) \neq z_{i}^{*}\right\}
$$

where $\Phi=\{\phi$ : bijection from $[k]$ to $[k]\}$.


## Assumptions

For simplicity, in this talk we assume

- The number of communities $k$ is finite
- The communities sizes are all in the same order
- The probabilities $p, q$ are in the same order


## Polynomial Error Rate

## Proposition

Assume $\frac{n(p-q)^{2}}{p} \rightarrow \infty$. We have w.h.p.

$$
\ell\left(\hat{z}, z^{*}\right) \leq C \frac{p}{n(p-q)^{2}}
$$

for some constant $C>0$.
Remarks:

- $\frac{n(p-q)^{2}}{p}$ can be understood as the signal-to-noise ratio (SNR).
- $\ell\left(\hat{z}, z^{*}\right) \lesssim 1 /$ SNR.


## Polynomial Error Rate

$$
\ell\left(\hat{z}, z^{*}\right) \lesssim 1 / \mathrm{SNR}
$$

Minimax Rate for Community Detection: If we consider all possible methods, how small the community detection error can be?

$$
\exp (-c \mathrm{SNR})
$$

In literature, spectral clustering is often used as an initialization for sophisticated algorithms to achieve the minimax rate.

Puzzling: But numerically such improvement is often marginal.
Q: Can we obtain a sharp upper bound for spectral clustering?

## Exponential Error Rate

## Theorem (Abbe, Fan, Wang, Zhong, 2020)

Assume $p=a \frac{\log n}{n}$ and $q=b \frac{\log n}{n}$ where $a, b$ are constants. Assume the SBM has two equal-sized communities. Then

$$
\mathbb{E} \ell\left(\hat{z}, z^{*}\right) \leq \exp \left(-(1+o(1))(\sqrt{a}-\sqrt{b})^{2}(\log n) / 2\right)
$$

Q: Can we study sparse SBMs?

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector analysis of random matrices with low expected rank.
Annals of statistics, 48(3):1452, 2020

## Main Result

## Theorem (Z. 2023)

Assume $\frac{n(p-q)^{2}}{p} \rightarrow \infty$. We have

$$
\begin{aligned}
& \mathbb{E} \ell\left(\hat{z}, z^{*}\right) \leq \exp \left(-(1-o(1)) J_{\text {min }}\right)+2 n^{-3}, \\
& \mathbb{E} \ell\left(\hat{z}, z^{*}\right) \geq \exp \left(-(1+o(1)) J_{\text {min }}\right)-2 n^{-3},
\end{aligned}
$$

where $J_{\min }$ is a function of $p, q$, and the community sizes $n_{1}, n_{2}, \ldots, n_{k}$.
$2 n^{-3}$ can be replaced by $n^{-C}$ for an arbitrarily large constant $C>0$, and in general is negligible.

## Main Result

## Theorem (Z. 2023)

Assume $\frac{n(p-q)^{2}}{p} \rightarrow \infty$. We have

$$
\begin{aligned}
& \mathbb{E} \ell\left(\hat{z}, z^{*}\right) \leq \exp \left(-(1-o(1)) J_{\min }\right)+2 n^{-3}, \\
& \mathbb{E} \ell\left(\hat{z}, z^{*}\right) \geq \exp \left(-(1+o(1)) J_{\min }\right)-2 n^{-3},
\end{aligned}
$$

where $J_{\min }$ is a function of $p, q$, and the community sizes $n_{1}, n_{2}, \ldots, n_{k}$.

Remarks:

- Holds for both sparse ( $n p \ll \log n$ ) and dense networks.
- Holds for multi-community and imbalanced SBMs.
- Matching lower and upper bounds.
- Case-wise analysis.


## Exponents

$J_{\text {min }}$ is a function of $p, q$, and community sizes $\left\{n_{i}\right\}_{i \in[k]}$.

- Definition:

$$
\min _{1 \leq a \neq b \leq k} \max _{t}\left(\left(n_{a}-n_{b}\right) t \frac{p+q}{2}-n_{a} \log \left(q e^{t}+1-q\right)-n_{b} \log \left(p e^{-t}+1-p\right)\right)
$$

- Interpretation: tail probability of Bernoulli random variables

$$
\min _{1 \leq a \neq b \leq k}-\log \mathbb{P}\left(\sum_{i \in\left[n_{a}\right]} X_{i}-\sum_{j \in\left[n_{b}\right]} Y_{j} \geq\left(n_{a}-n_{b}\right) \frac{p+q}{2}\right)=(1+o(1)) J_{\min }
$$

where $\left\{X_{i}\right\} \stackrel{i i d}{\sim} \operatorname{Ber}(q)$ and $\left\{Y_{j}\right\} \stackrel{i i d}{\sim} \operatorname{Ber}(p)$.

## Intuition

Recall: Apply $k$-means to rows of $U \Lambda \in \mathbb{R}^{n \times k}$, ie., $\left\{U_{i} . \Lambda\right\}_{i \in[n]} \in \mathbb{R}^{1 \times k}$.


## Intuition

Recall: Apply $k$-means to rows of $U \Lambda \in \mathbb{R}^{n \times k}$, ie., $\left\{U_{i} . \Lambda\right\}_{i \in[n]} \in \mathbb{R}^{1 \times k}$.
Since $U \Lambda=\tilde{A} U$, then

$$
U_{i, \Lambda}=\tilde{A}_{i,}, U=A_{i,}, U \approx A_{i,}, U^{*},
$$

where $U^{*}$ the leading eigenspace of of $\mathbb{E} A$.


## Intuition


$\mathbb{P}(i$ th node wrongly clustered $) \approx \mathbb{P}\left(A_{i,} \cdot U^{*}\right.$ is closer to $\theta_{2}^{*}$ than to $\left.\theta_{1}^{*}\right)$

$$
\begin{aligned}
& =\mathbb{P}\left(\sum_{j: z_{j}^{*}=1} A_{i j}-\sum_{j \neq i: z_{j}^{*}=2} A_{i j} \geq\left(n_{1}-n_{2}\right) \frac{p+q}{2}\right) \\
& =\mathbb{P}\left(\sum_{l \in\left[n_{1}\right]} X_{l}-\sum_{j \in\left[n_{2}\right]} Y_{j} \geq\left(n_{1}-n_{2}\right) \frac{p+q}{2}\right)
\end{aligned}
$$

where $\left\{X_{i}\right\} \stackrel{i i d}{\sim} \operatorname{Ber}(q),\left\{Y_{j}\right\} \stackrel{i i d}{\sim} \operatorname{Ber}(p)$.

## Technical Tool

Key technical tool: entrywise perturbation analysis for eigenvector/eigenspaces.

From previous slide:

$$
U_{i . \Lambda}=\tilde{A}_{i,}, U=A_{i,} U \approx A_{i,}, U^{*}
$$

Q: How to make $\approx$ rigorous?
For simplicity, consider the vector case

$$
A_{i, \cdot} \approx A_{i, u^{*}}
$$

where $u, u^{*}$ are the leading sample and population eigenvector.
Challenge: $A_{i,}$, and $u$ are not independent. Remedy: Use the leave-one-out technique

## Technical Tool

For simplicity, consider the vector case

$$
A_{i, \cdot} \approx A_{i,}, u^{*}
$$

where $u, u^{*}$ are the leading sample and population eigenvector.
If $A_{i, \text {, }}$ and $u$ were independent, then

$$
A_{i, \cdot} u=\sum_{j} A_{i, j} u_{j}
$$

would be a weighted average of Bernoulli random variables.
Challenge: Sharp tail probability for $A_{i, u}$.
The use of Bernstein inequality / Chernoff bound involves $\|u\|_{\infty}$, which comes with an $\log n$ factor, resulting in the assumption $n p \geq \log n$ as in Abbe, Fan, Wang, Zhong, 2020.

## Technical Tool

$$
A_{i, \cdot}=\sum_{j} A_{i, j} u_{j}
$$

To avoid the appearance of $\|u\|_{\infty}$, we truncate the eigenvectors:

$$
u_{j}=u_{j} \mathbb{I}\left\{\left|u_{j}\right| \leq t\right\}+\left(u_{j}-u_{j} \mathbb{I}\left\{\left|u_{j}\right| \leq t\right\}\right)
$$

Then

$$
\begin{aligned}
A_{i,} u & =\sum_{j \in[n]} A_{i, j} u_{j} \mathbb{I}\left\{\left|u_{j}\right| \leq t\right\} \\
& +\sum_{j \in[n]} A_{i, j}\left(u_{j}-u_{j} \mathbb{I}\left\{\left|u_{j}\right| \leq t\right\}\right)
\end{aligned}
$$

## Technical Tool

$$
A_{i, u}=\sum_{j \in[n]} A_{i, j} u_{j} \mathbb{I}\left\{\left|u_{j}\right| \leq t\right\}
$$

Chernoff bound can now be applied.
The $\ell_{\infty}$ norm of the truncated eigenvector is $t$.
$+\sum_{j \in[n]} A_{i, j}\left(u_{j}-u_{j} \mathbb{I}\left\{\left|u_{j}\right| \leq t\right\}\right)$
Related to $\sum_{j \in[n]} u_{j}^{2} \mathbb{I}\left\{\left|u_{j}\right|>t\right\}$, a truncated
$\ell_{2}$ norm of $u$. Can be shown to be negligible.
$\approx A_{i}, u^{*}$
Novelty: an "eigenvector truncation" idea and a truncated $\ell_{2}$ perturbation analysis.

## Summary



- Sharp analysis for the performance of spectral clustering under SBMs
- Works for sparse networks
- Exponential error rates

Anderson Ye Zhang. Fundamental limits of spectral clustering in stochastic block models.
arXiv preprint arXiv:2301.09289, 2023

## Thank You

