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Outline

• Introduction to Community Detection and Spectral

Clustering

• Sharp Statistical Analysis
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Introduction to Community

Detection and Spectral Clustering
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Networks and Community Detection

Human Gene-gene Co-association Network
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Networks and Community Detection

Human Gene-gene Co-association Network
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Spectral Clustering

• Idea: dimension reduction and embedding.

• Spectral Clustering: Spectral Decomposition + Clustering
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Spectral Clustering

Input: Data matrix A ∈ {0, 1}n×n, number of communities k

1. Perform eigendecomposition on A to have A =
∑

i λiuiu
T
i .

2. Let U = (u1, . . . , uk) ∈ Rn×k, Λ = diag{λ1, . . . , λk} ∈ Rk×k.

3. Apply k-means to rows of UΛ ∈ Rn×k.

7 / 29



Spectral Clustering

Input: Data matrix A ∈ {0, 1}n×n, number of communities k

1. Perform eigendecomposition on A to have A =
∑

i λiuiu
T
i .

2. Let U = (u1, . . . , uk) ∈ Rn×k, Λ = diag{λ1, . . . , λk} ∈ Rk×k.

3. Apply k-means to rows of UΛ ∈ Rn×k.

7 / 29



Spectral Clustering

Input: Data matrix A ∈ {0, 1}n×n, number of communities k

1. Perform eigendecomposition on A to have A =
∑

i λiuiu
T
i .

2. Let U = (u1, . . . , uk) ∈ Rn×k, Λ = diag{λ1, . . . , λk} ∈ Rk×k.

3. Apply k-means to rows of UΛ ∈ Rn×k.

7 / 29



Spectral Clustering

Input: Data matrix A ∈ {0, 1}n×n, number of communities k

1. Perform eigendecomposition on A to have A =
∑

i λiuiu
T
i .

2. Let U = (u1, . . . , uk) ∈ Rn×k, Λ = diag{λ1, . . . , λk} ∈ Rk×k.

3. Apply k-means to rows of UΛ ∈ Rn×k.

Remark: Eigenvectors are weighted as they are not equally

important.
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Spectral Clustering for Dense Networks

Input: Data matrix A ∈ {0, 1}n×n, number of communities k

1. Perform eigendecomposition on A to have A =
∑

i λiuiu
T
i .

2. Let U = (u1, . . . , uk) ∈ Rn×k, Λ = diag{λ1, . . . , λk} ∈ Rk×k.

3. Apply k-means to rows of UΛ ∈ Rn×k.

Remark: Needs an additional step for sparse networks.
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Spectral Clustering for Sparse/Dense Networks

Input: Data matrix A ∈ {0, 1}n×n, number of communities k

1. [Trim the network by removing high-degree nodes.] Let di be
the degree of node i. Define Ã ∈ {0, 1}n×n such that

Ãi,j =

{
Ai,j , if di, dj ≤ τ,

0, o.w..

2. Perform eigendecomposition on Ã to have Ã =
∑

i λiuiu
T
i .

3. Let U = (u1, . . . , uk) ∈ Rn×k, Λ = diag{λ1, . . . , λk} ∈ Rk×k.

4. Apply k-means to rows of UΛ ∈ Rn×k.
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Spectral Clustering

• is computationally appealing

• often has remarkably good performance

• has been widely used in various problems

Q: Why does spectral clustering work? How well does it perform?
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Sharp Statistical Analysis
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Stochastic Block Model

• A ∈ {0, 1}n×n

• k communities
• z∗ ∈ [k]n: underlying true community assignment vector
• Each edge is generated independently as follows:

EAi,j ∼

{
p, if z∗i = z∗j ,

q, o.w.

where p > q.
• Goal: Recover the community assignment z∗
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Stochastic Block Model

• Loss `(ẑ, z∗): the proportion of nodes misclustered,
considering all label permutations:

`(ẑ, z∗) =
1

n
min
φ∈Φ

∑
i∈[n]

I {φ (ẑi) 6= z∗i },

where Φ = {φ : bijection from [k] to [k]}.

14 / 29



Assumptions

For simplicity, in this talk we assume

• The number of communities k is finite

• The communities sizes are all in the same order

• The probabilities p, q are in the same order
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Polynomial Error Rate

Proposition

Assume
n(p−q)2

p → ∞. We have w.h.p.

`(ẑ, z∗) ≤ C
p

n(p− q)2
,

for some constant C > 0.

Remarks:

• n(p−q)2

p can be understood as the signal-to-noise ratio (SNR).

• `(ẑ, z∗) . 1/SNR.
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Polynomial Error Rate

`(ẑ, z∗) . 1/SNR

Minimax Rate for Community Detection: If we consider all

possible methods, how small the community detection error can

be?

exp (−cSNR)

In literature, spectral clustering is often used as an initialization for

sophisticated algorithms to achieve the minimax rate.

Puzzling: But numerically such improvement is often marginal.

Q: Can we obtain a sharp upper bound for spectral clustering?
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Exponential Error Rate

Theorem (Abbe, Fan, Wang, Zhong, 2020)

Assume p = a logn
n and q = b lognn where a, b are constants.

Assume the SBM has two equal-sized communities. Then

E`(ẑ, z∗) ≤ exp
(
−(1 + o(1))(

√
a−

√
b)2(logn)/2

)

Q: Can we study sparse SBMs?

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise

eigenvector analysis of random matrices with low expected rank.

Annals of statistics, 48(3):1452, 2020
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Main Result

Theorem (Z. 2023)

Assume
n(p−q)2

p → ∞. We have

E`(ẑ, z∗) ≤ exp (−(1− o(1))Jmin) + 2n−3,

E`(ẑ, z∗) ≥ exp (−(1 + o(1))Jmin)− 2n−3,

where Jmin is a function of p, q, and the community sizes

n1, n2, . . . , nk.

2n−3 can be replaced by n−C for an arbitrarily large constant

C > 0, and in general is negligible.
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Main Result

Theorem (Z. 2023)

Assume
n(p−q)2

p → ∞. We have

E`(ẑ, z∗) ≤ exp (−(1− o(1))Jmin) + 2n−3,

E`(ẑ, z∗) ≥ exp (−(1 + o(1))Jmin)− 2n−3,

where Jmin is a function of p, q, and the community sizes

n1, n2, . . . , nk.

Remarks:

• Holds for both sparse (np � logn) and dense networks.

• Holds for multi-community and imbalanced SBMs.

• Matching lower and upper bounds.

• Case-wise analysis.
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Exponents

Jmin is a function of p, q, and community sizes {ni}i∈[k].

• Definition:

min
1≤a6=b≤k

max
t

(
(na − nb)t

p+ q

2
− na log

(
qet + 1− q

)
− nb log

(
pe−t + 1− p

))

• Interpretation: tail probability of Bernoulli random variables

min
1≤a6=b≤k

− logP

 ∑
i∈[na]

Xi −
∑

j∈[nb]

Yj ≥ (na − nb)
p+ q

2

 = (1 + o(1))Jmin

where {Xi}
iid∼ Ber(q) and {Yj}

iid∼ Ber(p).
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Intuition

Recall: Apply k-means to rows of UΛ ∈ Rn×k, ie.,

{Ui·Λ}i∈[n] ∈ R1×k.
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Intuition

Recall: Apply k-means to rows of UΛ ∈ Rn×k, ie.,

{Ui·Λ}i∈[n] ∈ R1×k.

Since UΛ = ÃU , then

Ui·Λ = Ãi,·U = Ai,·U ≈ Ai,·U
∗,

where U∗ the leading eigenspace of of EA.
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Intuition

P (ith node wrongly clustered) ≈ P (Ai,·U
∗ is closer to θ∗2 than to θ∗1)

=P

 ∑
j:z∗

j =1

Aij −
∑

j 6=i:z∗
j =2

Aij ≥ (n1 − n2)
p+ q

2


=P

 ∑
l∈[n1]

Xl −
∑

j∈[n2]

Yj ≥ (n1 − n2)
p+ q

2

 ,

where {Xi}
iid∼ Ber(q), {Yj}

iid∼ Ber(p).
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Technical Tool

Key technical tool: entrywise perturbation analysis for

eigenvector/eigenspaces.

From previous slide:

Ui·Λ = Ãi,·U = Ai,·U≈Ai,·U
∗,

Q: How to make ≈ rigorous?

For simplicity, consider the vector case

Ai,·u ≈ Ai,·u
∗

where u, u∗ are the leading sample and population eigenvector.

Challenge: Ai,· and u are not independent.

Remedy: Use the leave-one-out technique
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Technical Tool

For simplicity, consider the vector case

Ai,·u ≈ Ai,·u
∗

where u, u∗ are the leading sample and population eigenvector.

If Ai,· and u were independent, then

Ai,·u =
∑
j

Ai,juj

would be a weighted average of Bernoulli random variables.

Challenge: Sharp tail probability for Ai,·u.
The use of Bernstein inequality / Chernoff bound involves ‖u‖∞,

which comes with an logn factor, resulting in the assumption

np ≥ logn as in Abbe, Fan, Wang, Zhong, 2020.
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Technical Tool

Ai,·u =
∑
j

Ai,juj .

To avoid the appearance of ‖u‖∞, we truncate the eigenvectors:

uj = ujI {|uj | ≤ t}+ (uj − ujI {|uj | ≤ t}) .

Then

Ai,·u =
∑
j∈[n]

Ai,jujI {|uj | ≤ t}

+
∑
j∈[n]

Ai,j (uj − ujI {|uj | ≤ t})
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Technical Tool

Ai,·u =
∑
j∈[n]

Ai,jujI {|uj | ≤ t}

Chernoff bound can now be applied.

The `∞ norm of the truncated eigenvector is t.

+
∑
j∈[n]

Ai,j (uj − ujI {|uj | ≤ t})

Related to
∑
j∈[n]

u2j I {|uj | > t}, a truncated

`2 norm of u. Can be shown to be negligible.

≈Ai,·u
∗

Novelty: an “eigenvector truncation” idea and a truncated `2
perturbation analysis.
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Summary

• Sharp analysis for the

performance of spectral clustering

under SBMs

• Works for sparse networks

• Exponential error rates

Anderson Ye Zhang. Fundamental limits of spectral clustering in stochastic

block models.

arXiv preprint arXiv:2301.09289, 2023

Thank You
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