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Introduction to Community
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Networks and Community Detection

Human Gene-gene Co-association Network
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Networks and Community Detection

Human Gene-gene Co-association Network
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Spectral Clustering

¢ |dea: dimension reduction and embedding.

{0’ 1}nxn ]Rn)(sma]]

e Spectral Clustering: Spectral Decomposition + Clustering
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Spectral Clustering

Input: Data matrix A € {0,1}"*", number of communities k

1. Perform eigendecomposition on A to have A = 3. A\juul.

Ae{0,1}n

.x

M

T
x.

7/29



Spectral Clustering

Input: Data matrix A € {0,1}"*", number of communities k

1. Perform eigendecomposition on A to have A = 3", Ajuul

!d T

Ae{0,1}n

2. LetU = (uy,...,ur) € R™F A =diag{\i,..., \p} € RFXE,

UA e R UeR™F  Ac Rk
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Spectral Clustering

Input: Data matrix A € {0,1}™*", number of communities &

1. Perform eigendecomposition on A to have A = 3", Ajuul

T

A€ {0,1)mm

2. LetU = (uy,...,ur) € R™F A =diag{\i,..., \p} € RFXE,

UA e R UeR™F  Ac Rk

3. Apply k-means to rows of UA € R™*%,
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Spectral Clustering

Input: Data matrix A € {0,1}"*™, number of communities &
1. Perform eigendecomposition on A to have A = >°. A\juul.

T

A€ {0,1}mxn

2. LetU = (uy,...,ur) € R™F A =diag{\,..., \p} € RFXE,

UAN e Rk UeR™F  AcRFxE

3. Apply k-means to rows of UA € R™*%,
Remark: Eigenvectors are weighted as they are not equally
important.
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Spectral Clustering for Dense Networks

Input: Data matrix A € {0,1}™*", number of communities &

1. Perform eigendecomposition on A to have A = 3", A\juul.

T

Ae{0,1}n

2. LetU = (uy,...,ur) € R™F A =diag{\,..., \p} € RF¥E,

UAeRnxk UER"Xk Ac kak

3. Apply k-means to rows of UA € R™*F,
Remark: Needs an additional step for sparse networks.
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Spectral Clustering for Sparse/Dense Networks

Input: Data matrix A € {0,1}™*", number of communities &

1. [Trim the network by removing high-degree nodes.] Let d; be
the degree of node i. Define A € {0, 1}"*™ such that

4y =

~ {Amw if di,dj <,

0, o.w..
HAEH
A e {0,1}mn A e {0,1}xn

2. Perform eigendecomposition on A to have A = 3, A\ju;u? .
3. LetU = (ul, - ,uk) S RnXk, A= diag{/\l, ceey )\k} € RFxk,
4. Apply k-means to rows of UA € R™**,
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Spectral Clustering

¢ s computationally appealing
¢ often has remarkably good performance
® has been widely used in various problems

Q: Why does spectral clustering work? How well does it perform?
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Sharp Statistical Analysis



Stochastic Block Model

A e {0,1}mxm

k communities

z* € [k]™: underlying true community assignment vector
Each edge is generated independently as follows:

if 25 = 2%
EAi,jN{Z’OV\Z/ i

where p > q.
Goal: Recover the community assignment z*

% §'£
0%3
OO@

O p
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Stochastic Block Model

® Loss {(z,z*): the proportion of nodes misclustered,
considering all label permutations:

02 = 2 min S 1{o (5) # 211,
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Assumptions

For simplicity, in this talk we assume
® The number of communities k is finite
® The communities sizes are all in the same order
® The probabilities p, g are in the same order



Polynomial Error Rate

Proposition

Assume ”(”qu)g — o0o0. We have w.h.p.

for some constant C' > 0. )

Remarks:
° ”(I’TTQ)Q can be understood as the signal-to-noise ratio (SNR).
® /(z,2%) < 1/SNR.
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Polynomial Error Rate

(2, 2*) < 1/SNR

Minimax Rate for Community Detection: If we consider all
possible methods, how small the community detection error can
be?

exp (—cSNR)

In literature, spectral clustering is often used as an initialization for
sophisticated algorithms to achieve the minimax rate.

Puzzling: But numerically such improvement is often marginal.

Q: Can we obtain a sharp upper bound for spectral clustering?



Exponential Error Rate

Theorem (Abbe, Fan, Wang, Zhong, 2020)

Assume p = 2™ and ¢ = b9 where a, b are constants,
Assume the SBM has two equal-sized communities. Then

El(2,2") < exp (—(1 +o(1))(va — Vb)*(log n)/2>

Q: Can we study sparse SBMs?

Emmanuel Abbe, Jianging Fan, Kaizheng Wang, and Yigiao Zhong. Entrywise
eigenvector analysis of random matrices with low expected rank.
Annals of statistics, 48(3):1452, 2020
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Main Result

Theorem (Z. 2023)

_ )2
Assume w — 00. We have

El(2,2") < exp (—(1 — o(1))Jmin) + 2077,
El(2,2%) > exp (—(1 + 0(1))Jmin) — 2173,

where Jnin is a function of p, ¢, and the community sizes
ny,na,...,Nk.

2n 3 can be replaced by n~¢ for an arbitrarily large constant
C > 0, and in general is negligible.
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Main Result

Theorem (Z. 2023)

N2
Assume % — 00. We have

El(2,2*) < exp (—(1 = o(1))Jmin) + 2073,
El(2,2") > exp (—(1 + o(1)) Jmin) — 271_37

where Jmin is a function of p, ¢, and the community sizes
ny,no,...,Nk.

Remarks:
e Holds for both sparse (np <« logn) and dense networks.
e Holds for multi-community and imbalanced SBMs.
* Matching lower and upper bounds.
e Case-wise analysis.
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Exponents

Jmin is @ function of p, ¢, and community sizes {n; };e(x)
o Definition:

i _ pta _ t —_d) - —t _ )
1gam;£gkmﬁx((na np)t 5 ne log (qe +1 q) nblog(pe +1 p)

¢ |nterpretation: tail probability of Bernoulli random variables

. ptaqy _ .
1§[‘Eirggk—log]P’ ( DTXi— DY > (e — ) 5 ) = (14 o(1)) Jmin

i€[na) J€np)

where {X;} "¢ Ber(q) and {Y;} ¢ Ber(p).
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Intuition

Recall: Apply k-means to rows of UA € R™** ie.,
{UZA}ze[n] S RIxk,

¢)
Og o U A € RUx
0000 )
0o :.oo. ®
e 0,
0 o
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Intuition

Recall: Apply k-means to rows of UA € R™ ¥ ie.,

{UiA}iepn € RV
Since UA = AU, then

UZA = AZ7U = A%U ~ AZ'7.U*,

where U* the leading eigenspace of of EA.

O
5 g
@) (@)
2 @)
~ 2800
o

o

s

U; A € RI*k
~ . *
oo ﬁAz,.U

0r=EA; U*



Intuition

IP (4th node wrongly clustered) ~ P (A; .U™ is closer to 65 than to 67)

=P Z Aij — Z Aij Z (n1 — ’I’Lg)p—;q

jizr=1 iz =2
[ S x- Y V> —np) 221
, - 2
len] j€n2)
iid iid

where {X;} ~ Ber(q),{Y;} ~ Ber(p).
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Technical Tool

Key technical tool: entrywise perturbation analysis for
eigenvector/eigenspaces.

From previous slide:
UZA = fLyU = Ai7.U%Ai7.U*,

Q: How to make = rigorous”?
For simplicity, consider the vector case

Ai7.u ~ A@.u*

where u, u* are the leading sample and population eigenvector.

Challenge: A;. and u are not independent.
Remedy: Use the leave-one-out technique
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Technical Tool

For simplicity, consider the vector case
AL.U ~ Ai,.u*

where u, u* are the leading sample and population eigenvector.

If A;. and u were independent, then
Ai7.u = Z Am-uj
J

would be a weighted average of Bernoulli random variables.
Challenge: Sharp tail probability for A; .u.

The use of Bernstein inequality / Chernoff bound involves ||u/| o,
which comes with an log n factor, resulting in the assumption
np > logn as in Abbe, Fan, Wang, Zhong, 2020.
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Technical Tool

Ai,-u: E Amuj.
J

To avoid the appearance of ||u||«, We truncate the eigenvectors:
uj = uil{|us| <t} + (u; — uI{|u;] < t}).
Then

Apu=3" AgjuiI{juy| < t)
JEN]

+ Z Ai,j (Uj — UJH{|UJ| < t})

J€ln]



Technical Tool

Au=>" Aijul{|u;| <t}
Jj€ln]
Chernoff bound can now be applied.
The ¢4, norm of the truncated eigenvector is t.
+ ) Ay (uy — T {|uy| < t})
Jj€ln]
Related to » ~ u3I{|u,| > t}, a truncated
Jj€ln]
Z5 norm of u. Can be shown to be negligible.

%Ai,.u*

Novelty: an “eigenvector truncation” idea and a truncated /o
perturbation analysis.
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e Sharp analysis for the
performance of spectral clustering
under SBMs

e \Works for sparse networks

B e Exponential error rates

Anderson Ye Zhang. Fundamental limits of spectral clustering in stochastic
block models.

arXiv preprint arXiv:2301.09289, 2023

Thank You
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