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Abstract

We study the difference between the maximum likelihood estimation (MLE) and its semi-
definite programming (SDP) relaxation for the phase synchronization problem, where n latent
phases are estimated based on pairwise observations corrupted by Gaussian noise at a level σ.
While previous studies have established that SDP coincides with the MLE when σ ≲

√
n/ log n,

the behavior in the high-noise regime σ ≳
√

n/ log n remains unclear. We address this gap by
quantifying the deviation between the SDP and the MLE in the high-noise regime as exp(−c n

σ2 ),
indicating an exponentially small discrepancy. In fact, we establish more general results for the
Burer-Monteiro (BM) factorization that covers the SDP as a special case: it has the exponen-
tially small deviation from the MLE in the high-noise regime and coincides with the MLE when
σ is small. To obtain our results, we develop a refined entrywise analysis of the MLE that is
beyond the existing ℓ∞ analysis in literature.

1 Introduction

In this paper, we study the phase synchronization problem [27, 3, 1, 34]. Let z∗1 , . . . , z
∗
n ∈ C1 be

latent parameters where C1 = {x ∈ C : |x| = 1} includes all unit complex numbers. That is, each
z∗j represents an angle in [0, 2π) or a phase. The observations are

Yjk = z∗j z
∗
k + σWjk, 1 ≤ j < k ≤ n, (1.1)

where σ > 0 is the noise level and {Wjk}1≤j<k≤n ∈ C are the additive noises following the standard
complex Gaussian distribution independently. This model can be conveniently expressed in matrix
form. By defining Yjj = 1,Wjj = 0 for all j ∈ [n] and Ykj = Yjk,Wkj = Wjk for all 1 ≤ j < k ≤ n,
we can rewrite the model as

Y = z∗(z∗)H + σW ∈ Cn×n, (1.2)

where z∗ ∈ Cn
1 with coordinates z∗1 , . . . , z

∗
n. The goal is to estimate the latent vector z∗ from the

observed matrix Y .
To solve the phase synchronization problem, one natural approach is to use maximum likelihood

estimation (MLE) [14, 34]. The MLE can be formulated as the following optimization problem:

ẑMLE = argmax
z∈Cn

1

⟨Y, zzH⟩ . (1.3)

However, this optimization is over a non-convex set Cn
1 , making it computationally challenging. To

overcome this computational difficulty, note that ẑMLE satisfies

ẑMLE(ẑMLE)H = argmax
Z∈Cn×n:Z=ZH,rank(Z)=1,Zjj=1,∀j∈[n]

⟨Y,Z⟩ , (1.4)
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which can be relaxed into a convex problem using semi-definite programming (SDP) [2, 28, 19, 11,
31, 15, 18]:

ẐSDP = argmax
Z∈Cn×n:Z=ZH,Z⪰0,Zjj=1,∀j∈[n]

⟨Y,Z⟩ . (1.5)

Here, the optimization is over all n-by-n positive semi-definite complex matrices with diagonal
entries equal to 1, which forms a convex set. Compared to (1.4), the formulation in (1.5) relaxes
the rank constraint rank(Z) = 1 to Z ⪰ 0, thus making the feasible set convex.

While the SDP offers computational convenience, its solution is not guaranteed to be ẑMLE(ẑMLE)H.
A crucial question is how ẐSDP differs from ẑMLE(ẑMLE)H. If they coincide, the SDP relaxation
is considered tight in the literature. [3] demonstrates that the SDP is tight when σ ≲ n1/4. This
result is further refined by [34], which shows that the SDP is tight when σ ≲

√
n/ log n. However,

the behavior of the SDP when σ ≳
√
n/ log n, referred to as the high-noise regime in this paper,

remains unclear. This motivates us to address the following question:

Question 1: How does the SDP differ from the MLE in the high-noise regime where σ ≳
√
n/ log n?

In addition to the SDP relaxation, in recent years, the Burer-Monteiro (BM) factorization
[7, 8, 6, 4, 24, 22] has drawn increasing attention. For any m ∈ N, the BM factorization solves the
following optimization problem:

ẐBM,m = argmax
Z∈Cn×n:,Z=ZH,rank(Z)≤m,Z⪰0,Zjj=1,∀j∈[n]

⟨Y,Z⟩ . (1.6)

Compared to the SDP, the BM factorization imposes an additional rank constraint. Note that
when m = 1, the feasible set of the BM factorization is the set of all rank-1 Hermitian matrices
with the non-zero eigenvalue being 1. Hence, the BM factorization is equivalent the MLE in the
sense that

ẐBM,1 = ẑMLE(ẑMLE)H.

When m ≥ n, the rank constrain is not effective, and the BM factorization is equivalent to the
SDP. As a result, the BM factorization can be seen as a more conservative relaxation of the MLE
compared to the SDP when m < n. In addition, the SDP can be seen as a special case of the BM
factorization, such that

ẐBM,n = ẐSDP.

With the SDP seen as a special case of the BM factorization, the question posed above about the
SDP can be further generalized:

Question 2: How does the BM factorization differ from the MLE?

Note that the difference between the BM factorization and the MLE can be quantified by
the following normalized squared Frobenius norm: n−2∥ẐBM,m − ẑMLE(ẑMLE)H∥2F, between ẐBM,m

and ẑMLE(ẑMLE)H. Since both are n × n matrices with entries having modulus at most 1, the
quantity is between 0 and 4. Hence, to address Question 2, we aim to establish an upper bound
for n−2∥ẐBM,m − ẑMLE(ẑMLE)H∥2F. If it is equal to 0, then ẐBM,m = ẑMLE(ẑMLE)H in which case
we can say the BM factorization is tight.

The main results of this paper are presented below in Theorem 1.1.
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Theorem 1.1. Suppose m ∈ N \ {1}.

1. There exists some absolute constant C > 0 such that the following hold:

E
(

1

n2

∥∥∥ẐBM,m − ẑMLE
(
ẑMLE

)H∥∥∥2
F

)
≤ C exp

(
− n

8σ2

)
+ 2n−10. (1.7)

2. There exists some absolute constant C ′ > 0 such that if σ ≤ min{C ′√n,
√
n/(9 log n)}, then

the following holds with high probability:

ẐBM,m = ẑMLE
(
ẑMLE

)H
.

Theorem 1.1 first provides an upper bound (1.7) for the expected value of n−2∥ẐBM,m −
ẑMLE(ẑMLE)H∥2F. Note that n−2∥ẐBM,m − ẑMLE(ẑMLE)H∥2F is random as both ẐBM,m and ẑMLE

depend on the random Gaussian noises {Wjk}1≤j<k≤n. Therefore, we take the expectation to ob-
tain a deterministic upper bound. The upper bound comprises two terms. The first term has an
exponential form with n

σ2 in the exponent, which can be understood as the signal-to-noise ratio.
The second term n−10 arises from a high-probability event controlling ∥W∥ and can be made ar-
bitrarily smaller, thus considered negligible compared to the first term. Ignoring the second term,
the bound indicates the difference between ẐBM,m and ẑMLE(ẑMLE)H is exponentially small.

To better understand the exponential error term exp
(
− n

8σ2

)
in (1.7), particularly its magnitude,

we compare it with the distances to the ground truth z∗(z∗)H. When m = n, the BM factorization
becomes the SDP. [15] shows that n−2∥ẐSDP − z∗(z∗)H∥2F, the difference between the SDP and the

ground truth, is of the order σ2

n . A similar result is established in [14] for the MLE. In addition, [14]

demonstrates that σ2

n is the minimax rate for the estimation of z∗(z∗)H in the phase synchronization,

implying that no estimator can achieve an error much smaller than σ2

n . The left panel of Figure 1
visualizes the geometric relationship among these quantities. Note that exp

(
− n

8σ2

)
is much smaller

than σ2

n , especially when n
σ2 is large. This reveals that while ẐSDP and ẑMLE(ẑMLE)H are distant

from z∗(z∗)H, they are relatively close to each other, indication that relaxing the feasible set in
(1.4) to that in (1.6) only slightly alters the solution.

Figure 1: Left: A visualization of the geometric relationship among the SDP, the MLE, and the
ground truth. Right: Summary of Theorem 1.1: The distance between the BM factorization and
the MLE decays exponentially as n

σ2 increases. The distance becomes 0, indicating tightness, when
n
σ2 ≳ log n.

While (1.7) holds for any noise level σ, Theorem 1.1 further provides a high-probability result
for the tightness of the BM factorization. When n is large enough, a sufficient condition is σ ≤
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√
n/(9 log n). Compared to the condition σ ≲

√
n/ log n for the SDP in the existing literature [34],

our result holds for any BM factorization, including the SDP.
In summary, Theorem 1.1 offers comprehensive answers to the two questions posed above.

Theorem 1.1 directly addresses Question 2, demonstrating how the BM factorization differs from
the MLE as n

σ2 increases (see the right panel of Figure 1 for an illustration). For Question 1, since
the SDP is a special case of the BM factorization, our results indicate that the SDP differs from
the MLE with an exponentially small error in the high-noise regime σ ≳

√
n/ log n.

To establish Theorem 1.1, our analysis is beyond that of [34]. [34] connects the SDP and the
MLE through a dual certificate. Instead, we leverage a property that both the BM factorization
and the MLE are fixed points of certain mappings Fm and F1, respectively (see Section 2.2 for their
definitions). The fixed-point property applies not just to the SDP but also the BM factorization,
allowing us to establish a general framework for the BM factorization that includes the SDP as a
special case. More importantly, this enables us to first establish contraction-type results for these
mappings, ultimately showing that the difference between the BM factorization and the MLE can
be upper bounded by a quantity of the MLE (see Corollary 2.4 for more details). As a result,
the remaining proof is about analyzing the MLE. While [34] investigates a similar quantity when
σ ≲

√
n/ log n by developing an ℓ∞ norm analysis for the MLE, their approach no longer works

in the high-noise regime σ ≳
√
n/ log n, due to the fact that the mapping F1 involves entrywise

normalization, which poses analytical challenges. To address this, our strategy is to replace F1

with a Lipschitz mapping whose fixed points closely approximate ẑMLE and are relatively easier to
analyze. This novel strategy, together with the leave-one-out technique developed in [34], allows us
to establish the desired exponential bound presented in Theorem 1.1.

Related Literature. Recent years have seen a surge of interest in SDP relaxations for tackling
various non-convex optimization problems with underlying low-rank structures. This includes ap-
plications in community detection [17, 12], clustering [16, 13], matrix completion [9], and phase
retrieval [29]. Among these, phase synchronization is particularly notable for its relatively straight-
forward structure, making it a prime candidate for in-depth study.

The SDP in phase synchronization can be studied from several perspectives. From a statistical
standpoint, as explored in [18, 15], the focus is on using SDP to estimate the true structure z∗(z∗)H

and to evaluate its estimation error and statistical optimality. This involves analyzing the distance
between ẐSDP and the true z∗(z∗)H. Conversely, studies such as [25, 3, 34] concentrate on the
tightness of the SDP—specifically, the discrepancy between ẐSDP and ẑMLE(ẑMLE)H, essentially
quantifying the cost of transforming a non-convex optimization problem into a convex one through
SDP relaxation. [25] examines the differences between the objective function values, ⟨Y, ẐSDP⟩
and ⟨Y, ẑMLE(ẑMLE)H⟩, while [3, 34] demonstrates that ẐSDP equals ẑMLE(ẑMLE)H under low noise
conditions. These works have inspired further investigations, such as those by [21, 20], into the
tightness of SDP in related problems, like orthogonal group synchronization and the generalized
orthogonal Procrustes problem. Our work extends the line of research initiated by [34] by focusing
on the tightness of the SDP in the high-noise regime, an area not extensively covered by existing
research. By doing so, we contribute to filling a crucial gap in understanding the limits and power
of SDP relaxations under more challenging conditions. While our results are limited to the phase
synchronization, they could potentially be extended to other synchronization problems such as the
orthogonal group synchronization.

While SDP is a convex optimization approach solvable in polynomial time, its scalability issues
have prompted the exploration of alternatives such as the BM factorization [7]. Despite its non-
convex nature, BM factorization often exhibits surprisingly good performance when applied through
local optimization algorithms. This observation has spurred a series of investigations into the con-
ditions under which SDP and BM factorization yield equivalent optima [8, 6, 5]. Furthermore,

4



Tightness of SDP and BM for Phase Synchronization Anderson Ye Zhang

studies such as [24, 22, 23, 10] examine the landscape and benignness of the BM factorization’s
optimization process. Unlike much of the existing literature that focuses on comparing BM fac-
torization directly with SDP, our work considers both SDP and BM factorization as relaxations of
the MLE. Therefore, we explore the differences between BM factorization and MLE, rather than
between BM factorization and SDP.

Regarding the statistical properties of phase synchronization, [14] establishes the minimax rate

of σ2

n , demonstrating its attainability via the MLE and a generalized power method. Subsequent
research by [15, 32] confirms that both the SDP and the eigenvector method [27] are minimax
optimal. Phase synchronization serves as a specific instance within the broader framework of
group synchronization problems [1], where the elements {z∗j }j∈[n] belong to various groups. The
performance of several algorithms, including those mentioned, has also been studied in different
synchronization settings such as Z2 synchronization [15] and orthogonal group synchronization
[21, 32].

Organization. In Section 2, we conduct a deterministic analysis of the difference between the
MLE and the BM factorization using their fixed-point properties. Section 3 focuses on analyzing
the MLE. We include proofs of main results in Section 5. Due to the page limit, proofs of remaining
lemmas are included in the supplementary material [33].

Notations. Define N = {1, 2, 3, . . .} as the set of natural numbers. For any positive integer n,
we write [n] = {1, 2, . . . , n} and denote In as the n × n identity matrix. For a complex number
x ∈ C, we use x for its complex conjugate and |x| for its modulus. Define C≤1 = {x ∈ C :
|x| ≤ 1} as the set of complex numbers whose modulus are at most 1. For a complex vector
x = (xj) ∈ Cd, we denote ∥x∥ = (

∑d
j=1 |xj |2)1/2 as its Euclidean norm. For a complex matrix

B = (Bjk) ∈ Cd1×d2 , we use BH ∈ Cd2×d1 for its conjugate transpose such that (BH)jk = Bkj . The

Frobenius norm and the operator norm of B are defined by ∥B∥F := (
∑d1

j=1

∑d2
k=1 |Bjk|2)1/2 and

∥B∥ := supu∈Cd1 ,v∈Cd2 :∥u∥=∥v∥=1 u
HBv. We use the notation B ⪰ 0 when B is positive semi-definite.

Define Bj as its jth column and Bj· as its jth row. For a square matrix B, define Tr(B) as its
trace and rank(B) as its rank. For two matrices A = (Ajk) ∈ Cd1×d2 and B = (Bjk) ∈ Cd1×d2 ,

define ⟨A,B⟩ = Tr(AHB) =
∑d1

j=1

∑d2
k=1AjkBjk as its Frobenius inner product. For two positive

sequences {an} and {bn}, an ≲ bn and bn ≳ an both mean an ≤ Cbn for some constant C > 0
independent of n. We also write an = o(bn) or

bn
an

→ ∞ when lim supn
an
bn

= 0. We use I {·} as the
indicator function.

2 A Deterministic Analysis Through Fixed Points

In this section, we show the difference between the MLE and the BM factorization can be upper
bounded by a quantity related to the MLE. Our analysis is deterministic, using a fact the estimators
are fixed points.

2.1 Introducing an Equivalent Representation of the BM Factorization and a
Different Loss Function

We first introduction an equivalent representation of the BM factorization. For any m ∈ N \ {1},
define

Vm = {V = (V1, . . . , Vn) ∈ Cm×n : ∥Vj∥ = 1, ∀j ∈ [n]}

as a set containing all m× n complex matrices with unit norm columns. Note that for any Z that
is in the feasible set of (1.6), it can be represented as Z = V HV for some V ∈ Vm, and vice versa.
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Consequently, the BM factorization can be equivalently formulated as

V̂ BM,m = argmax
V ∈Vm

⟨Y, V HV ⟩ ,

with ẐBM,m = (V̂ BM,m)HV̂ BM,m. Since MLE and SDP are special cases of the BM factorization,
we have ẑMLE = (V̂ BM,1)H and ẐSDP = (V̂ SDP)HV̂ SDP, where we define V̂ SDP = V̂ BM,n. As we
will show in Section 2.2, V̂ BM,m is a fixed point of certain mapping, a critical property on which
our analysis is built.

While the difference between the BM factorization and the MLE can be captured by the nor-
malized squared Frobenius norm n−2∥ẐBM,m − ẑMLE(ẑMLE)H∥2F, we opt to quantify it through the

deviation between V̂ BM,m and ẑMLE. Consider the following loss function ℓm : Cm×n × Cn → R
defined as

ℓm(V, z) = min
a∈Cm:∥a∥=1

1

n
∥V − azH∥2F , (2.1)

for any V ∈ Cm×n and any z ∈ Cn. Then the deviation can be measured by ℓm(V̂ BM,m, ẑMLE).
The advantage of studying ℓm(V̂ BM,m, ẑMLE) instead of n−2∥ẐBM,m − ẑMLE(ẑMLE)H∥2F is twofold.
First, the two quantities are closely related through the following inequality (see Lemma SM5.1 for
its proof):

1

n2

∥∥∥ẐBM,m − ẑMLE(ẑMLE)H
∥∥∥2
F
≤ 2ℓm(V̂ BM,m, ẑMLE). (2.2)

Hence, in order to establish Theorem 1.1, it is sufficient to upper bound ℓm(V̂ BM,m, ẑMLE). Second
and more importantly, in our analysis, we view V̂ BM,m and ẑMLE as fixed points of certain mappings,
a property that it is more natural to exploit with ℓm(V̂ BM,m, ẑMLE). As a result, in the remaining
part of the paper, we will focus on analyzing and upper bounding ℓm(V̂ BM,m, ẑMLE).

2.2 Introducing F1 and Fm: ẑMLE and V̂ BM,m Are Their Fixed Points

Our analysis relies on the fact that the MLE and the BM factorization are both fixed points. Define
a function F1 : Cn

1 → Cn
1 such that for any z ∈ Cn

1 , the jth coordinate of F1(z) is

[F1(z)]j =


∑

k∈[n] Yjkzk
|
∑

k∈[n] Yjkzk| , if
∑

k∈[n] Yjkzk ̸= 0,

zj , o.w.,
∀j ∈ [n].

It can be written equivalently as

[F1(z)]j =

{
[Y z]j
|[Y z]j | , if [Y z]j ̸= 0,

zj , o.w.,
∀j ∈ [n]. (2.3)

Then according to (1.3), the MLE is a fixed point of the mapping F1 as it satisfies

ẑMLE = F1

(
ẑMLE

)
.

In addition, for any m ∈ N \ {1}, define a function Fm : Vm → Vm such that for any V ∈ Vm,
the jth column of Fm(V ) is

[Fm(V )]j =


∑

k∈[n] Y jkVk

∥∑k∈[n] Y jkVk∥ , if
∑

k∈[n] Y jkVk ̸= 0,

Vj , o.w.,
∀j ∈ [n].
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It can be written equivalently as

[Fm(V )]j =

{
[V Y H]j

∥[V Y H]j∥
, if [V Y H]j ̸= 0,

Vj , o.w.,
∀j ∈ [n].

Then according to (1.6), the BM factorization is fixed point of Fm as it satisfies

V̂ BM,m = Fm

(
V̂ BM,m

)
.

The fact that ẑMLE and V̂ BM,m are fixed points of F1 and Fm opens a door for our analysis. In
Section 2.3, we will first establish a contraction-type result for the mappings. Consider any z ∈ Cn

1

and V ∈ Vm. The key is to understand how ℓm(Fm(V ), F1(z)) depends on ℓm(V, z). We aim to
establish the following contraction-type result:

ℓm(Fm(V ), F1(z)) ≤ (some factor smaller than 1)× ℓm(V, z) + some additive error term. (2.4)

On a high level, it means the mappings jointly have a contraction but with some additive error term.
If V, z are fixed points such that Fm(V ) = V and F1(z) = z, we have ℓm(Fm(V ), F1(z)) = ℓm(V, z),
and (2.4) consequently becomes

ℓm(V, z) ≤ (some factor smaller than 1)× ℓm(V, z) + some additive error term, (2.5)

an inequality involving ℓm(V, z) on both sides. Then the term ℓm(V, z) on the right-hand side can
be absorbed into the one on the left-hand side, leading to an upper bound for ℓm(V, z) with an
explicit expression. Since V BM,m and zMLE are fixed points, the derived upper bound holds for
ℓm(V BM,m, zMLE). In Section 2.4, we include the result for ℓm(V BM,m, zMLE) with discussions.

2.3 A Contraction-type Result for ℓm(Fm(V ), F1(z)) and ℓm(V, z)

In this section, we aim to establish (2.4). To achieve this, we need to study the two mappings F1

and Fm. Note that they can both be decomposed into two similar steps, as demonstrated below:

z −−−−−−−−−−−−−−−−−−−−−→ Y z −−−−−−−−−−−−−−−−−−→ F1(z)xyℓm(V, z) matrix
multiplication

xyℓm(V Y H, Y z) entrywise
normalization

xyℓm(Fm(V ), F1(z))

V −−−−−−−−−−−−−−−−−−−−−→ V Y H −−−−−−−−−−−−−−−−−−→ Fm(V )

In the first step, they involve a matrix multiplication with the data matrix Y such that z becomes Y z
and V becomes V Y H. In the second step, they perform an entrywise (or column-wise) normalization
such that Y z becomes F1(z) and V Y H becomes Fm(V ). Consequently, our analysis is decomposed
into two parts.

For the first part (the matrix multiplication part), Lemma 2.1 shows that ℓm(V Y H, Y z) can be
upper bounded by ℓm(V, z) up to some factor, provided that V and z are close to the ground truth
z∗. The closeness of V to z∗ can be measured by ℓm(V, z∗). Regarding z, we define a loss function
in an analogous way. Define a loss function ℓ1 : Cn

1 × Cn
1 → R such that for any z, z′ ∈ Cn,

ℓ1(z
′, z) = min

a∈C1

1

n
∥z′ − az∥2 = 2− n−1|(z′)Hz|. (2.6)

Then, the closeness of z to z∗ can be measured by ℓ1(z, z
∗). Lemma 2.1 is an extension of Lemma

12 of [34], which proves the vector case that connects ℓ1(Y z′, Y z) with ℓ1(z
′, z) for z, z′ ∈ Cn

1 that
are close to z∗. We generalize it to the matrix case.
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Lemma 2.1. Suppose m ∈ N \ {1} and ϵ ∈ (0, 1/2). For any z ∈ Cn
1 such that ℓ1(z, z

∗) ≤ ϵ2 and
any V ∈ Vm such that ℓm(V, z∗) ≤ ϵ2, we have

ℓm(V Y H, Y z) ≤ n2

(
6ϵ+

σ ∥W∥
n

)2

ℓm(V, z).

For the second part (the normalization part), we need to study how the normalization affects the
loss function ℓm to connect ℓm(V Y H, Y z) with ℓm(Fm(V ), F1(z)). However, this is not straightfor-
ward as the normalization operation is not continuous and, more importantly, does not necessarily
have a contraction property. To see this, consider any t > 0 and any x, y ∈ C such that |x| = |y| = t.

Then
∣∣∣ x
|x| −

y
|y|

∣∣∣ = t−1|x− y|. If t > 1, then x and y get closer after normalization. If t < 1 and is

close to 0, the distance between x
|x| and

y
|y| can be much larger than that between x and y, though

the distance is capped at most 2. The following Lemma 2.2 shows how normalization changes the
distance between vectors. In the lemma, (2.7) is a simple case where two vectors x, y are non-zero;
(2.8) allows x, y to be zero, which can be used to analyze the normalizations in F1 and Fm.

Lemma 2.2. Suppose m ∈ N. For any vectors x, y ∈ Cm \ {0} and for any t > 0, we have∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ≤ 2 ∥x− y∥
t

+ 2I {∥y∥ < t}. (2.7)

For any vectors x, y, u, v ∈ Cm such that ∥u∥ , ∥v∥ ≤ 1 and for any t > 0, we have∥∥∥∥( x

∥x∥
I {x ̸= 0}+ uI {x = 0}

)
−
(

y

∥y∥
I {y ̸= 0}+ vI {y = 0}

)∥∥∥∥ ≤ 2 ∥x− y∥
t

+ 2I {∥y∥ < t}.

(2.8)

Lemma 2.2 (more specifically, (2.8)) can be applied to analyze the difference between each
column-wise normalization of V Y H and each coordinate-wise normalization of Y z for any threshold
t > 0. To be more specific, for the jth normalization of V Y H and Y z, the application of (2.8) leads
to two terms, corresponding to the two terms in the upper bound of (2.8): the first term is essen-
tially about the distance between [V Y H]j and [Y z]j , and the second term is about I {|[Y z]j | < t}.
Aggregated over all j ∈ [n], the first term can be related to ℓm(V Y H, Y z), which can be further
bounded by Lemma 2.1; the second term becomes

∑
j∈[n] I {|[Y z]j | < t}. This leads to the following

theorem, which gives a connection between ℓm(Fm(V ), F1(z)) and ℓm(V, z).

Theorem 2.3. Suppose m ∈ N \ {1} and ϵ ∈ (0, 1/2). For any z ∈ Cn
1 such that ℓ1(z, z

∗) ≤ ϵ2 and
any V ∈ Vm such that ℓm(V, z∗) ≤ ϵ2, we have

ℓm(Fm(V ), F1(z)) ≤
4n2

t2

(
6ϵ+

σ ∥W∥
n

)2

ℓm(V, z) +
4

n

∑
j∈[n]

I {|[Y z]j | < t}, ∀t > 0. (2.9)

If z, V are further assumed to satisfy z = F1(z) and V = Fm(V ), we have

ℓm(V, z) ≤ 8

n

∑
j∈[n]

I {|[Y z]j | < δn}, ∀δ ≥ 2
√
2

(
6ϵ+

σ ∥W∥
n

)
. (2.10)

In Theorem 2.3, (2.9) holds for any threshold t > 0 and any z ∈ Cn
1 and V ∈ Vm that are close

to z∗. With a sufficiently large choice of t, the factor 4n2

t2

(
6ϵ+ σ∥W∥

n

)2
is smaller than 1, leading to

8
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the establishment of (2.4). Under this scenario, Fm and F1 jointly have a contraction-type property:
after one iteration, Fm(V ) and F1(z) get closer, up to an additive error 4

n

∑
j∈[n] I {|[Y z]j | < t},

compared to V and z, with respect to the loss ℓm.
In Theorem 2.3, (2.10) is an immediate consequence of (2.9) if z and V are further assumed to be

fixed points, following the argument as in (2.5). (2.10) shows that the distance between V , a fixed
point of Fm, and z, a fixed point of F1, provided that they are close to z∗, can be upper bounded
by 8

n

∑
j∈[n] I {|[Y z]j | < δn}, a property of z. This property essentially concerns the number of

coordinates in Y z whose absolute values are smaller than a certain threshold. If there is no such
coordinate, i.e.,

∑
j∈[n] I {|[Y z]j | < δn} = 0, then (2.10) leads to ℓm(V, z) = 0.

2.4 Implications on ℓm(V̂
BM,m, ẑMLE)

Since V̂ BM,m and ẑMLE are fixed points of Fm and F1, respectively, a direct consequence of (2.10)
in Theorem 2.3 is the following corollary for ℓm(V̂ BM,m, ẑMLE).

Corollary 2.4. Suppose m ∈ N\{1} and ϵ ∈ (0, 1/2). If ℓ1(ẑ
MLE, z∗) ≤ ϵ2 and ℓm(V̂ BM,m, z∗) ≤ ϵ2

are satisfied, we have

ℓm(V̂ BM,m, ẑMLE) ≤ 8

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
, ∀δ ≥ 2

√
2

(
6ϵ+

σ ∥W∥
n

)
.

Corollary 2.4 reveals that the distance between V̂ BM,m and ẑMLE can be upper bounded by a
quantity of the MLE: 8

n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
, which is essentially the proportion of coordi-

nates in the vector Y ẑMLE whose absolute value is smaller than δn. Below are some remarks about
this quantity and Corollary 2.4.

1) Connection between the tightness of the BM factorization and the ℓ∞ norm analysis. It turns
out an ℓ∞ norm analysis for WẑMLE is sufficient to show ℓm(V̂ BM,m, ẑMLE) = 0, i.e., the tightness
of the BM factorization. To see this, recall the decomposition of Y in (1.2). Then for each j ∈ [n],

[Y ẑMLE]j = [(z∗(z∗)H + σW )ẑMLE]j = z∗j ((z
∗)HẑMLE) + σ[WẑMLE]j .

Since |(z∗)HẑMLE| = n(1− ℓ1(ẑ
MLE, z∗)/2) ≥ n(1− ϵ2/2) according to (2.6), we have

|[Y ẑMLE]j | ≥ n(1− ϵ2/2)− σ|[WẑMLE]j | ≥ n(1− ϵ2/2)− σ
∥∥WẑMLE

∥∥
∞ . (2.11)

Hence, if σ
∥∥WẑMLE

∥∥
∞ ≤ n(1− δ − ϵ2/2) holds, then

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
= 0, and conse-

quently ℓm(V̂ BM,m, ẑMLE) = 0. As a result, it is sufficient to carry out an ℓ∞ norm analysis for the
MLE to establish ℓm(V̂ BM,m, ẑMLE) = 0, which is achievable when σ is small enough, as shown in
[34] for the SDP.

2) Corollary 2.4 is beyond the tightness of the BM factorization and consequently requires
analysis beyond the existing ℓ∞ norm framework. Corollary 2.4 is not just about establishing
ℓm(V̂ BM,m, ẑMLE) = 0, the tightness of the BM factorization. In fact, it quantifies the deviation
by ℓm(V̂ BM,m, ẑMLE) and upper bound it by 8

n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
, the analysis of which is

actually beyond the ℓ∞ norm of WẑMLE. To see this, from (2.11), we have that for each j ∈ [n],

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ I

{
n(1− ϵ2/2)− σ|[WẑMLE]j | < δn

}
≤ I

{
σ|[WẑMLE]j | > n(1− δ − ϵ2/2)

}
.

9
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Hence, the upper bound in Corollary 2.4 can be further upper bounded by

8

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ 8

n

∑
j∈[n]

I
{
σ|[WẑMLE]j | > n(1− δ − ϵ2/2)

}
, (2.12)

which is essentially about the proportion of coordinates in WẑMLE that is larger than certain
threshold in absolute value. To bound it, we need to study entrywise behavior of WẑMLE instead
of its ℓ∞ norm.

3) Intuition on the exponential bound in Theorem 1.1 for 8
n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
. From

Corollary 2.4, it is clear that in order to establish our main result Theorem 1.1, it is sufficient to
analyze the MLE ẑMLE to provide an upper bound for the quantity 8

n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
.

However, directly establishing the exponential bound for it is not easy, due to the dependence
between ẑMLE and Y (through the noise matrix W ). Nevertheless, here we assume they are
independent from each other to provide some intuition why it has exponential upper bound.
Recall (2.12) holds. Then each coordinate of WẑMLE follows a Gaussian distribution as W is
a Gaussian matrix. Though they are not complete independent from each other, we can show
1
n

∑
j∈[n] I

{
σ|[WẑMLE]j | > n(1− δ − ϵ2/2)

}
concentrates on its expected values, P

(
σ|[WẑMLE]1| > n(1− δ − ϵ2/2)

)
,

which is a Gaussian tail probability. With small δ, ϵ, it can be bounded explicitly by exp
(
− cn

σ2

)
for

some constant c > 0. This provides an intuition to explain why the bound in Theorem 1.1 takes
this form. On the other hand, this is purely just an intuition as ẑMLE and Y are actually highly
dependent on each other.

To conclude this section, note that Corollary 2.4 requires ẑMLE and V̂ BM,m to be close to
the ground truth z∗. The following lemma shows that ℓm(V̂ BM,m, z∗) and ℓ1(ẑ

MLE, z∗) are upper

bounded by 8σ∥W∥
n . Hence, when σ is small such that 8σ∥W∥

n ≤ ϵ2, the assumptions needed in
Corollary 2.4 are satisfied, and then the conclusion established therein holds.

Lemma 2.5. For any m ∈ N \ {1}, we have ℓm(V̂ BM,m, z∗) ≤ 8σ∥W∥
n . In addition, the same upper

bound holds for ℓ1(ẑ
MLE, z∗).

3 Analysis on MLE

From Corollary 2.4, it is evident that to establish our main result, Theorem 1.1, it suffices to
analyze the MLE ẑMLE and provide an upper bound for the quantity 1

n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
.

As demonstrated in Section 2.4, if ẑMLE is independent of Y , an exponential upper bound can
be established immediately. However, the dependence between them complicates the problem,
requiring a delicate analysis. In Section 3.1, we provide an overview of our analysis, which can be
decomposed into two steps detailed in Sections 3.2 and 3.3. The main results are given in Section
3.4.

3.1 High-level Idea of Our Analysis

In this section, we present the high-level idea of our analysis, which is quite technical and involved.
It consists of the following two steps.

• Step 1: Approximate ẑMLE by fixed points of Lipschitz mappings. Recall that ẑMLE is a fixed
point of F1. As discussed in Section 2, the normalization in F1 complicates the analysis.
To address this, note that for any x ∈ C, the normalization operation x → x/|x| can be
approximated by a function x → x/max{|x|, t} for some tuning parameter t > 0 (denoted as
gt(·) in (3.8)).

10
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The advantage of using this approximated mapping is two-fold. First, the approximation
error can be controlled, as |x/|x| − x/max{|x|, t}| ≤ I {|x| < t}. Second and more impor-
tantly, the mapping is Lipschitz (see Lemma 3.1). With the help of this mapping, we define
another Lipschitz mapping G(·, ·, ·) (see (3.9) for its definition) whose fixed points are used
to approximate ẑMLE. Specifically, in Lemma 3.6, we show that for a suitable δ, we have

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ 9

n

∑
j∈[n]

I
{∣∣z∗j |(z∗)HẑMLE|+ σ[Wz]j

∣∣ < 2δn
}
,

where z is any fixed point of G(·, |(z∗)HẑMLE|, 2δn). In this way, we reduce the problem to a
fixed point analysis for G(·, (z∗)HẑMLE, 2δn).

However, note that in G(·, |(z∗)HẑMLE|, 2δn), the quantity |(z∗)HẑMLE| is still random as
it involves ẑMLE. To completely remove ẑMLE from the above expression, we approximate
|(z∗)HẑMLE| by a grid of scalars. In this way, the problem becomes: given some s, t, how to

upper bound 1
n

∑
j∈[n] I

{∣∣∣z∗j s+ σ [Wz]j

∣∣∣ < some threshold
}
, or more conveniently

1

n

∑
j∈[n]

I
{
σ
∣∣∣[Wz]j

∣∣∣ > some threshold
}
, (3.1)

where z is a fixed point of G(·, s, t).

• Step 2: Leave-one-out analysis for fixed points of G(·, s, t). Upper bounding (3.1) is still
challenging because the mapping G(·, s, t) involves the noise matrix W for any given s, t.
Consequently, z, a fixed point of G(·, s, t), also depends on W . Note that for each j ∈ [n],
[Wz]j = Wj·z. The key to decoupling this dependence is to approximate z by some quantity
z(−j) that is close but independent ofWj·, such thatWj·z ≈ Wj·z

(−j), which follows a Gaussian
distribution. As a result, (3.1) becomes

1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
∣∣∣ ≥ some threshold

}
, (3.2)

which can be analyzed and leads to the desired exponential bound.

Now, the problem becomes finding the desired z(−j) for z. To achieve this, we use the idea
of leave-one-out. Let W (−j) be a matrix equal to W but with its jth row and column zeroed
out. Let G(−j) be a function equal to G but using W (−j) instead of W , and let z(−j) be its
fixed point. By definition, z(−j) is independent of Wj·. On the other hand, since W and
W (−j) only differ by one column and one row, intuitively, the two functions G and G(−j) do
not differ much, and their fixed points are consequently close.

To establish the closeness of z and z(−j) rigorously, we use the following method. Let
z(0) = z∗. Starting from it, we apply G(·, s, t) iteratively to obtain a sequence of vectors
z(0), z(1), z(2), . . .. We can show that this sequence converges to a fixed point. So we let
z = z(∞). Instead of G(·, s, t), we can apply G(−j)(·, s, t) iteratively, which leads to another
sequence z(0,−j) = z∗, z(1,−j), z(2,−j), . . . , z(−j) = z(∞,−j). It is evident that ∥z(0,−j)−z(0)∥ = 0.
Using mathematical induction, we can show (see Lemma 3.10) that∥∥∥z(T ) − z(T,−j)

∥∥∥ ≤ 3,∀T ∈ N. (3.3)

Hence, the same result holds for the limit, which is
∥∥z − z(−j)

∥∥.
11
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The details of these two steps are included in Sections 3.2 and 3.3. Together, they lead to the
establishment of exponential bounds in Section 3.4, which is the main result of this paper.

We conclude this section by discussing techniques used in [34] for the small σ regime, explaining
why they fail in the high σ regime, and how our approach connects with and diverges from theirs.
In [34], the main technical difficulty lies in controlling

∥∥WẑMLE
∥∥
∞, which is challenging due to

the dependence between W and ẑMLE. To decouple this dependence, they construct a sequence of
vectors x(0), x(1), x(2), . . ., where x(0) is the leading eigenvector of the data matrix and the subse-
quent vectors are obtained by iteratively applying F1. Additionally, they construct a leave-one-out
counterpart that is independent of Wj·: x

(0,−j), x(1,−j), x(2,−j), . . .. When σ is small, they show the
sequences satisfy:

ℓ1(x
(T ), x(T,−j)) ≲

1

n
,
∥∥∥Wx(T )

∥∥∥
∞

≲
√
n log n, ℓ1(x

(T ), z∗) ≲ 1, (3.4)

for all T ≥ 0, and the limit of x(T ) is the MLE ẑMLE. As a result,
∥∥WẑMLE

∥∥
∞ ≲

√
n log n holds,

which leads to the tightness of the SDP in the small σ regime.
The key in [34]’s analysis is the ℓ∞ norm result (3.4). Note that x(T+1) = F1(x

(T )) involves
a column-wise normalization of Y x(T ). As discussed in Section 2, this normalization is difficult
to analyze. However, once (3.4) holds, under the assumption that σ is small, one can show the
norm of each column [Y x(T )]j is of the order n. Hence, the normalization [Y x(T )]j/|[Y x(T )]j | is
[Y x(T )]j multiplied by a factor close to 1. This makes it easy to connect the error of x(T+1) with
x(T ). However, this argument no longer works when σ is large, as the norms of columns Y x(T )

are no longer guaranteed to be of the order n. For a column [Y x(T )]j with a norm close to 0, its
normalization [Y x(T )]j/|[Y x(T )]j | differs dramatically from itself. This makes connecting the error
of x(T+1) with that of x(T ) difficult, leading to the failure of their analysis.

Compared to [34]’s analysis, our key novelty is in Step 1, where we bypass the normalization
step of F1 by replacing F1 with a smoother mapping G. In Step 2, we follow the same idea
of constructing leave-one-out sequences as in [34]. However, due to the use of G instead of F1,
our analysis is much simpler, as we only need to establish (3.3) instead of the ℓ∞ bound (3.4).
Additionally, our sequences start from the ground truth z∗, instead of the eigenvector of the data
matrix as in (3.4). This allows us to avoid the analysis of the eigenvector needed in [34]. It is also
worth mentioning that [34] relates the SDP with the MLE through a dual certificate. We avoid
this by simply using the fact that they are fixed points, which enables us to study not only the
SDP but also the BM factorization more generally.

3.2 Step 1: Approximate ẑMLE by Fixed Points of Lipschitz Mappings

As outlined in Section 3.1, in this step, we are going to approximate ẑMLE by fixed points of
a Lipschitz mapping G in order to upper bound 1

n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
by (3.1). Before

introducing gt and G, we first introduce an auxiliary mapping F ′
1 that is closely related to F1 such

that ẑMLE is its fixed point.
Recall the definition of the function F1 in (2.3). Note that for any z ∈ Cn

1 , Y z = (z∗(z∗)H+σW )z
and consequently [Y z]j = z∗j (z

∗)Hz+σ[Wz]j for any j ∈ [n]. Then (2.3) can be written equivalently
as

[F1(z)]j =


z∗j (z

∗)Hz+σ[Wz]j

|z∗j (z∗)Hz+σ[Wz]j |
, if z∗j (z

∗)Hz + σ[Wz]j ̸= 0,

zj , o.w.,
∀j ∈ [n].

12
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Define a function F ′
1 : Cn × C → Cn such that for any z ∈ Cn

1 and s ∈ C, the jth coordinate of
F ′
1(z) is

[F ′
1(z, s)]j =


z∗j s+σ[Wz]j
|z∗j s+σ[Wz]j | , if z∗j s+ σ[Wz]j ̸= 0,

zj , o.w.,
∀j ∈ [n]. (3.5)

Since ẑMLE = F1(ẑ
MLE), it is easy to verify that ẑMLE is a fixed point of F ′(·, (z∗)HẑMLE), i.e.,

ẑMLE = F ′
1(ẑ

MLE, (z∗)HẑMLE). For simplicity, denote

ŝ = (z∗)HẑMLE. (3.6)

Then zMLE satisfies

ẑMLE = F ′
1(ẑ

MLE, ŝ). (3.7)

The difference between these two mappings F1(·) and F1(·, ŝ) is that: in F1(z), z appears twice in
its numerator z∗j (z

∗)Hz+σ[Wz]j ; on the contrary, in F ′
1(z, ŝ), z only appears once in its numerator

z∗j ŝ + σ[Wz]j , despite that ŝ depends on z. Hence, the mapping F ′
1(·, ŝ) is less complicated than

F1(·) and is relatively easier to analyze.
Now we are ready to introduce gt, an approximation of the normalization mapping x → x/|x|,

as we outline in Section 3.1. For any t ∈ R such that t > 0, define a function gt : C → C as
gt(x) =

x
max{|x|,t} for any x ∈ C. That is, for any x ∈ C,

gt(x) =

{
x
|x| , if |x| > t,
x
t , o.w..

(3.8)

The following lemma shows gt is Lipschitz.

Lemma 3.1. For any x, y ∈ C, we have |gt(x)− gt(y)| ≤ |x−y|
t ,∀t > 0.

With gt, define G : Cn
≤1 × C × R → Cn

≤1 such that for any z ∈ Cn
≤1, s ∈ C, t > 0, the jth

coordinate of G(z, s, t) is

[G(z, s, t)]j = gt(z
∗
j s+ σ[Wz]j) = gt([z

∗s+ σWz]j),∀j ∈ [n]. (3.9)

The following Lemma 3.2 gives a list of properties G has. First, since gt is Lipschitz, G(·, s, t) is
also Lipschitz. With a suitable choice of t, it is a contraction mapping, and consequently has a
unique fixed point which can be achieved by iteratively applying the function starting from z∗. The
last property shows that the sensitivity of the fixed point with respect to s is well-controlled.

Lemma 3.2. The function G(·, ·, ·) has the following properties:

1. For any x, y ∈ Cn and for any s ∈ C, t > 0, we have

∥G(x, s, t)−G(y, s, t)∥ ≤ t−1σ ∥W∥ ∥x− y∥ .

2. For any s ∈ C, t ≥ 2σ ∥W∥, and for any z(0) ∈ Cn
≤1, define z(T ) = G(z(T−1), s, t) for all

T ∈ N. Then ∥∥∥z(T+1) − z(T )
∥∥∥ ≤ 1

2

∥∥∥z(T ) − z(T−1)
∥∥∥ , ∀T ∈ N.

13
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3. For any s ∈ C, t ≥ 2σ ∥W∥, G(·, s, t) has exactly one fixed point. That is, there exists one
and only one z ∈ Cn

≤1 such that z = G(z, s, t). In addition, z can be achieved by iteratively

applying G(·, s, t) starting from z∗. That is, let z(0) = z∗ and define z(T ) = G(z(T−1), s, t) for
all T ∈ N. We have z = limT→∞G(z(T ), s, t).

4. For any s ∈ C, s′ ∈ C, t ≥ 2σ ∥W∥, let z be the fixed point of G(·, s, t) and let z′ be the fixed
point of G(·, s′, t). We have ∥z − z′∥2 ≤ 4nt−2 |s− s′|2 and∥∥(z∗s+ σWz)−

(
z∗s′ + σWz′

)∥∥2 ≤ 4n
∣∣s− s′

∣∣2 .
In addition, since gt approximates the normalization mapping x → x/|x|, G(·, s, t) can be seen

as a Lipschitz function that approximates F ′
1(·, s). In fact, the approximation error can be bounded

by the following lemma.

Lemma 3.3. For any z ∈ Cn
≤1, s ∈ C, and t > 0, we have∥∥F ′

1(z, s)−G(z, s, t)
∥∥2 ≤ 4

∑
j∈[n]

I
{
|z∗j s+ σ[Wz]j | < t

}2
.

With Lemmas 3.2 and 3.3, the following lemma shows that ẑMLE can be approximated by the
fixed point of G(·, ŝ, t).

Lemma 3.4. For any t ≥ 4σ ∥W∥, with z ∈ Cn
≤1 being the fixed point of G(·, ŝ, t), we have∥∥ẑMLE − z

∥∥2 ≤ 32
∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}
.

With Lemma 3.4, the quantity 1
n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
can be upper bounded by a similar

quantity associated with the fixed point of G.

Lemma 3.5. For any δ ≥ 2σ∥W∥
n , with z ∈ Cn

≤1 being the fixed point of G(·, ŝ, 2δn), we have

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ 9

n

∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < 2δn
}
.

Note that in Lemma 3.5, the function G(·, ŝ, 2dn) depends on ŝ and consequently depend on
ẑMLE. We want to further decouple the dependence so that we only need to study G(·, s, t) for
some fixed s. To achieve this, in Lemma 3.6, we first show that G(·, ŝ, 2dn) can be replaced by
G(·, |ŝ|, 2dn). That is, the phase information in G(·, ŝ, 2dn) is not important. What matters is its
magnitude.

Lemma 3.6. For any δ ≥ 2σ∥W∥
n , with z ∈ Cn

≤1 being the fixed point of G(·, |ŝ|, 2δn), we have

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ 9

n

∑
j∈[n]

I
{∣∣∣z∗j |ŝ|+ σ [Wz]j

∣∣∣ < 2δn
}
.

Note that |ŝ| is a real number. Once we have Lemma 3.6, we then approximate |ŝ| by points on
a grid {s0, s1, s2 . . .} ⊂ R. Consequently, the fixed point of G(·, |ŝ|, 2dn) can be approximated by
those of G(·, sk, 2dn) where k = 0, 1, 2, . . ., leading to the following Proposition 3.7.
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Proposition 3.7. Suppose ϵ ∈ (0, 1/2), h > 0, and δ ≥ 2σ∥W∥
n . Assume ẑMLE satisfies ℓ1(ẑ

MLE, z∗) ≤
ϵ2. For each k = 0, 1, 2, . . . , ⌈nϵ/h⌉, define sk = n− kh ∈ R and let zsk ∈ Cn

≤1 be the fixed point of
G(·, sk, 2δn). Then

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}

≤ 9
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
}+

9h2

δ2n2
I
{
h > δ

√
n
}
. (3.10)

Compared Lemma 3.6, Proposition 3.7 avoids the appearance of ŝ by using a grid {s0, s1, . . . , s⌈nϵ/h⌉}.
Note that we can show ŝ ∈ [(1 − ϵ)n, n] under the assumption ℓ1(ẑ

MLE, z∗) ≤ ϵ2. Hence, we only
need to discretize the interval [(1− ϵ)n, n]. In Proposition 3.7, h is the distance among the points
in the grid, a parameter can be optimized later. The use of the grid instead of ŝ comes with costs,
reflected in the two term in (3.10). Let k̂ ∈ {0, 1, . . . , ⌈nϵ/h⌉} be the index such that sk̂ is the one
closest to ŝ in the grid. First, note that sk̂ is still random as it depends on ŝ. To deal with, we up-

per bound the error associated with sk̂,
1
n

∑
j∈[n] I

{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
}
, by a summation of

errors
∑

0≤k≤⌈nϵ/h⌉

(
1
n

∑
j∈[n] I

{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
})

, as each one is non-negative. Second,

the approximation error |ŝ− sk̂| ≤ h results in the second term in (3.10). Nevertheless, the cost of
having the summation of all indexes and the approximation error turns out to be negligible with a
suitable choice of h.

The following Corollary 3.8 simplifies the first term in (3.10) in order to make the analysis in

Section 3.3 easier. For each j ∈ [n], note that
∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ ≥ ∣∣∣z∗j sk∣∣∣ − ∣∣∣σ [Wzsk ]j

∣∣∣ = sk −

σ
∣∣∣[Wzsk ]j

∣∣∣. Consequently, we have I
{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
}

≤ I
{
sk − σ

∣∣∣[Wzsk ]j

∣∣∣ < 4δn
}

=

I
{
σ
∣∣∣[Wzsk ]j

∣∣∣ > sk − 4δn
}
, leading to the corollary.

Corollary 3.8. Under the same conditions as in Proposition 3.7, we have

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}

≤ 9
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣[Wzsk ]j

∣∣∣ > sk − 4δn
}+

9h2

δ2n2
I
{
h > δ

√
n
}
.

With Corollary 3.8, we boil down the problem of upper bounding 1
n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
into a problem of analyzing the fixed point of G(·, s, t) for given s, t. Specifically, let z be the fixed
point, we want to analyze (3.1), which is the focus of the next section.

3.3 Step 2: Leave-One-Out Analysis for Fixed Points of G(·, s, t)

In the step, we are going to study the fixed point of G(·, s, t) to provide an upper bound for (3.1).
As we outlined in Section 3.1, the key is to decouple the dependence between W and z in the
quantity Wz using the leave-one-out technique.

For any s ∈ C, t > 0, define z(0) = z∗ and

z(T ) = G(z(T−1), s, t), ∀T ∈ N. (3.11)
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For any j ∈ [n], define W (−j) ∈ Cn×n such that

W
(−j)
k,l =

{
Wk,l, ∀k ̸= j and l ̸= j,

0, o.w..

We refer W (−j) as a leave-one-out counterpart of W , as compared to W , it zeros out its jth column
and row. As a result, it and its functions are independent of Wj·. Define G(−j) : Cn

≤1×C×R → Cn
≤1

such that for any z ∈ Cn
≤1, the jth coordinate of G(−j)(z, s, t) is

[G(−j)(z, s, t)]j = gt([z
∗s+ σW (−j)z]j),∀j ∈ [n].

Define z(0,−j) = z∗ and

z(T,−j) = G(−j)(z(T−1,−j), s, t),∀T ∈ N. (3.12)

That is, G(−j)(z, s, t) is a counterpart of G(z, s, t) that uses W (−j) instead of W . Consequently,
the sequence {z(T,−j)}T≥0 is independent of Wj·.

Note that the existence and uniqueness of the limit z(∞) for the sequence {z(T )}T≥0 is guaranteed
as long as t ≥ 2σ ∥W∥, according to the properties of G in Lemma 3.2. Similar properties hold
for G(−j) (see Lemma SM3.1), with which we can also show the existence and uniqueness of the
limit for the sequence {z(T,−j)}T≥0 when t ≥ 2σ ∥W∥. These lead to the following lemma about
the limits and fixed points.

Lemma 3.9. For any s ∈ C, t ≥ 2σ ∥W∥, and j ∈ [n], let z ∈ Cn
≤1 be the fixed point of

G(·, s, t) and let z(−j) ∈ Cn
≤1 be the fixed point of G(−j)(·, s, t). Then z = limT→∞ z(T ), and z(−j) =

limT→∞ z(T,−j).

Note that
∥∥z(0) − z(0,−j)

∥∥ = 0. With mathematical induction, the following lemma shows z(T )

and z(T,−j) are uniformly close for all T ∈ N and so are the limits.

Lemma 3.10. Under the same conditions as in Lemma 3.9, we have
∥∥z(T ) − z(T,−j)

∥∥ ≤ 3, ∀T ∈ N.
As a consequence,

∥∥z − z(−j)
∥∥ ≤ 3,∀j ∈ [n].

Note that both z and z(−j) are length-n vectors in Cn
≤1. Lemma 3.10 means that they are pretty

close to each other and consequently one can be approximated by the other one, leading to the
following proposition.

Proposition 3.11. Under the same conditions as in Lemma 3.9, we have

1

n

∑
j∈[n]

I {σ |[Wz]j | ≥ |s| − r} ≤ 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
∣∣∣ ≥ |s| − r − 3σ ∥W∥

}
, ∀r ∈ R.

In Proposition 3.11, the left-hand and right-hand sides of the display correspond to (3.1) and
(3.2), respectively. Note that for each j ∈ [n], z(−j) is independent of Wj·. In this way, we manage
to decouple the dependence in Wz. The cost of replacing z by z(−j) is 3σ ∥W∥, which means the
threshold in (3.2) is slightly smaller than that in (3.1).
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3.4 Exponential Bounds

In Sections 3.2 and 3.3, we carry out detailed analysis for the MLE to upper bound the quantity
1
n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
, which is the main term appearing in ℓm(V̂ BM,m, ẑMLE), the distance

between the MLE and the BM factorization in Corollary 2.4. With Corollary 3.8 and Proposition
3.11, Corollary 2.4 leads to the following lemma regarding ℓm(V̂ BM,m, ẑMLE).

Lemma 3.12. Suppose m ∈ N \ {1}, ϵ ∈ (0, 1/2), h > 0, and δ ≥ 2
√
2
(
6ϵ+ σ∥W∥

n

)
. Assume

ℓ1(ẑ
MLE, z∗) ≤ ϵ2 and ℓm(V̂ BM,m, z∗) ≤ ϵ2 are satisfied. For each k = 0, 1, 2, . . . , ⌈nϵ/h⌉, define

sk = n − kh ∈ R and let z
(−j)
sk ∈ Cn

≤1 be the fixed point of G(−j)(·, sk, 2δn) for each j ∈ [n]. Then
we have

ℓm(V̂ BM,m, ẑMLE)

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3σ ∥W∥
n

)
n− h

}+
72h2

δ2n2
I
{
h > δ

√
n
}
.

Lemma 3.12 provides a deterministic upper bound for the difference between the MLE and the
BM factorization, ℓm(V̂ BM,m, ẑMLE), as all the analysis carried out so far is completely determin-
istic. Despite being complicated, it makes it ready for us to obtain explicit expression for using
the fact that each entry of W is Gaussian. To achieve this, first note that Lemma 3.12 involves
∥W∥ which requires an upper bound. It is known in the literature that there exists some absolute
constant C0 > 0 such that

P
(
∥W∥ ≤ C0

√
n
)
≥ 1− n−10. (3.13)

Such concentration result is standard and is a direct consequence of Proposition 2.4 of [26]. Regard-
ing the display in Lemma 3.12, if we take expectations on both sides, then the indicator functions
on its right-hand side become tail probabilities of Gaussian distributions, which are exponentially
small. If we do not take expectations, then when σ is small enough, all the indicator functions are
equal to 0 with high probability, leading to the tightness ℓm(V̂ BM,m, ẑMLE) = 0. In both cases, we
need to pick a suitable h so that the second term in the display of the lemma is negligible. In this
way, we obtain the following exponential bound in Theorem 3.13. Theorem 1.1 is its immediate
consequence.

Theorem 3.13. Suppose m ∈ N \ {1}. There exist constants C1, C2 > 0 that only depend on C0

such that:

1. When n
σ2 ≥ C1, we have

Eℓm(V̂ BM,m, ẑMLE) ≤ exp
(
− n

8σ2

)
+ n−10. (3.14)

2. When n
σ2 ≥ max{C2, 9 log n}, we have ℓm(V̂ BM,m, ẑMLE) = 0 with probability at least 1−n−1.

In (3.14), the term n−10 comes from (3.13). Since in (3.13), by increasing C0, we can replace n−10

by n−c where c > 0 can be sufficiently large, the n−10 term in (3.14) can be consequently replaced
by the much smaller n−c. Consequently, we view n−10 as a negligible term in (3.14) compared to its
first term. Despite the upper bound in (3.14) only holds for σ such that n

σ2 ≥ C1, it can be restated

so that it holds for all σ > 0. This is because if n
σ2 < C1, due to the fact that Eℓm(V̂ BM,m, ẑMLE) is at
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most 1, it can be upper bounded by exp
(
C1
8

)
exp

(
− n

8σ2

)
. Hence, there exists some constant C3 > 0

such that Eℓm(V̂ BM,m, ẑMLE) ≤ C3 exp
(
− n

8σ2

)
+ n−10 for all σ > 0. Once we establish it, by the

connection between ℓm(V̂ BM,m, ẑMLE) and n−2∥ẐBM,m− ẑMLE(ẑMLE)H∥2F in (2.2), we immediately
establish (1.7), the first part of Theorem 1.1. With Markov inequality, the in-expectation upper
bound (3.14) can be converted into a in-probability upper bounded, resulting in the tightness result,
the second part of Theorem 3.13, which is also the second part of Theorem 1.1.

To conclude this section, we reflect on the connections and distinctions between the analysis
presented in this paper and our prior work [14, 15]. These earlier studies focus on quantifying the
deviations of the MLE and the SDP solutions from the ground truth z∗, leveraging the properties of
fixed points. For instance, [15] measures the distance between the SDP and z∗ through ℓn(V̂

SDP, z∗),
and establishes that this distance is bounded by a certain quantity of z∗, similar to the results of
Corollary 2.4. In contrast, the current work expands these frameworks to analyze ℓm(V̂ BM,m, ẑMLE).
First, our analysis leverages fixed points of both mappings Fm and F1, instead of using a single
mapping as in previous studies, to derive Corollary 2.4. Second and more importantly, the current
analysis confronts the challenge of handling 8

n

∑
j∈[n] I

{∣∣[Y ẑMLE]j
∣∣ < δn

}
within the upper bound

in the high-noise regime where σ ≳
√
n/ log n, unlike in our earlier work where we only need to

control a less complicated quantity of z∗. To tackle this, we have dedicated an entire Section 3 to
this issue, introducing a novel approach that involves replacing F1 with a Lipschitz mapping. This
marks a significant methodological advancement over the more straightforward analysis conducted
in our previous work.

4 Discussions

This paper investigates the tightness of the BM factorization in the phase synchronization, specif-
ically focusing on the high-noise regime where σ ≳

√
n/ log n. While this study contributes to our

understanding of this specific problem, the BM factorization presents a wide array of interesting
and important open questions, many of which are beyond the scope of our current analysis. Others
present challenges that our current analytical framework is not equipped to solve. In the following
discussions, we explore some of these unresolved issues, highlighting the challenges they present
and suggesting potential avenues for future research.

4.1 Computation of ẐBM,m and the Landscape

This paper focuses on ẐBM,m as the global optimizer of the objective function in (1.6). A natural
question is the computational feasibility of obtaining ẐBM,m, given the non-convex nature of the
objective function. Although non-convex, the landscape can be benign; for instance, when m >√
2n, it is known [8, 6] that all second-order critical points coincide with global ones. Further,

recent research [10, 22, 30, 24, 23] shows that the landscape remains benign for smaller m values
when σ ≲

√
n/ log n, which allows local optimization algorithms, such as eigenvector initialization

followed by iterative applications of Fm, to feasibly converge to ẐBM,m.
Nevertheless, the landscape may not always be benign, particularly when m is small and σ ≳√

n/(log n). In such scenarios, [25] establishes upper bounds on the discrepancies between the global

maximum and local maxima. While our study is centered on ẐBM,m, the theoretical framework
can be potentially extended to any fixed points of Fm under certain conditions, as evidenced by the
bounds developed in Theorem 2.3. Nevertheless, the framework’s applicability is limited and may
not be further extended to second-order critical points due to its reliance on the specific properties
of fixed points associated with Fm.
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4.2 Role of m

Our main results are applicable for any m ≥ 2 and notably do not vary with m. However, for the
BM factorization (1.6), the feasible set expands as m increases. The set is minimal and aligns with
that of the MLE (1.4) when m = 1. Intuitively, one might expect that the discrepancy between
the solutions ẐBM,m and ẑMLE(ẑMLE)H would also increases as m grows, yet our bound (1.7) does
not reflect this expectation. This stems from the technical approach of our analysis of the BM
factorization. Specifically, we express ẐBM,m as (V̂ BM,m)HV̂ BM,m and leverage the fact that both
V̂ BM,m and the MLE are fixed points of the respective mappings Fm and F1. We then establish a
contraction-type result to these mappings, a process in which m does not influence the outcomes
as seen in key technical lemmas such as Lemma 2.1 and Lemma 2.2. Consequently, our Theorem
2.3 and subsequent analysis remain independent of m. Incorporating m in the upper bound would
require a more refined analysis that is beyond our current analysis framework when m ≳

√
n.

4.3 Lower Bounds on the Tightness of the SDP

Our main results confirm that σ ≲
√

n/ log n is a sufficient condition for the tightness of the
SDP, aligning with the findings of [34]. An important question arises concerning the extent to
which σ can increase relative to n while maintaining SDP tightness. [3] provides insight through
numerical experiments, particularly in its Figure 2, which suggests that SDP maintains tightness
for σ ≤

√
n/3. However, the accompanying text in [3] interprets these results to suggest that σ

might be allowed to grow at a rate of
√
n/polylog(n) to maintain the tightness, where polylog(n)

means some polynomial in log n. This interpretation is echoed in the follow-up work [34]. There is
a subtle discrepancy between the visual and textual implications drawn from these studies.

While our result in (1.7) holds for the high-noise regime σ ≳
√

n/ log n, it provides only an upper
bound that may not be sharp. If this bound were sharp, it would suggest that σ ≲

√
n/ log n is a

necessary and sufficient condition for the tightness. To rigorously tackle this issue, it is important
to establish theoretical lower bounds for the tightness of the SDP. One approach could involve
demonstrating that tightness is unachievable when σ exceeds a certain threshold or by defining a
lower bound for n−2∥ẐSDP − ẑMLE(ẑMLE)H∥2F. These are important open questions and are worth
detailed investigation in future studies.

4.4
√
n Regime

Our results require that n
σ2 must exceed a certain threshold, as reflected in Theorem 3.13. Nonethe-

less, exploring the regime where σ of the order
√
n is also interesting and important. In this regime,

[18] studies the asymptotic performance of the SDP in synchronization problems. It reveals that
the SDP is able to achieve a near-optimal performance for Bayesian estimation of z∗, using the
cavity method from spin-glass theory. Our current analytical framework does not extend to this
regime because we require n

σ2 to be sufficiently large to establish the necessary contraction-type
results in Section 2. To thoroughly understand the performance of the BM factorization in the

√
n

regime, further development of the methodologies presented in [18] may be required.

4.5 Eigenvector Method for Phase Synchronization

While our study focuses on the SDP and the BM factorization for the phase synchronization, al-
ternative methods such as the eigenvector approach [27] also merit consideration. The eigenvector
method, which involves computing the leading eigenvector of the data matrix Y followed by entry-
wise normalization to ensure unit coordinates, is notable for its computational simplicity. In terms
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of performance, [32] demonstrates that the eigenvector method achieves the estimation rate of σ2

n
for z∗, which is comparable to that of the MLE and the SDP. However, evaluating how closely the
eigenvector method approximates the MLE within our current analytical framework presents chal-
lenges. Unlike the BM factorization, the eigenvector method is not naturally compatible with our
fixed-point analysis, which is central to our theory. As a result, it would require distinct analytical
techniques that are outside the scope of this paper.

5 Proofs

In this section, we give proofs of main results: Theorem 2.3, Lemma 3.4, Lemma 3.5, Proposition
3.7, Lemma 3.10, Proposition 3.11, and Theorem 3.13. Due to the page limit, we include proofs of
the remaining lemmas in the supplementary material [33].

Proof of Theorem 2.3. By the definition of ℓm in (2.1), there exists a ∈ Cm such that ∥a∥ = 1 and
ℓm(V Y H, Y z) = n−1 ∥V Y H − a(Y z)H∥2F. From Lemma 2.1, we have

∥V Y H − a(Y z)H∥2F = nℓm(V Y H, Y z) ≤ n3

(
6ϵ+

σ ∥W∥
n

)2

ℓm(V, z). (5.1)

On the other hand, we have

ℓm(Fm(V ), F1(z)) ≤ n−1
∥∥Fm(V )− a (F1(z))

H
∥∥2
F
= n−1 ∥Fm(V )− Fm(azH)∥2F , (5.2)

where the last equality is due to the fact that Fm(azH) = a(F1(z))
H.

Consider any t > 0. For any j ∈ [n], recall Vj , [V Y H]j , and [Fm(V )]j are the jth columns of V ,
V Y H, and Fm(V ), respectively. Note that [Fm(V )]j and [Fm(azH)]j can be written as

[Fm(V )]j =
[V Y H]j
∥[V Y H]j∥

I {[V Y H]j ̸= 0}+ VjI {[V Y H]j = 0}

and [Fm(azH)]j =
[(azH)Y H]j

∥[(azH)Y H]j∥
I {[(azH)Y H]j ̸= 0}+ azjI {[(azH)Y H]j = 0}.

By applying (2.8) of Lemma 2.2, we have

∥[Fm(V )]j − [Fm(azH)]j∥ ≤ 2 ∥[V Y H]j − [a(Y z)H]j∥
t

+ 2I {∥[(azH)Y H]j∥ < t}

=
2 ∥[V Y H]j − [a(Y z)H]j∥

t
+ 2I {|[Y z]j | < t},

where the last equality is due to ∥[(azH)Y H]j∥ = |[(Y z)H]j | = |[Y z]j | as ∥a∥ = 1.
Summing over all j ∈ [n], we have

∥Fm(V )− Fm(azH)∥2F =
∑
j∈[n]

∥[Fm(V )]j − [Fm(azH)]j∥2

≤
∑
j∈[n]

(
2 ∥[V Y H]j − [a(Y z)H]j∥

t
+ 2I {|[Y z]j | < t}

)2

≤
∑
j∈[n]

(
4 ∥[V Y H]j − [a(Y z)H]j∥2

t2
+ 4I {|[Y z]j | < t}

)

= 4t−2 ∥V Y H − a(Y z)H∥2F + 4
∑
j∈[n]

I {|[Y z]j | < t}.
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Together with (5.1) and (5.2), we have

ℓm(Fm(V ), F1(z)) ≤ n−1

4t−2 ∥V Y H − a(Y z)H∥2F + 4
∑
j∈[n]

I {|[Y z]j | < t}


≤ n−1

4t−2n3

(
6ϵ+

σ ∥W∥
n

)2

ℓm(V, z) + 4
∑
j∈[n]

I {|[Y z]j | < t}


≤ 4n2

t2

(
6ϵ+

σ ∥W∥
n

)2

ℓm(V, z) +
4

n

∑
j∈[n]

I {|[Y z]j | < t},

which proves (2.9).
To prove (2.10), set t = δn. Since z = F1(z) and V = Fm(V ), we have ℓm(V, z) = ℓm(Fm(V ), F1(z)),

and the above display can be written as(
1− 4

δ2

(
6ϵ+

σ ∥W∥
n

)2
)
ℓm(V, z) ≤ 4

n

∑
j∈[n]

I {|[Y z]j | < δn}.

Since 4
δ2

(
6ϵ+ σ∥W∥

n

)2
≤ 1/2, we have ℓm(V, z) ≤ 8

n

∑
j∈[n] I {|[Y z]j | < δn}.

Proof of Lemma 3.4. Consider any t > 0. From (3.7), we have ẑMLE = F ′
1(ẑ

MLE, ŝ). Then∥∥ẑMLE − z
∥∥ =

∥∥F ′
1(ẑ

MLE, ŝ)−G(z, ŝ, t)
∥∥

≤
∥∥F ′

1(ẑ
MLE, ŝ)− F ′

1(z, ŝ)
∥∥+ ∥∥F ′

1(z, ŝ)−G(z, ŝ, t)
∥∥

≤
∥∥F ′

1(ẑ
MLE, ŝ)− F ′

1(z, ŝ)
∥∥+√4

∑
j∈[n]

I
{
|z∗j ŝ+ σ[Wz]j | < t

}
,

where the last inequality is due to Lemma 3.3. Hence,∥∥ẑMLE − z
∥∥2 ≤ 2

∥∥F ′
1(ẑ

MLE, ŝ)− F ′
1(z, ŝ)

∥∥2 + 8
∑
j∈[n]

I
{
|z∗j ŝ+ σ[Wz]j | < t

}
.

Recall the definition of F ′
1 in (3.5). For any j ∈ [n], note that [F ′

1(ẑ
MLE, ŝ)]j and [F ′

1(z, ŝ)]j can
be written as

[F ′
1(ẑ

MLE, ŝ)]j =
z∗j ŝ+ σ[WẑMLE]j

|z∗j ŝ+ σ[WẑMLE]j |
I
{
z∗j ŝ+ σ[WẑMLE]j ̸= 0

}
+ ẑMLE

j I
{
z∗j ŝ+ σ[WẑMLE]j = 0

}
,

[F ′
1(z, ŝ)]j =

z∗j ŝ+ σ[Wz]j

|z∗j ŝ+ σ[Wz]j |
I
{
z∗j ŝ+ σ[Wz]j ̸= 0

}
+ zjI

{
z∗j ŝ+ σ[Wz]j = 0

}
.

By applying (2.8) of Lemma 2.2,

∣∣[F ′
1(ẑ

MLE, ŝ)]j − [F ′
1(z, ŝ)]j

∣∣ ≤ 2
∣∣∣(z∗j ŝ+ σ[WẑMLE]j

)
−
(
z∗j ŝ+ σ[Wz]j

)∣∣∣
t

+ 2I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}

≤
2σ
∣∣[W (ẑMLE − z)]j

∣∣
t

+ 2I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}
.
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Summing over all j ∈ [n], we have∥∥F ′
1(ẑ

MLE, ŝ)− F ′
1(z, ŝ)

∥∥2 = ∑
j∈[n]

∣∣[F ′
1(ẑ

MLE, ŝ)]j − [F ′
1(z, ŝ)]j

∣∣2
=
∑
j∈[n]

(
4σ2

∣∣[W (ẑMLE − z)]j
∣∣2

t2
+ 4I

{∣∣z∗j ŝ+ σ[Wz]j
∣∣ < t

})

=
4σ2

t2
∥∥W (ẑMLE − z)

∥∥2 + 4
∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}

≤ 4σ2

t2
∥W∥2

∥∥ẑMLE − z
∥∥2 + 4

∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}
.

Hence,

∥∥ẑMLE − z
∥∥2 ≤ 2

4σ2

t2
∥W∥2

∥∥ẑMLE − z
∥∥2 + 4

∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}

+ 8
∑
j∈[n]

I
{
|z∗j ŝ+ σ[Wz]j | < t

}
=

8σ2

t2
∥W∥2

∥∥ẑMLE − z
∥∥2 + 16

∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}
.

When t ≥ 4σ ∥W∥, we have 8σ2

t2
∥W∥2 ≤ 1/2 and the above display leads to

∥∥ẑMLE − z
∥∥2 ≤

32
∑

j∈[n] I
{∣∣∣z∗j ŝ+ σ[Wz]j

∣∣∣ < t
}
.

Proof of Lemma 3.5. For any t ≥ 4σ ∥W∥, let z ∈ Cn
≤1 be the fixed point of G(·, ŝ, t). By Lemma

3.4, we have
∥∥ẑMLE − z

∥∥2 ≤ 32
∑

j∈[n] I
{∣∣∣z∗j ŝ+ σ[Wz]j

∣∣∣ < t
}
. For any j ∈ [n], note that

[Y ẑMLE]j = [(z∗(z∗)H + σW )ẑMLE]j = z∗j ŝ+ σ[WẑMLE]j .

and [z∗ŝ+ σWz]j = z∗j ŝ+ σ[Wz]j . Then [Y ẑMLE]j − [z∗ŝ+ σWz]j = σ[W (ẑMLE − z)]j . Hence,∑
j∈[n]

∣∣[Y ẑMLE]j − [z∗ŝ+ σWz]j
∣∣2 = ∑

j∈[n]

∣∣σ[W (ẑMLE − z)]j
∣∣2 = σ2

∥∥W (ẑMLE − z)
∥∥2

≤ σ2 ∥W∥2
∥∥ẑMLE − z

∥∥2 .
Then, for any r > 0, we have∑

j∈[n]

I
{∣∣[Y ẑMLE]j − [z∗ŝ+ σWz]j

∣∣ > r
}
≤ r−2

∑
j∈[n]

∣∣[Y ẑMLE]j − [z∗ŝ+ σWz]j
∣∣2

≤ r−2σ2 ∥W∥2
∥∥ẑMLE − z

∥∥2 .
Note that for any a, b ∈ R, we have

I {|a| < r} = I {|a− b+ b| < r} ≤ I {|b| − |a− b| < r}
= I {|b| − |a− b| < r, |a− b| > r}+ I {|b| − |a− b| < r, |a− b| ≤ r}
≤ I {|a− b| > r}+ I {|b| < 2r}. (5.3)
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Hence, for each j ∈ [n],

I
{∣∣[Y ẑMLE]j

∣∣ < r
}
≤ I

{∣∣[Y ẑMLE]j − [z∗ŝ+ σWz]j
∣∣ > r

}
+ I {|[z∗ŝ+ σWz]j | < 2r}.

Summing over all j ∈ [n], we have∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < r
}
≤
∑
j∈[n]

I
{∣∣[Y ẑMLE]j − [z∗ŝ+ σWz]j

∣∣ > r
}
+
∑
j∈[n]

I {|[z∗ŝ+ σWz]j | < 2r}

≤ r−2σ2 ∥W∥2
∥∥ẑMLE − z

∥∥2 + ∑
j∈[n]

I {|[z∗ŝ+ σWz]j | < 2r}

= r−2σ2 ∥W∥2
∥∥ẑMLE − z

∥∥2 + ∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < 2r
}
.

As a consequence,∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < r
}
≤ 32r−2σ2 ∥W∥2

∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < t
}
+
∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < 2r
}
.

Consider any δ ≥ 2σ∥W∥
n . Set t = 2δn and r = δn, we have

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ 32σ2 ∥W∥2

δ2n2

∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < 2δn
}
+
∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < 2δn
}

≤ 9
∑
j∈[n]

I
{∣∣z∗j ŝ+ σ[Wz]j

∣∣ < 2δn
}
.

Multiplying n−1 on both sides, we complete the proof.

Proof of Proposition 3.7. Let a ∈ C1 such that
∥∥ẑMLE − az∗

∥∥2 = nℓ1(ẑ
MLE, z∗) ≤ nϵ2. Then

|ŝ| =
∣∣(z∗)HẑMLE

∣∣ = ∣∣(z∗)H(ẑMLE − az∗) + (z∗)H(az∗)
∣∣ ≥ |(z∗)H(az∗)| −

∣∣(z∗)H(ẑMLE − az∗)
∣∣

≥ n−
√
n
∥∥ẑMLE − az∗

∥∥ ≥ (1− ϵ)n.

Then |ŝ| ∈ [(1− ϵ)n, n] ⊂ [s⌈nϵ/h⌉, s0]. Define k̂ = argmin0≤k≤⌈nϵ/h⌉ ||ŝ| − sk|. Then
∣∣|ŝ| − sk̂

∣∣ ≤ h.

Consider any δ ≥ 2σ∥W∥
n and let z ∈ Cn

≤1 be the fixed point of G(z, |ŝ|, 2δn). By the 4th property
of Lemma 3.2, we have∥∥∥(z∗ |ŝ|+ σWz)−

(
z∗sk̂ + σWzsk̂

)∥∥∥2 ≤ 4n
∣∣|ŝ| − sk̂

∣∣2 ≤ 4nh2.

Note that we have the following fact:
∑

j∈[n] I {|xj | > t} ≤ t−2 ∥x∥2 I {∥x∥ > t} for any x ∈ Rn

and any t > 0. This is because if ∥x∥ ≤ t, then
∑

j∈[n] I {|xj | > t} = 0; if ∥x∥ > t, then∑
j∈[n] I {|xj | > t} ≤

∑
j∈[n] t

−2|xj |2I {|xj | > t} ≤
∑

j∈[n] t
−2|xj |2 = t−2 ∥x∥2. Hence,

∑
j∈[n]

I
{∣∣∣∣[z∗ |ŝ|+ σWz]j −

[
z∗sk̂ + σWzsk̂

]
j

∣∣∣∣ > 2δn

}
≤ (2δn)−2

∥∥∥(z∗ |ŝ|+ σWz)−
(
z∗sk̂ + σWzsk̂

)∥∥∥2 I{∥∥∥(z∗ |ŝ|+ σWz)−
(
z∗sk̂ + σWzsk̂

)∥∥∥ > 2δn
}

≤ (2δn)−2
(
4nh2

)
I
{√

4nh2 > 2δn
}
=

h2

δ2n
I
{
h > δ

√
n
}
.
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Using (5.3) and the above display, we have

1

n

∑
j∈[n]

I
{∣∣∣z∗j |ŝ|+ σ [Wz]j

∣∣∣ < 2δn
}

=
1

n

∑
j∈[n]

I
{∣∣∣∣z∗j sk̂ + σ

[
Wzsk̂

]
j

∣∣∣∣ < 4δn

}
+

1

n

∑
j∈[n]

I
{∣∣∣∣[z∗ |ŝ|+ σWz]j −

[
z∗sk̂ + σWzsk̂

]
j

∣∣∣∣ > 2δn

}

≤ 1

n

∑
j∈[n]

I
{∣∣∣∣z∗j sk̂ + σ

[
Wzsk̂

]
j

∣∣∣∣ < 4δn

}
+

h2

δ2n2
I
{
h > δ

√
n
}

≤
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
}+

h2

δ2n2
I
{
h > δ

√
n
}
,

where the last inequality is due to k̂ ∈ {0, 1, 2, . . . , ⌈nϵ/h⌉}. By applying Lemma 3.6, we have

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}

≤ 9

n

∑
j∈[n]

I
{∣∣∣z∗j |ŝ|+ σ [Wz]j

∣∣∣ < 4δn
}

≤ 9

 ∑
0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
}+

h2

δ2n2
I
{
h > δ

√
n
}

≤ 9
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{∣∣∣z∗j sk + σ [Wzsk ]j

∣∣∣ < 4δn
}+

9h2

δ2n2
I
{
h > δ

√
n
}
.

Proof of Lemma 3.10. Consider any T ∈ N. For any k ∈ [n], by Lemma 3.1, we have∣∣∣z(T )
k − z

(T,−j)
k

∣∣∣
=
∣∣∣[G(z(T−1), s, t)]k − [G(−j)(z(T−1,−j), s, t)]k

∣∣∣
=
∣∣∣gt([z∗s+ σWz(T−1)]k)− gt([z

∗s+ σW (−j)z(T−1,−j)]k)
∣∣∣

≤ t−1
∣∣∣[z∗s+ σWz(T−1)]k − [z∗s+ σW (−j)z(T−1,−j)]k

∣∣∣
= t−1σ

∣∣∣[Wz(T−1)]k − [W (−j)z(T−1,−j)]k

∣∣∣
= t−1σ

∣∣∣[Wz(T−1)]k − [W (−j)z(T−1)]k + [W (−j)z(T−1)]k − [W (−j)z(T−1,−j)]k

∣∣∣
= t−1σ

∣∣∣[(W −W (−j))z(T−1)]k + [W (−j)(z(T−1) − z(T−1,−j))]k

∣∣∣
≤ t−1σ

∣∣∣[(W −W (−j))z(T−1)]k

∣∣∣+ t−1σ
∣∣∣[W (−j)(z(T−1) − z(T−1,−j))]k

∣∣∣ .
If k ̸= j, we have [(W −W (−j))z(T−1)]k = Wkjz

(j)
j . Then the above display becomes∣∣∣z(T )

k − z
(T,−j)
k

∣∣∣ ≤ t−1σ
∣∣∣Wkjz

(j)
j

∣∣∣+ t−1σ
∣∣∣[W (−j)(z(T−1) − z(T−1,−j))]k

∣∣∣
≤ t−1σ |Wkj |+ t−1σ

∣∣∣[W (−j)(z(T−1) − z(T−1,−j))]k

∣∣∣ ,
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where in the last inequality we use |z(j)j | ≤ 1 as z(j) ∈ Cn
≤1. Summing over all k ∈ [n] such that

k ̸= j, we have ∑
k∈[n]:k ̸=j

∣∣∣z(T )
k − z

(T,−j)
k

∣∣∣2
≤

∑
k∈[n]:k ̸=j

(
2t−2σ2 |Wkj |2 + 2t−2σ2

∣∣∣[W (−j)(z(T−1) − z(T−1,−j))]2k

∣∣∣)
≤
∑
k∈[n]

(
2t−2σ2 |Wkj |2 + 2t−2σ2

∣∣∣[W (−j)(z(T−1) − z(T−1,−j))]2k

∣∣∣)
= 2t−2σ2 ∥Wj∥2 + 2t−2σ2

∥∥∥W (−j)(z(T−1) − z(T−1,−j)
∥∥∥2

≤ 2t−2σ2 ∥Wj∥2 + 2t−2σ2
∥∥∥W (−j)

∥∥∥2 ∥∥∥z(T−1) − z(T−1,−j)
∥∥∥2

≤ 2t−2σ2 ∥Wj∥2 + 2t−2σ2 ∥W∥2
∥∥∥z(T−1) − z(T−1,−j)

∥∥∥2 ,
where in the last inequality,

∥∥W (−j)
∥∥ ≤ ∥W∥ due to that W (−j) is obtained from W by zeroing out

its jth row and column. On the other hand,
∣∣∣z(T )

j − z
(T,−j)
j

∣∣∣ ≤ 2. Hence,∥∥∥z(T ) − z(T,−j)
∥∥∥2 ≤ 4 +

∑
k∈[n]:k ̸=j

∣∣∣z(T )
k − z

(T,−j)
k

∣∣∣2
≤ 4 + 2t−2σ2 ∥Wj∥2 + 2t−2σ2 ∥W∥2

∥∥∥z(T−1) − z(T−1,−j)
∥∥∥2

≤ 4 + 2t−2σ2 ∥W∥2 + 2t−2σ2 ∥W∥2
∥∥∥z(T−1) − z(T−1,−j)

∥∥∥2 ,
where in the last inequality we use a fact that the operator norm of matrix is greater or equal to
the norm of each column. When t ≥ 2σ ∥W∥, we have 2t−2σ2 ∥W∥2 ≤ 1/2 and∥∥∥z(T ) − z(T,−j)

∥∥∥2 ≤ 9

2
+

1

2

∥∥∥z(T−1) − z(T−1,−j)
∥∥∥2 .

Note that
∥∥z(0) − z(0,−j)

∥∥2 = 0, by mathematical induction, it is easy to verify
∥∥z(T ) − z(T,−j)

∥∥2 ≤
9,∀T ∈ N. Let T → ∞, we have

∥∥z − z(−j)
∥∥2 ≤ 9.

Proof of Proposition 3.11. For any j ∈ [n], we have

|[Wz]j | =
∣∣∣[Wz(−j)]j + [W (z − z(−j))]j

∣∣∣ = ∣∣∣Wj·z
(−j) + [W (z − z(−j))]j

∣∣∣
≤
∣∣∣Wj·z

(−j)
∣∣∣+ ∣∣∣[W (z − z(−j))]j

∣∣∣ ≤ ∣∣∣Wj·z
(−j)

∣∣∣+ ∥∥∥W (z − z(−j))
∥∥∥

≤
∣∣∣Wj·z

(−j)
∣∣∣+ ∥W∥

∥∥∥(z − z(−j))
∥∥∥ ≤

∣∣∣Wj·z
(−j)

∣∣∣+ 3 ∥W∥ ,

where the last inequality is due to Lemma 3.10. Hence, for any r ∈ R, I {σ |[Wz]j | ≥ |s| − r} ≤
I
{
σ
∣∣Wj·z

(−j)
∣∣ ≥ |s| − r − 3σ ∥W∥

}
. Summing over all j ∈ [n], we have

1

n

∑
j∈[n]

I {σ |[Wz]j | ≥ |s| − r} ≤ 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
∣∣∣ ≥ |s| − r − 3σ ∥W∥

}
.
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Proof of Theorem 3.13. Consider any m ∈ N \ {1}. Recall the upper bound for ∥W∥ in (3.13). We
first prove (3.14). Since

ℓm(V, ẑMLE) = ℓm(V, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}
+ ℓm(V, ẑMLE)I

{
∥W∥ > C0

√
n
}
,

we have

Eℓm(V, ẑMLE) = E
(
ℓm(V, ẑMLE)I

{
∥W∥ ≤ C0

√
n
})

+ E
(
ℓm(V, ẑMLE)I

{
∥W∥ > C0

√
n
})

≤ E
(
ℓm(V, ẑMLE)I

{
∥W∥ ≤ C0

√
n
})

+ EI
{
∥W∥ > C0

√
n
}

≤ E
(
ℓm(V, ẑMLE)I

{
∥W∥ ≤ C0

√
n
})

+ n−10, (5.4)

where the last inequality is due to (3.13), we focus on analyzing E
(
ℓm(V, ẑMLE)I {∥W∥ ≤ C0

√
n}
)
.

Assume ∥W∥ ≤ C0
√
n. We first perform some deterministic analysis on ℓm(V, ẑMLE). From

Lemma 2.5, we have ℓ1(ẑ
MLE, z∗), ℓm(V̂ BM,m, z∗) ≤ 8σ ∥W∥ /n ≤ 8C0σ/

√
n. Set ϵ =

(
8C0σ√

n

) 1
2
so

that ℓ1(ẑ
MLE, z∗), ℓm(V̂ BM,m, z∗) ≤ ϵ2. Assume C0σ√

n
< 1

16 . Then ϵ < 1/2 and

2
√
2

(
6ϵ+

σ ∥W∥
n

)
= 2

√
2

(
6

(
8C0σ√

n

) 1
2

+
σ ∥W∥

n

)
= 48

(
C0σ√
n

) 1
2

+ 2
√
2
C0σ√
n

≤ 49

(
C0σ√
n

) 1
2

.

Hence, by setting δ = 49
(
C0σ√

n

) 1
2
, we have δ ≥ 2

√
2
(
6ϵ+ σ∥W∥

n

)
. In this way, the conditions

required in Lemma 3.12 are satisfied, which leads to

ℓm(V̂ BM,m, ẑMLE)

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3σ ∥W∥
n

)
n− h

}+
72h2

δ2n2
I
{
h > δ

√
n
}

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

}+
72h2

δ2n2
I
{
h > δ

√
n
}
.

Since the above inequality holds under the assumption ∥W∥ ≤ C0
√
n, we can write it as

ℓm(V̂ BM,m, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

}+
72h2

δ2n2
I
{
h > δ

√
n
}
.

(5.5)

Take expectation on both sides of (5.5). Then, we have

Eℓm(V̂ BM,m, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

P
(
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

)+
72h2

δ2n2
I
{
h > δ

√
n
}

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

P
(
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

)+
72h2

δ2n2
.
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For each j and k, due to the independence between Wj· and z
(−j)
sk , Wj·z

(−j)
sk is complex Gaussian

with zero mean and variance ∥z(−j)
sk ∥2 ≤ n. Then |Wj·z

(−j)
sk | is Gaussian with zero mean and

variance ∥z(−j)
sk ∥2. Let 1− Φ(x) be cumulative distribution function of the standard normal. That

is, Φ(x) =
∫∞
u≥x 1/

√
2π exp

(
−u2/2

)
du. Then

P
(
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

)
= Φ

 1

σ
∥∥∥z(−j)

sk

∥∥∥
(
1− ϵ− 4δ − 3C0σ√

n
− h

n

)
n


≤ Φ

((
1− ϵ− 4δ − 3C0σ√

n
− h

n

) √
n

σ

)
,

which is invariant of j or k. As a result,

Eℓm(V̂ BM,m, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}

≤ 72
∑

0≤k≤⌈nϵ/h⌉

Φ

((
1− ϵ− 4δ − 3C0σ√

n
− h

n

) √
n

σ

)
+

72h2

δ2n2

≤ 72
⌈nϵ
h

⌉
Φ

((
1− ϵ− 4δ − 3C0σ√

n
− h

n

) √
n

σ

)
+

72h2

δ2n2
. (5.6)

Recall that ϵ =
(
8C0σ√

n

) 1
2
and δ = 49

(
C0σ√

n

) 1
2
. Set h = n exp

(
− n

8σ2

)
. Then (5.6) becomes

Eℓm(V̂ BM,m, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}

≤ 72 exp
( n

8σ2

)
Φ

((
1−

(
(196 + 2

√
2)

(
C0σ√
n

) 1
2

+
3C0σ√

n
+ exp

(
− n

8σ2

))) √
n

σ

)

+
1

100C0

( n

σ2

) 1
2
exp

(
− n

4σ2

)
.

Note that Φ(x) ≤ 2√
π
exp

(
−x2

2

)
for any x > 0. Then there exists some constant C1 > 0 that only

depends on C0, such that if n
σ2 ≥ C1, we have

(196 + 2
√
2)

(
C0σ√
n

) 1
2

+
3C0σ√

n
+ exp

(
− n

8σ2

)
≤ 1

4
, (5.7)

and consequently,

Eℓm(V̂ BM,m, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}

≤ 72 exp
( n

8σ2

)
Φ

(
3
√
n

4σ

)
+

1

100C0

( n

σ2

) 1
2
exp

(
− n

4σ2

)
≤ 72 exp

( n

8σ2

) 2√
π
exp

(
− 9n

32σ2

)
+

1

100C0

( n

σ2

) 1
2
exp

(
− n

4σ2

)
=

144√
π
exp

(
− 5n

32σ2

)
+ 2 exp

(
− n

6σ2

)
≤ exp

(
− n

8σ2

)
.

The proof for (3.14) is complete with (5.4).
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To prove the second part of the theorem, note that from (5.5), we can also get a in-probability
bound. Set h = δ

√
n. Then (5.5) becomes

ℓm(V̂ BM,m, ẑMLE)I
{
∥W∥ ≤ C0

√
n
}

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

} .

Using Markov inequality, we have

P
(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ ≤ C0

√
n
}
> 0
)

≤ P

72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

} > 0


= P

 ∑
0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

} > 0


= P

 ∑
0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

} ≥ 1

n


≤ nE

 ∑
0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

}
=

∑
0≤k≤⌈nϵ/h⌉

∑
j∈[n]

P
(
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3C0σ√
n

)
n− h

) ,

Then by the same simplification as used in the derivation of (5.6), we have

P
(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ ≤ C0

√
n
}
> 0
)
≤ n

⌈nϵ
h

⌉
Φ

((
1− ϵ− 4δ − 3C0σ√

n
− h

n

) √
n

σ

)
.

Recall that ϵ =
(
8C0σ√

n

) 1
2
, δ = 49

(
C0σ√

n

) 1
2
, and h = δ

√
n, we have

P
(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ ≤ C0

√
n
}
> 0
)

≤ n

⌈
2
√
2n

49

⌉
Φ

((
1− (196 + 2

√
2)

(
C0σ√
n

) 1
2

− 3C0σ√
n

− 49√
n

(
C0σ√
n

) 1
2

) √
n

σ

)

≤ n

⌈
2
√
2n

49

⌉
Φ

((
1−

(
196 + 2

√
2 +

49√
n

)(
C0σ√
n

) 1
2

− 3C0σ√
n

) √
n

σ

)
.

Similar to (5.7), there exists some constant C2 > 0 that only depends on C0 such that if n
σ2 ≥ C2,

we have (
196 + 2

√
2 +

49√
n

)(
C0σ√
n

) 1
2

+
3C0σ√

n
≤ 1

4
.
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Then we have

P
(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ ≤ C0

√
n
}
> 0
)
≤ n

⌈
2
√
2n

49

⌉
Φ

(
3
√
n

4σ

)

≤ n

⌈
2
√
2n

49

⌉
2√
π
exp

(
− 9n

32σ2

)
≤ 1

2
n

3
2 exp

(
− 9n

32σ2

)
≤ 1

2
n−1,

where the last inequality holds under the assumption n
σ2 ≥ 9 log n. Hence,

P
(
ℓm(V̂ BM,m, ẑMLE) > 0

)
≤ P

(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ ≤ C0

√
n
}
> 0
)
+ P

(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ > C0

√
n
}
> 0
)

≤ P
(
ℓm(V̂ BM,m, ẑMLE)I

{
∥W∥ ≤ C0

√
n
}
> 0
)
+ P

(
∥W∥ > C0

√
n
)

≤ 1

2
n−1 + n−10 ≤ n−1.

References

[1] Emmanuel Abbe, Laurent Massoulie, Andrea Montanari, Allan Sly, and Nikhil Srivastava.
Group synchronization on grids. arXiv preprint arXiv:1706.08561, 2017.

[2] Mica Arie-Nachimson, Shahar Z Kovalsky, Ira Kemelmacher-Shlizerman, Amit Singer, and
Ronen Basri. Global motion estimation from point matches. In 2012 Second international
conference on 3D imaging, modeling, processing, visualization & transmission, pages 81–88.
IEEE, 2012.

[3] Afonso S Bandeira, Nicolas Boumal, and Amit Singer. Tightness of the maximum likelihood
semidefinite relaxation for angular synchronization. Mathematical Programming, 163(1-2):145–
167, 2017.

[4] Afonso S Bandeira, Nicolas Boumal, and Vladislav Voroninski. On the low-rank approach for
semidefinite programs arising in synchronization and community detection. In Conference on
learning theory, pages 361–382. PMLR, 2016.

[5] Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for
nonconvex optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019.

[6] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-monteiro ap-
proach works on smooth semidefinite programs. Advances in Neural Information Processing
Systems, 29, 2016.

[7] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical programming, 95(2):329–357,
2003.

[8] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidef-
inite programming. Mathematical programming, 103(3):427–444, 2005.

29



Tightness of SDP and BM for Phase Synchronization Anderson Ye Zhang

[9] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization.
Communications of the ACM, 55(6):111–119, 2012.

[10] Faniriana Rakoto Endor and Irène Waldspurger. Benign landscape for burer-monteiro factor-
izations of maxcut-type semidefinite programs. arXiv preprint arXiv:2411.03103, 2024.

[11] Yifeng Fan, Yuehaw Khoo, and Zhizhen Zhao. Joint community detection and rotational
synchronization via semidefinite programming. arXiv preprint arXiv:2105.06031, 2021.

[12] Yingjie Fei and Yudong Chen. Achieving the bayes error rate in synchronization and block
models by sdp, robustly. IEEE Transactions on Information Theory, 66(6):3929–3953, 2020.

[13] Yingjie Fei and Yudong Chen. Hidden integrality and semirandom robustness of sdp relaxation
for sub-gaussian mixture model. Mathematics of Operations Research, 47(3):2464–2493, 2022.

[14] Chao Gao and Anderson Y Zhang. Exact minimax estimation for phase synchronization. IEEE
Transactions on Information Theory, 67(12):8236–8247, 2021.

[15] Chao Gao and Anderson Y Zhang. Sdp achieves exact minimax optimality in phase synchro-
nization. IEEE Transactions on Information Theory, 68(8):5374–5390, 2022.

[16] Christophe Giraud and Nicolas Verzelen. Partial recovery bounds for clustering with the
relaxed k-means. Mathematical Statistics and Learning, 1(3):317–374, 2019.

[17] Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster recovery threshold
via semidefinite programming: Extensions. IEEE Transactions on Information Theory,
62(10):5918–5937, 2016.

[18] Adel Javanmard, Andrea Montanari, and Federico Ricci-Tersenghi. Phase transitions in
semidefinite relaxations. Proceedings of the National Academy of Sciences, 113(16):E2218–
E2223, 2016.

[19] Shuyang Ling. Solving orthogonal group synchronization via convex and low-rank optimization:
Tightness and landscape analysis. arXiv preprint arXiv:2006.00902, 2020.

[20] Shuyang Ling. Near-optimal bounds for generalized orthogonal procrustes problem via gener-
alized power method. arXiv preprint arXiv:2112.13725, 2021.

[21] Shuyang Ling. Improved performance guarantees for orthogonal group synchronization via
generalized power method. SIAM Journal on Optimization, 32(2):1018–1048, 2022.

[22] Shuyang Ling. Local geometry determines global landscape in low-rank factorization for syn-
chronization. arXiv preprint arXiv:2311.18670, 2023.

[23] Andrew D McRae, Pedro Abdalla, Afonso S Bandeira, and Nicolas Boumal. Nonconvex land-
scapes for Z2 synchronization and graph clustering are benign near exact recovery thresholds.
arXiv preprint arXiv:2407.13407, 2024.

[24] Andrew D McRae and Nicolas Boumal. Benign landscapes of low-dimensional relaxations for
orthogonal synchronization on general graphs. SIAM Journal on Optimization, 34(2):1427–
1454, 2024.

30



Tightness of SDP and BM for Phase Synchronization Anderson Ye Zhang

[25] Song Mei, Theodor Misiakiewicz, Andrea Montanari, and Roberto Imbuzeiro Oliveira. Solving
sdps for synchronization and maxcut problems via the grothendieck inequality. In Conference
on learning theory, pages 1476–1515. PMLR, 2017.

[26] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme
singular values. In Proceedings of the International Congress of Mathematicians 2010 (ICM
2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures,
pages 1576–1602. World Scientific, 2010.

[27] Amit Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied
and computational harmonic analysis, 30(1):20–36, 2011.

[28] Amit Singer and Yoel Shkolnisky. Three-dimensional structure determination from common
lines in cryo-em by eigenvectors and semidefinite programming. SIAM journal on imaging
sciences, 4(2):543–572, 2011.

[29] Irene Waldspurger, Alexandre d’Aspremont, and Stéphane Mallat. Phase recovery, maxcut
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SUPPLEMENTARY MATERIALS: TIGHTNESS OF SDP AND BURER-MONTEIRO
FACTORIZATION FOR PHASE SYNCHRONIZATION IN HIGH-NOISE REGIME

BY Anderson Ye Zhang

University of Pennsylvania

SM1 Proofs of Lemmas in Section 2

We defer the proof of Lemma 2.1 to Section SM5 as the lemma is a direct generalization of Lemma
12 of [34] and our proof follows theirs.

Proof of Lemma 2.2. To prove (2.7), let θ ∈ [0, π] be the angle between x and y. By the cosine
formula of triangles, we have ∥x − y∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cos(θ) and ∥x/∥x∥ − y/∥y∥∥2 =
2− 2 cos(θ). Consider the following scenarios.

• If ∥x∥, ∥y∥ ≥ t, since ∥x∥2 + ∥y∥2 ≥ 2∥x∥∥y∥, we have

∥x− y∥2 ≥ 2∥x∥∥y∥(1− cos(θ)) ≥ 2t2(1− cos(θ)) = t2∥x/∥x∥ − y/∥y∥∥2.

Hence, ∥x/∥x∥ − y/∥y∥∥ ≤ ∥x− y∥/t.

• If ∥y∥ ≥ t > ∥x∥ and cos(θ) ≥ 0, define a function f(a, b) = a2 + b2 − 2ab cos(θ) for a, b ∈ R.
Note that for any 1 ≥ a > 0, b ≥ 1, we have f(a, b) ≥ 1 − cos2(θ). This is because f(a, b) ≥
minb′≥1 f(a, b

′) = f(a, 1) = a2+1−2a cos(θ) ≥ min1≥a′>0 f(a
′, 1) = f(cos(θ), 1) = 1−cos2(θ).

Hence,

2 ∥x− y∥2

t2
= 2

((
∥x∥
t

)2

+

(
∥y∥
t

)2

− ∥x∥
t

∥y∥
t

cos(θ)

)
≥ 2(1− cos2(θ))

≥ 2(1− cos(θ))

=

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2 .
Hence, ∥x/∥x∥ − y/∥y∥∥ ≤

√
2 ∥x− y∥ /t.

• If ∥y∥ ≥ t > ∥x∥ and cos(θ) < 0, we have ∥x− y∥2 ≥ ∥y∥2 ≥ t2 and ∥x/∥x∥ − y/∥y∥∥ ≤ 2.
Hence, ∥x/∥x∥ − y/∥y∥∥ ≤ 2 ∥x− y∥ /t.

• If ∥y∥ < t, we have ∥x/∥x∥ − y/∥y∥∥ ≤ 2 = 2I {∥y∥ < t}.

The proof of (2.7) is complete.
To prove (2.8), we only need to consider scenarios x = 0 or y = 0, as otherwise (2.8) is reduced

to (2.7). If y = 0, we have∥∥∥∥( x

∥x∥
I {x ̸= 0}+ uI {x = 0}

)
−
(

y

∥y∥
I {y ̸= 0}+ vI {y = 0}

)∥∥∥∥
=

∥∥∥∥( x

∥x∥
I {x ̸= 0}+ uI {x = 0}

)
− v

∥∥∥∥ ≤ 2 = 2I {∥y∥ < t}.
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If x = 0 and y ̸= 0, we have∥∥∥∥( x

∥x∥
I {x ̸= 0}+ uI {x = 0}

)
−
(

y

∥y∥
I {y ̸= 0}+ vI {y = 0}

)∥∥∥∥
=

∥∥∥∥u− y

∥y∥

∥∥∥∥ ≤ 2 = 2I {∥y∥ ≥ t}+ 2I {∥y∥ < t} = 2I {∥x− y∥ ≥ t}+ 2I {∥y∥ < t}

≤ 2 ∥x− y∥
t

+ 2I {∥y∥ < t}.

The proof of (2.8) is complete.

Proof of Lemma 2.5. Consider any m ∈ N \ {1}. For simplicity, we write ẐBM,m as Ẑ so that
Ẑ = (V̂ BM,m)HV̂ BM,m.

First, we are going to show

ℓ(V̂ BM,m, z∗) ≤ 4

n2
Tr(z∗z∗H(z∗z∗H − Ẑ)). (SM1.1)

Define b = n−1
∑n

j=1 V̂
BM,m
j z∗j = n−1V̂ BM,mz∗ ∈ Cm. If b = 0, we have

Tr(z∗z∗H(z∗z∗H − Ẑ)) = Tr(z∗(z∗)Hz∗(z∗)H)− Tr(z∗z∗H(V̂ BM,m)HV̂ BM,m)

= nTr(z∗z∗H)− Tr(z∗(nb)HV̂ BM,m)

= n2.

Note that ℓ(V̂ BM,m, z∗) ≤ n−1
∑

j∈[n] 4 = 4. Then (SM1.1) holds. In the following, we assume b ̸= 0.
From Lemma 2.2, we have for any x, y ∈ Cm such that x ̸= 0 and ∥y∥ = 1, ∥x/ ∥x∥ − y∥ ≤ 2 ∥x− y∥.
Hence, we have

ℓ(V̂ BM,m, z∗) = min
a∈Cn:∥a∥2=1

1

n

n∑
j=1

∥V̂ BM,m
j z∗j − a∥2

= min
a∈Cn\{0}

1

n

n∑
j=1

∥V̂ BM,m
j z∗j − a/∥a∥∥2

≤ min
a∈Cn\{0}

4

n

n∑
j=1

∥V̂ BM,m
j z∗j − a∥2.

Since the minimum of the above display is achieved when a is the arithmetic mean of {V̂ BM,m
j z∗j }j∈[n],

i.e., b, we have

ℓ(V̂ BM,m, z∗) ≤ 4

n

n∑
j=1

∥V̂ BM,m
j z∗j − b∥2

=
2

n2

n∑
j=1

n∑
l=1

(
∥V̂ BM,m

j z∗j − b∥2 + ∥V̂ BM,m
l z∗l − b∥2

)
=

2

n2

n∑
j=1

n∑
l=1

∥V̂ BM,m
j z∗j − V̂ BM,m

l z∗l ∥2

=
4

n2

n∑
j=1

n∑
l=1

(1− z∗jz
∗
l (V̂

BM,m
j )HV̂ BM,m

l )

=
4

n2
Tr(z∗z∗H(z∗z∗H − Ẑ)).

2
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Therefore, (SM1.1) holds.
Now it remains to upper bound Tr(z∗z∗H(z∗z∗H−Ẑ)). By the definition (1.6), we have Tr(Y Ẑ) ≥

Tr(Y z∗z∗H). Rearranging this inequality, we obtain Tr(Y (Ẑ − z∗z∗H)) ≥ 0. With (1.2), we have

Tr(z∗z∗H(z∗z∗H − Ẑ)) ≤ Tr
(
(Y − z∗z∗H)(Ẑ − z∗z∗H)

)
= σTr

(
W (Ẑ − z∗z∗H)

)
≤ σ

∣∣∣Tr(WẐ
)∣∣∣+ σ |Tr (Wz∗z∗H)|

≤ σ ∥W∥Tr
(
Ẑ
)
+ σ ∥W∥Tr (z∗z∗H)

= 2nσ ∥W∥ .

Here, the last inequality is due to the following facts. For any two matrices A,B ∈ Cn×n, Tr(AB) ≤
∥A∥ ∥B∥∗, where ∥B∥∗ is the nuclear norm of B that is equal to the summation of all its singular
values. If B is further assumed to be positive semi-definite, we have ∥B∥∗ = Tr(B). In our setting,

Ẑ is positive semi-definite as minu∈Cn uHẐu = minu∈Cn uH(V̂ BM,m)HV̂ BM,mu ≥ 0, and so is z∗(z∗)H.

Consequently, we have ℓ(V̂ BM,m, z∗) ≤ 8σ∥W∥
n . The upper bound for ℓ1(ẑ

MLE, z∗) can be estab-
lished following the same steps as above and hence its proof is omitted.

SM2 Proofs of Lemmas in Section 3.2

Proof of Lemma 3.1. Consider the following scenarios. If |x|, |y| ≤ t, we have |gt(x)− gt(y)| = |x−y|
t

by definition. If |x|, |y| ≥ t, then

|gt(x)− gt(y)| =
∣∣∣∣ x|x| − y

|y|

∣∣∣∣ ,
Let θ ∈ [0, π] be the angle between x and y on the complex plane. By the cosine formula of
triangles, we have |x − y|2 = |x|2 + |y|2 − 2|x||y| cos(θ) and |gt(x)− gt(y)|2 = 2 − 2 cos(θ). Since
|x|2 + |y|2 ≥ 2|x||y|, we have

|x− y|2 ≥ 2|x||y|(1− cos(θ)) ≥ 2t2(1− cos(θ)) = t2 |gt(x)− gt(y)|2 ,

which yields the desired result. If |x| ≥ t > |y|, then

|gt(x)− gt(y)| =
∣∣∣∣ x|x| − y

t

∣∣∣∣ .
By using the cosine formula again, we have |gt(x)− gt(y)|2 = 1 + |y|2

t2
− 2 |y|

t cos(θ) and
∣∣x
t −

y
t

∣∣2 =
|x|2
t2

+ |y|2
t2

− 2 |x||y|
t2

cos(θ). Then,

|x− y|2

t2
− |gt(x)− gt(y)|2 =

∣∣∣x
t
− y

t

∣∣∣2 − |gt(x)− gt(y)|2

=
|x|2

t2
− 1− 2

|x||y|
t2

cos(θ) + 2
|y|
t
cos(θ)

=

(
|x|
t

− 1

)(
|x|
t

+ 1

)
− 2

(
|x|
t

− 1

)
|y|
t
cos(θ)

=

(
|x|
t

− 1

)(
|x|
t

+ 1− 2
|y|
t
cos(θ)

)
≥ 0,

3
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where the last inequality is due to that |x|
t ≥ 1 > |y|

t ≥ 0 and cos(θ) ≤ 1. The scenario |y| ≥ t > |x|
can be proved similarly.

Proof of Lemma 3.2. We prove the properties sequentially.

1. Recall the definition of G in (3.9). For any j ∈ [n], by Lemma 3.1, we have

|[G(x, s, t)]j − [G(y, s, t)]j | =
∣∣gt(z∗j s+ σ[Wx]j)− gt(z

∗
j s+ σ[Wy]j)

∣∣
≤ t−1

∣∣(z∗j s+ σ[Wx]j
)
−
(
z∗j s+ σ[Wx]j

)∣∣
= t−1σ |[W (x− y)]j | .

Summing over all j ∈ [n], we have

∥G(x, s, t)−G(y, s, t)∥2 ≤
∑
j∈[n]

|[G(x, s, t)]j − [G(y, s, t)]j |2

≤ t−2σ2
∑
j∈[n]

|[W (x− y)]j |2

= t−2σ2 ∥W (x− y)∥2

≤ t−2σ2 ∥W∥2 ∥x− y∥2 .

2. Using the first property, for any T ∈ N, we have∥∥∥z(T+1) − z(T )
∥∥∥ =

∥∥∥G(z(T ), s, t)−G(z(T−1), s, t)
∥∥∥

≤ t−1σ ∥W∥
∥∥∥z(T ) − z(T−1)

∥∥∥
≤ 1

2

∥∥∥z(T ) − z(T−1)
∥∥∥ ,

where the last inequality is due to the assumption t ≥ 2σ ∥W∥.

3. Consider the sequence z(0) = z∗ and z(T ) = G(z(T−1), s, t) for all T ∈ N. By the second
property, we have

∥∥z(T+1) − z(T )
∥∥ ≤ 1

2

∥∥z(T ) − z(T−1)
∥∥ for all T ∈ N. Note that {z(T )} is a

sequence in Cn
≤1, a complete metric space under ∥·∥. Hence, the sequence converges to a limit

z(∞) ∈ Cn
≤1 which satisfies z(∞) = G(z(∞), s, t). Hence, z(∞) is a fixed point of G(·, s, t). Now

we have proved the existence of the fixed point. To prove the uniqueness, note that if there
exists another z′ ∈ Cn

≤1 such that z′ = G(z′, s, t), we have∥∥∥z(∞) − z′
∥∥∥ =

∥∥∥G(z(∞), s, t)−G(z′, s, t)
∥∥∥ ≤ t−1σ

∥∥∥z(∞) − z′
∥∥∥ ≤

∥∥∥z(∞) − z′
∥∥∥ /2,

by the first property. Hence,
∥∥z(∞) − z′

∥∥ = 0 which means z(∞) = z′.

4. For any j ∈ [n], we have∣∣[z∗s+ σWz]j − [z∗s′ + σWz′]j
∣∣ ≤ ∣∣z∗j s− z∗j s

′∣∣+ σ
∣∣[W (z − z′)]j

∣∣
≤
∣∣s− s′

∣∣+ σ
∣∣[W (z − z′)]j

∣∣ .

4
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Summing over all j ∈ [n], we have∥∥(z∗s+ σWz)−
(
z∗s′ + σWz′

)∥∥2 ≤ ∑
j∈[n]

(∣∣s− s′
∣∣+ σ

∣∣[W (z − z′)]j
∣∣)2

≤
∑
j∈[n]

(
2
∣∣s− s′

∣∣2 + 2σ2
∣∣[W (z − z′)]j

∣∣2)
≤ 2n

∣∣s− s′
∣∣2 + 2σ2 ∥W∥2

∥∥z − z′
∥∥2 . (SM2.1)

Note that for any j ∈ [n], we have zj = [G(z, s, t)]j = gt([z
∗s + σWz]j) and similarly z′j =

gt([z
∗s′ + σWz′]j). Hence, by Lemma 3.1, we have∣∣zj − z′j

∣∣ ≤ t−1
∣∣[z∗s+ σWz]j − [z∗s′ + σWz′]j

∣∣ .
Summing over all j ∈ [n], by (SM2.1), we have∥∥z − z′

∥∥2 ≤ t−2
∥∥(z∗s+ σWz)−

(
z∗s′ + σWz′

)∥∥2
≤ 2nt−2

∣∣s− s′
∣∣2 + 2σ2t−2 ∥W∥2

∥∥z − z′
∥∥2

≤ 2nt−2
∣∣s− s′

∣∣2 + 1

2

∥∥z − z′
∥∥2 ,

where the last inequality is due to the assumption t ≥ 2σ ∥W∥. After rearrangement, we have
∥z − z′∥2 ≤ 4nt−2 |s− s′|2. From (SM2.1), we have∥∥(z∗s+ σWz)−

(
z∗s′ + σWz′

)∥∥2 ≤ 2n
∣∣s− s′

∣∣2 + 2σ2 ∥W∥2
(
4nt−2

∣∣s− s′
∣∣2)

≤ 4n
∣∣s− s′

∣∣2 ,
where the last inequality is by t ≥ 2σ ∥W∥.

Proof of Lemma 3.3. Consider any j ∈ [n]. If |z∗j s + σ[Wz]j | ≥ t, we have [G(z, s, t)]j = gt(z
∗
j s +

σ[Wz]j) = (z∗j s + σ[Wz]j)/|z∗j s + σ[Wz]j | = [F ′
1(z, s)]j . If |z∗j s + σ[Wz]j | ≥ t is not satisfied, we

have |[F ′
1(z, s)]j | = 1 and |[G(z, s, t)]j | ≤ 1. Hence,∣∣[F ′

1(z, s)]j − [G(z, s, t)]j
∣∣ = ∣∣[F ′

1(z, s)]j − [G(z, s, t)]j
∣∣ I{|z∗j s+ σ[Wz]j | < t

}
≤ 2I

{
|z∗j s+ σ[Wz]j | < t

}
.

Summing over all j ∈ [n], we have∥∥F ′
1(z, s)−G(z, s, t)

∥∥2 = ∑
j∈[n]

∣∣[F ′
1(z, s)]j − [G(z, s, t)]j

∣∣2 ≤ 4
∑
j∈[n]

I
{
|z∗j s+ σ[Wz]j | < t

}
.

Proof of Lemma 3.6. Recall the definitions of G in (3.9) and gt in (3.8). Note that for any t >
0, a ∈ C1, x ∈ C, we have agt(x) = gt(ax). Hence, for any z ∈ Cn

≤1, s ∈ C, t > 0, a ∈ C1, and
j ∈ [n], we have a[G(z, s, t)]j = agt([z

∗s+ σWz]j) = gt(a[z
∗s+ σWz]j) = gt([z

∗(as) + σW (az)]j).
As a result,

if z = G(z, s, t), then az = G(az, as, t).

5
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This means that a fixed point of G(·, s, t) is also a fixed point of G(·, as, t).
Recall the definition of ŝ in (3.6). We only need to study the case that ŝ ̸= 0 as otherwise

G(·, |ŝ|, ·) = G(·, ŝ, ·) and Lemma 3.6 is identical to Lemma 3.5. Since ŝ ̸= 0, ŝ/|ŝ| ∈ C1 is well-

defined. For any δ ≥ 2σ∥W∥
n , let z ∈ Cn

≤1 be the fixed point of G(·, |ŝ|, 2δn). Then we have ŝ
|ŝ|z ∈ Cn

≤1

and

ŝ

|ŝ|
z = G

(
ŝ

|ŝ|
z,

ŝ

|ŝ|
|ŝ|, 2δn

)
= G

(
ŝ

|ŝ|
z, ŝ, 2δn

)
.

That is, ŝ
|ŝ|z is the fixed point of G(·, ŝ, 2δn). By Lemma 3.5, we have

1

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
≤ 9

n

∑
j∈[n]

I

{∣∣∣∣∣z∗j ŝ+ σ

[
W

ŝ

|ŝ|
z

]
j

∣∣∣∣∣ < 2δn

}

=
9

n

∑
j∈[n]

I
{∣∣∣∣ ŝ|ŝ| (z∗j |ŝ|+ σ [Wz]j

)∣∣∣∣ < 2δn

}
=

9

n

∑
j∈[n]

I
{∣∣∣z∗j |ŝ|+ σ [Wz]j

∣∣∣ < 2δn
}
.

SM3 Proofs of Lemmas in Section 3.3

The following lemma is a counterpart of Lemma 3.2 but for G(−j) instead of G. Then Lemma 3.9
is the direct consequence of the third properties of Lemmas 3.2 and SM3.1.

Lemma SM3.1. Consider any j ∈ [n]. The function G(−j)(·, ·, ·) has the following properties:

1. For any x, y ∈ Cn and for any s ∈ C, t > 0, we have∥∥∥G(−j)(x, s, t)−G(−j)(y, s, t)
∥∥∥ ≤ t−1σ ∥W∥ ∥x− y∥2 .

2. For any s ∈ C, t ≥ 2σ ∥W∥, and for any z(0,−j) ∈ Cn
≤1, define z(T,−j) = G(−j)(z(T−1,−j), s, t)

for all T ∈ N. Then∥∥∥z(T+1,−j) − z(T,−j)
∥∥∥ ≤ 1

2

∥∥∥z(T,−j) − z(T−1,−j)
∥∥∥ ,∀T ∈ N.

3. For any s ∈ C, t ≥ 2σ ∥W∥, G(·, s, t) has exactly one fixed point. That is, there exists
one and only one z ∈ Cn

≤1 such that z = G(−j)(z, s, t). In addition, z can be achieved

by iteratively applying G(−j)(·, s, t) starting from z∗. That is, let z(0,−j) = z∗ and define
z(T,−j) = G(−j)(z(T−1,−j), s, t) for all T ∈ N. We have z = limT→∞G(−j)(z(T,−j), s, t).

Proof. Note that
∥∥W (−j)

∥∥ ≤ ∥W∥ since W (−j) is obtained from W by zeroing out the jth row and
column. With this, the lemma can be proved following the exact same argument as in the proof of
Lemma 3.2, and hence is omitted here.

6
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SM4 Proofs of Lemmas in Section 3.4

Proof of Lemma 3.12. From Corollary 2.4, we have

ℓm(V̂ BM,m, ẑMLE) ≤ 8

n

∑
j∈[n]

I
{∣∣[Y ẑMLE]j

∣∣ < δn
}
.

For each k = 0, 1, 2, . . . , ⌈nϵ/h⌉, let zsk ∈ Cn
≤1 be the fixed point of G(·, sk, 2δn). Then by Corollary

3.8, we have

ℓm(V̂ BM,m, ẑMLE)

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣[Wzsk ]j

∣∣∣ > sk − 4δn
}+

72h2

δ2n2
I
{
h > δ

√
n
}
.

Since 2δn > 2σ ∥W∥, for each k = 0, 1, 2, . . . , ⌈nϵ/h⌉, Proposition 3.11 can be applied, leading to

1

n

∑
j∈[n]

I
{
σ
∣∣∣[Wzsk ]j

∣∣∣ > sk − 4δn
}
≤ 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > sk − 4δn− 3σ ∥W∥
}

≤ 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ)n− h− 4δn− 3σ ∥W∥
}

=
1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3σ ∥W∥
n

)
n− h

}
,

where in the last inequality, we use min0≤k≤⌈nϵ/h⌉ sk ≥ n− (nϵ/h+ 1)h = (1− ϵ)n− h. Hence, we
have

ℓm(V̂ BM,m, ẑMLE)

≤ 72
∑

0≤k≤⌈nϵ/h⌉

 1

n

∑
j∈[n]

I
{
σ
∣∣∣Wj·z

(−j)
sk

∣∣∣ > (1− ϵ− 4δ − 3σ ∥W∥
n

)
n− h

}+
72h2

δ2n2
I
{
h > δ

√
n
}
.

SM5 Auxiliary Lemmas and Proofs

The following lemma is a generalization of Lemma 11 of [15].

Lemma SM5.1. Consider any m ∈ N \ {1}. For any V ∈ Vm and any z ∈ Cn
1 , we have

1

n2
∥V HV − zzH∥2F ≤ 2ℓm(V, z).

Proof. Lemma 11 of [15] only considers the case where m = n. However, its proof holds for any
m ≥ 2, which we include here for completeness. By definition, we have

ℓm(V, z) = 2− max
a∈Cn:∥a∥2=1

(
aH

 1

n

n∑
j=1

zjVj

+

 1

n

n∑
j=1

zjVj

H

a

)
= 2

1−

∥∥∥∥∥∥ 1n
n∑

j=1

zjVj

∥∥∥∥∥∥
 .

7
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In addition, we have

n−2 ∥V HV − zzH∥2F =
1

n2

n∑
j=1

n∑
l=1

|V H
j Vl − zjzl|2

≤ 1

n2

n∑
j=1

n∑
l=1

(
2− V H

j Vlzjzl − V H
l Vjzjzl

)

= 2

1−

∥∥∥∥∥∥ 1n
n∑

j=1

zjVj

∥∥∥∥∥∥
2 .

Therefore, n−2 ∥V HV − zzH∥2F ≤ ℓm(V, z)
(
2− 1

2ℓm(V, z)
)
≤ 2ℓm(V, z), and the proof is complete.

Proof of Lemma 2.1. We follow the proof of Lemma 12 of [34]. We first decompose V and z into
orthogonal components:

V = a(z∗)H +
√
nA and z = bz∗ +

√
nβ, (SM5.1)

where a ∈ Cm, A ∈ Cm×n, b ∈ C, β ∈ Cn and Az∗ = 0, βHz∗ = 0. Note the decomposition on
V is always possible as V = V z∗(z∗)H + V (In − z∗(z∗)H) and a = V z∗,

√
nA = V (In − z∗(z∗)H).

By the definition of the loss ℓm in (2.1), there exists some d ∈ Cm such ∥d∥ = 1 and ℓm(V, z) =
n−1 ∥V − dzH∥2F. With the decomposition (SM5.1), it means

nℓm(V, z) = ∥V − dzH∥2F

=
∥∥∥(a(z∗)H +

√
nA
)
− d

(
bz∗ +

√
nβ
)H∥∥∥2

F

=
∥∥(a− db

)
(z∗)H +

√
n(A− dβH)

∥∥2
F

=
∥∥(a− db

)
(z∗)H

∥∥2
F
+
∥∥√n(A− dβH)

∥∥2
F

= n
∥∥a− db

∥∥2 + n ∥A− dβH∥2F . (SM5.2)

where the third equation is due to the orthogonality (A− dβH)z∗ = 0. Then

∥A− dβH∥F ≤
√

ℓm(V, z). (SM5.3)

We also have

∥V Y H − d(Y z)H∥F = ∥V (z∗(z∗)H + σW )H − dzH(z∗(z∗)H + σW )H∥F
≤ ∥(V − dzH)z∗(z∗)H∥F + ∥σ(V − dzH)W∥F
≤
∥∥(a(z∗)H − db(z∗)H)z∗(z∗)H

∥∥
F
+ σ ∥W∥ ∥V − dzH∥F

≤ n
√
n
∥∥a− db

∥∥+ σ ∥W∥
√
n
√
ℓm(V, z), (SM5.4)

where the second inequality is due to the fact that ∥B1B2∥F ≤ ∥B1∥F ∥B2∥op for any two matrices
B1, B2. If ∥∥a− db

∥∥ ≤ 6ϵ ∥A− dβH∥F (SM5.5)

8
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holds, (SM5.4) and (SM5.3) leads to

ℓm(V Y H, Y z) ≤ 1

n
∥V Y H − d(Y z)H∥2F

≤ 1

n

(
6ϵn

√
n ∥A− dβH∥F + σ ∥W∥

√
n
√

ℓm(V, z)
)2

≤ 1

n

(
6ϵn

√
n
√
ℓm(V, z) + σ ∥W∥

√
n
√

ℓm(V, z)
)2

= n2

(
6ϵ+

σ ∥W∥
n

)2

ℓm(V, z),

which yields the desired result. The remaining proof is devoted to establishing (SM5.5).
Note that

ℓm(V, z∗) = min
u∈Cm:∥u∥=1

n−1
∥∥a(z∗)H +

√
nA− u(z∗)H

∥∥2
F

= min
u∈Cm:∥u∥=1

n−1
(
∥(a− u)(z∗)H∥2F +

∥∥√nA
∥∥2
F

)
= min

u∈Cm:∥u∥=1
∥a− u∥2 + ∥A∥2F .

Since ℓm(V, z∗) ≤ ϵ2 < 1/4, we have ∥A∥2F ≤ ϵ2, ∥a∥ ≠ 0 and minu∈Cm:∥u∥=1 ∥a− u∥2 = ∥a− a/ ∥a∥∥2 =
(1− ∥a∥)2. Together with 1 = n−1 ∥V ∥2F = n−1 ∥a(z∗)H∥2 + n−1 ∥

√
nA∥2F = ∥a∥2 + ∥A∥2F, we have

ℓm(V, z∗) = (1− ∥a∥)2 + 1− ∥a∥2 = 2− 2 ∥a∥ .

Then ℓm(V, z∗) ≤ ϵ2 leads to 1 ≥ ∥a∥ ≥ 1 − ϵ2/2. Similarly for z, we have ∥β∥2 ≤ ϵ2, 1 ≥
|b| ≥ 1 − ϵ2/2 and 1 = |b|2 + ∥β∥2. Since ϵ < 1/2, we have ∥a∥ + |b| > 1, and consequently
|∥a∥ − |b|| ≤ |∥a∥ − |b|| (∥a∥ + |b|) = |∥a∥2 − |b|2|. Since ∥a∥2 + ∥A∥2F = |b|2 + ∥β∥2, we have
| ∥a∥2 − |b|2| = | ∥β∥2 − ∥A∥2F |. Together with ∥A∥2F , ∥β∥2 ≤ ϵ2, we have

|∥a∥ − |b|| ≤ | ∥β∥2 − ∥A∥2F | = | ∥β∥ − ∥A∥F | (∥β∥+ ∥A∥F)
≤ 2ϵ| ∥β∥ − ∥A∥F | ≤ 2ϵ ∥A− dβH∥F . (SM5.6)

Note that ∥∥a− db
∥∥ =

∥∥∥∥a− a

∥a∥
|b|+ a

∥a∥
b

|b|
b− db

∥∥∥∥
≤
∥∥∥∥a− a

∥a∥
|b|
∥∥∥∥+ ∥∥∥∥( a

∥a∥
b

|b|
− d

)
b

∥∥∥∥
= |∥a∥ − |b||+

∥∥∥∥ a

∥a∥
b

|b|
− d

∥∥∥∥ |b|
≤ 2ϵ ∥A− dβH∥F +

∥∥∥∥ a

∥a∥
b

|b|
− d

∥∥∥∥ ,
where in the last inequality we use |b| ≤ 1. Hence, to establish (SM5.5), we only need to show∥∥∥∥ a

∥a∥
b

|b|
− d

∥∥∥∥ ≤ 4ϵ ∥A− dβH∥F . (SM5.7)

9
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To prove (SM5.7), define d0 = a
∥a∥

b
|b| ∈ Cm. Then ∥d0∥ = 1. Similar to (SM5.2), we have

∥V − d0z
H∥2F = n

∥∥a− d0b
∥∥2 + n ∥A− d0β

H∥2F. By the definition of d, ∥V − dzH∥2F ≤ ∥V − d0z
H∥2F,

which leads to ∥∥a− db
∥∥2 + ∥A− dβH∥2F ≤

∥∥a− d0b
∥∥2 + ∥A− d0β

H∥2F .

Note that d0b = a |b|
∥a∥ is proportional to a and

∥∥d0b∥∥ =
∥∥db∥∥ = |b|. Let θ ∈ [0, π] be the angle

between a and db in Cm. By the cosine formula of triangles, we have∥∥a− db
∥∥2 = ∥a∥2 +

∥∥db∥∥2 − 2 ∥a∥ |db| cos(θ) = ∥a∥2 + |b|2 − 2 ∥a∥ |b| cos(θ)∥∥a− d0b
∥∥2 = ∥∥∥∥a− a

|b|
∥a∥

∥∥∥∥2 = ∥a∥2 + |b|2 − 2 ∥a∥ |b|

and ∥d− d0∥2 = ∥d∥2 + ∥d0∥2 − 2 ∥d∥ ∥d0∥ cos(θ) = 2(1− cos(θ)). (SM5.8)

Hence,
∥∥a− db

∥∥2 − ∥∥a− d0b
∥∥2 = 2 ∥a∥ |b|(1 − cos(θ)). By the triangle inequality, ∥A− d0β

H∥F −
∥A− dβH∥F ≤ ∥(d0 − d)βH∥F = ∥d0 − d∥ ∥β∥ ≤ ϵ ∥d0 − d∥ where in the last inequality we use
∥β∥ ≤ ϵ. Then,

2 ∥a∥ |b|(1− cos(θ)) ≤ ∥A− d0β
H∥2F − ∥A− dβH∥2F

= (∥A− d0β
H∥F − ∥A− dβH∥F) (∥A− d0β

H∥F − ∥A− dβH∥F + 2 ∥A− dβH∥F)
≤ ϵ ∥d0 − d∥ (ϵ ∥d0 − d∥+ 2 ∥A− dβH∥F) .

By (SM5.8), it becomes ∥a∥ |b| ∥d0 − d∥2 ≤ ϵ ∥d0 − d∥ (ϵ ∥d0 − d∥+ 2 ∥A− dβH∥F), which further
leads to

(ϵ−1 ∥a∥ |b| − ϵ) ∥d0 − d∥ ≤ 2 ∥A− dβH∥F .

Since ∥a∥ , |b| ≥ 1−ϵ2/2, we have ϵ−1 ∥a∥ |b|−ϵ ≥ ϵ−1(1−ϵ2/2)2−ϵ ≥ ϵ−1(1−ϵ2)−ϵ = ϵ−1(1−2ϵ2) >
(2ϵ)−1 where the last inequality is due to ϵ < 1/2. Hence, (2ϵ)−1 ∥d0 − d∥ ≤ 2 ∥A− dβH∥F, which
establishes (SM5.7). The proof of the lemma is complete.
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