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Network analysis has become one of the most active research areas over the past few years.

A core problem in network analysis is community detection. In this thesis, we investigate

it under Stochastic Block Model and Degree-corrected Block Model from three different

perspectives: 1) the minimax rates of community detection problem, 2) rate-optimal and

computationally feasible algorithms, and 3) computational and theoretical guarantees of

variational inference for community detection.
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Chapter 1

Introduction

Network science [15, 36, 40, 49] has become one of the most active research areas over the

past few years. It has applications in many disciplines, for example, physics [41], sociology

[51], biology [6], and Internet [4]. The observed networks can often be modeled as an

instance of a random graph and the goal is to infer structures of the underlying generating

process. A structure of particular interest is community : there is a partition of the graph

nodes in some suitable sense so that each node belongs to a community. The so-called

community detection is to recover such community structure from the observed networks.

For the purpose of illustration, we use a well-known example of political blogosphere

dataset [2] collected before 2014 United State presidential election. Blogs are labeled demo-

cratic or republican according to there political views. Two blogs are connected if there

exists a hyperlink between them. The right panel of Figure 1.1 shows that there exist far

more connections within the democratic blogosphere and the republican blogosphere while

the connections between these two are fewer. The aim of community detection is to infer

the community structure from the adjacency matrix (e.g., the middle panel of Figure 1.1),

as usually there is no additional covariate information and the nodes are arbitrarily ordered.

This thesis covers different aspects of the community detection problem, including mod-

els, fundamental limits, methodology, and variational inference, as follows.

• Models. One of the most important open problems in community detection is about

modeling. Stochastic Block Model (SBM) [29] has been the most popular and most

1



Figure 1.1: Visualizations of political blogosphere dataset [2]. Left : connections among
blogs, which are colored blue (democratic) or red (republican) according to their political
views. Middle: adjacency matrix where nodes are randomly ordered. Right : adjacency
matrix where nodes are ordered by their political views. The edges within democratic
blogosphere are colored blue while those within republican blogosphere are colored red.

well-investigated model in literature. It embeds communities on Erdős-Rényi graphs.

It captures the community structure in a straightforward and intuitive way, and is

simple enough to derive decent and beautiful theoretical results. This makes the

SBM appealing to computer scientists, mathematicians, and statisticians. As a con-

sequence, we mainly study the SBM in this thesis. We introduce the SBM in detail

in Chapter 2, with further theoretical investigations presented in Chapters 3, 4, and

5. In addition, we extend all the results to a more general model, Degree-corrected

Block Model (DCBM) [14, 33], in Chapter 6.

• Fundamental Limits. From a decision-theoretical point of view, once a model

(SBM) is provided, the follow-up step is to derive minimax rates. In Chapter 3, we

will show minimax rates of misclassification proportion takes an exponential form of

signal-to-noise ratio, under minimum assumptions of parameters. On top of that, it

immediately leads to various phase transitions and tight thresholds established in the

literature [1, 10, 38].

• Methodology. Many methods have been implemented in practice for community

detection problem, with spectral clustering, modularity, semi-definite programming

being the most popular choices. In a general sense, there are two desired proper-

ties of an algorithm: 1) computability: whether it is a polynomial-time algorithm or

2



not; 2) optimality: whether it has provable theoretical guarantee that matches with

minimax rate. Despite their popularity, none of the aforementioned methods satisfy

both properties. In Chapter 4, we propose a novel two-stage algorithm that is both

computationally feasible and rate-optimal. Our methods work for both sparse and

dense networks.

• Variational Inference. Variational inference has been widely used to approximate

posterior distributions. Despite popularity, it has very little theoretical justification

established in the literature. In Chapter 5, we provide statistical and computational

guarantees of variational inference for the SBM.

This thesis incorporates main results from our papers [19, 20, 52, 53]. Roughly speaking,

there is a one-to-one correspondence between the chapters in this thesis and our papers:

Chapter 3 is for [52], Chapter 4 is for [19], Chapter 5 is for [20], and Chapter 6 is for [53].

However, in order to capture the main ideas and contributions of our work, we will make

some simplification to the the results in the aforementioned paper. In this way, we are able

to better present our result without being overwhelmed by technical details.
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Chapter 2

Stochastic Block Model

The SBM, proposed by [29], is the most studied model in community detection. Consider an

n-node network with its adjacency matrix denoted by A. It is an unweighted and undirected

network without self-loops, with A ∈ {0, 1}n×n, A = AT and Ai,i = 0, ∀i ∈ [n]. Each edge

is an independent Bernoulli random variable with EAi,j = Pi,j ,∀i < j. In the SBM, the

value of connectivity probability Pi,j depends on the communities the two endpoints i and

j belong to. We assume Pi,j = p if both nodes come from the same community and Pi,j = q

otherwise. There are k communities in the network. We denote z ∈ [k]n, as the assignment

vector, with zi indicating the index of community the i-th node belongs to. Thus, the

connectivity probability matrix P can be written as

Pi,j = Bzi,zj , (2.1)

where B ∈ [0, 1]k×k with diagonal entries as p and off-diagonal entries as q. That is,

B = q1k1
T
k + (p− q)Ik.

We consider a SBM with parameter space defined as follows,

Z(n, k, β) ,
{
z ∈ [k]n : min

u∈[k]
|{i : zi = u}| ≥ βn/k − 1

}
, (2.2)

where β ≥ 1 to pose minimum community size. Here we allow β to be dependent on n. The

“−1” term is to avoid the extra constraint for the equal-community-size case when β = 1.
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The goal is to estimate z from the observationA, with all the other parameters n, k, p, q, β

known.

The existence and strength of community structure is determined by the difference

between p and q. As we will show in later chapters, the signal-to-noise ratio essentially

takes the form (p− q)2/(p+ q). To have a community structure, p can be either greater or

smaller than q. Nevertheless, in this thesis we restrict to the p ≥ q case, i.e., the within-

community probabilities are larger than the between-communities probabilities, as in reality

individuals from the same community are often more likely to be connected. However almost

identical results hold for the opposite case with p < q. Throughout this thesis, we assume

c0/n < q ≤ p ≤ 1 − c0, where 0 < c0 < 1 can be any small constant, allowing the network

to be from very sparse to very dense.

Inhomogeneous Stochastic Block Model. The aforementioned SBM might be restric-

tive, as the within-community and cross-community connection probabilities are homoge-

neous, in the sense that they are either p, q. A slightly more general case is inhomogeneous

SBM, where we allow more flexibility in the B matrix.

In inhomogeneous SBM, we allow the diagonal entries of B (within-community connec-

tion probabilities) to be greater than p, and the off-diagonal entries of B (cross-community

connection probabilities) to be smaller than q. Its formal definition is given as follows, we

have Pi,j = Bzi,zj ,∀i < j same as homogeneous SBM, but with a larger parameter space

defined as

Θ(n, k, β, p, q) =

{
(z,B) : min

u∈[k]
|{i : zi = u}| ≥ βn/k − 1, Bu,u ≥ p,∀u ∈ [k], and Bu,v ≤ q,∀u 6= v

}
,

where we also assume p > q.

For simplicity, in this thesis, we study the community detection problem mainly under

the regular SBM Z(n, k, β), with some extensions to the inhomogeneous SBM Θ(n, k, β, p, q).

5



Chapter 3

Minimax Rates

We will establish minimax rates for SBM under the parameter space Z(n, k, β) defined

in Equation (2.2). But before that, we first introduce the concept of misclassification

proportion, which will be used as the loss function, and a key quantity I, which is the

signal-to-noise ratio.

Misclassification Proportion. There is an identifiability issue for any z ∈ Z(n, k, β),

as the labels 1, 2, . . . , k are only identifiable up to a global shift. That is, z and ρ ◦ z

give the same partition of the network, where ρ : [k] → [k] is any permutation over [k].

Consequently, for any z, z′ ∈ Z(n, k, β), we define their distance as

`(z′, z) =
1

n
min
ρ

∥∥ρ ◦ z′ − z
∥∥

0
=

1

n
min
ρ

n∑

i=1

I
{
ρ(z′i) = zi

}
, (3.1)

where the minimization is over all the permutations on [k]. Note that ‖x− y‖0 for arbitrary

vectors x, y is the same as their Hamming distance.

Signal-to-noise Ratio. We define a key quantity I as the Rényi divergence of order 1/2

between two Bernoulli distributions Ber(p) and Ber(q), which has an explicit formula as

I = −2 log
(√

pq +
√

(1− p)(1− q)
)
. (3.2)
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To see that I can be interpreted as signal-to-noise ratio, by Proposition 4.1 we have I =

(1 + o(1))(
√
p−√q)2 which is equal to (p− q)2/(p+ q) up to a constant, when p, q = o(1).

We present the minimax rates in Theorem 3.1 as follows.

Theorem 3.1. Under the assumption βnI/(k log k)→∞, there exists a sequence η = o(1)

that only depends on n, k, β, p, q, such that

min
ẑ

max
z∈Z(n,k,β)

E`(ẑ, z) =





exp (−(1 + η)nI/2) , k = 2;

exp (−(1 + η)βnI/k) , k ≥ 3.

(3.3)

Theorem 3.1 covers both dense and sparse networks. It holds for a wide range of possible

values of p and q ranging from 1/n order to constant order. The number of communities k

is allowed to grow fast. It can be as large as in the order of n/ log n when the connectivity

probability is nearly a constant order, in which each community contains an order of log n

nodes. In addition, for finite number of communities, Theorem 3.1 shows (p− q)2/p → ∞

is a necessary and sufficient condition for consistent community detection, which implies

consistency results in [37, 39]. It also recovers the strong consistency results in [26, 38], in

which they additionally assume p � (log n)/n.

The fundamental hardness of estimating z is essentially the same as estimating label of

one single node (say, z1), assuming the labels of all the remaining nodes (i.e., z2, z3, . . . , zn)

are known. Investigating this local testing problem is crucially important, as it not only

provides insights for the minimax rates, but late also inspires us algorithmically (see Chapter

4). After exploring this local problem in Section 3.1, we will obtain the lower bound of

Theorem 3.1 by using a novel global to local scheme in Section 3.2. The minimax upper

bound is obtained by maximum likelihood estimation (MLE), which will be provided in

Section 3.3.

7



3.1 Hypothesis Testing for One Single Node

Let m1,m2 be arbitrary positive integers. Consider a network with m1 + m2 + 1 nodes

and two underlying communities. Assume we know the labels of the last m1 + m2 nodes:

z2, . . . , zm1+1 = 1 and zm1+2, . . . , zm1+m2+1 = 2. The task is to estimate z1 which has two

possibilities z1 = 1 or z1 = 2. The only difference in the adjacency matrix A is the first

row. If z1 = 1 then the first half of {A1,i}m1+m2+1
i=2 is Ber(p) and the second half is Ber(q);

otherwise, the first half is Ber(q) and the second half is Ber(p).

The aforementioned testing problem can be formulated as follows. Let {Xi}m1
i=1, {Yi}m2

i=1

be independent variables. We have the following two hypotheses.

H0 : {Xi}m1
i=1

iid∼ Ber(q), {Yi}m2
i=1

iid∼ Ber(p);

H1 : {Xi}m1
i=1

iid∼ Ber(p), {Yi}m2
i=1

iid∼ Ber(q).

We have Lemma 3.1 to lower bound the summation of its Type I and Type II errors.

Lemma 3.1. Let φ be any procedure based on {Xi}m1
i=1, {Yi}m2

i=1. Define m = max{m1,m2}.

There exists a positive sequence η = o(1) and a positive constant c such that

min
φ

(
1

2
PH0(φ = 1) +

1

2
PH1(φ = 0)

)
≥





exp (−(1 + η)mI) , if mI →∞;

c, if mI = O(1).

Proof. Define another hypothesis testing problem as

H̄0 : {Xi}mi=1
iid∼ Ber(q), {Yi}mi=1

iid∼ Ber(p);

H̄1 : {Xi}mi=1
iid∼ Ber(p), {Yi}mi=1

iid∼ Ber(q),

with two equal-length vectors. We have

min
φ

(
1

2
PH0(φ = 1) +

1

2
PH1(φ = 0)

)
≥ min

φ

(
1

2
PH̄0

(φ = 1) +
1

2
PH̄1

(φ = 0)

)

Note that this is a Bayes risk with respect to a zero-one loss. Let φ̂ be the optimal procedure,
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than φ̂ must be the mode of the posterior distribution. Since the prior is uniform, it

immediately implies that φ̂ must be the likelihood ratio test. Note the likelihood function

under H̄0 is

fH̄0
=

m∏

i=1

qXi(1− q)1−Xi
m∏

i=1

pYi(1− p)1−Yi

= exp

(
m∑

i=1

(
Xi log

q

1− q + log(1− q)
)

+
m∑

i=1

(
Yi log

p

1− p + log(1− p)
))

,

and similarly under H̄1 is

fH̄1
= exp

(
m∑

i=1

(
Xi log

p

1− p + log(1− p)
)

+

m∑

i=1

(
Yi log

q

1− q + log(1− q)
))

.

As a consequence, φ̂ can be written explicitly as

φ̂ = I
{
fH̄1
≥ fH̄0

}

= I

{
m∑

i=1

(
Xi log

p(1− q)
q(1− p) − log

1− q
1− p

)
+

m∑

i=1

(
Yi log

q(1− p)
p(1− q) + log

1− q
1− p

)
≥ 0

}
.

It can be further simplified into

φ̂ = I

{
m∑

i=1

Xi −
m∑

i=1

Yi ≥ 0

}
. (3.4)

Define W = U − V where U ∼ Ber(q), V ∼ Ber(q) and U, V are independent. Let {Wi}mi=1

be i.i.d. copies of W . We have

min
φ

(
1

2
PH0(φ = 1) +

1

2
PH1(φ = 0)

)
≥ 1

2
PH̄0

(
m∑

i=1

Xi −
m∑

i=1

Yi ≥ 0

)
+

1

2
PH̄1

(
m∑

i=1

Xi −
m∑

i=1

Yi < 0

)

= P

(
m∑

i=1

Wi ≥ 0

)
.

The proof is complete by using Lemma 3.2 to lower bound the RHS of above inequality. �

The establishment of Lemma 3.2 mainly follows that of Cramer-Chernoff Theorem [48].

The general Cramer-Chernoff Theorem gives a lower bound for the tail probability that

9



the sum of random variables deviates from its mean. Usually it is for the case where these

random variables are from a distribution independent of the sample size. In our setting we

allow p and q to depend on n. We refer readers to [52] for its detailed proof.

Lemma 3.2 (Lemma 5.2 of [52]). Assume {Xi}mi=1
iid∼ Ber(q), {Yi}mi=1

iid∼ Ber(p) which are

independent of each other. If mI →∞, there exists a sequence η = o(1) such that

P

(
m∑

i=1

(Xi − Yi) ≥ 0

)
≥ exp(−(1 + η)mI).

In addition, if mI = O(1), then P (
∑m

i=1(Xi − Yi) ≥ 0) ≥ c for some constant c > 0.

3.2 Minimax Lower Bound

The similarity of forms between Theorem 3.1 and Lemma 3.1 is hard not to notice. When

taking m = n/2 or βn/k, the lower bound in Lemma 3.1 matches with the minimax rate

in Theorem 3.1. Actually, as we will show in the section, the key to establish the minimax

lower bound is to follow a novel global to local scheme: reducing the global community

detection problem to a local hypothesis testing problem.

Dealing with `(ẑ, z) directly is difficult and intimidating, as `(·, ·) involves with a min-

imization over all permutations, unless we are able to decoupling it into estimation errors

of individual nodes. We use Z short for Z(n, k, β) defined in Equation (2.2) for simplicity.

Case k ≥ 3. Let z∗ ∈ Z be an arbitrary assignment vector, such that

|{i : z∗i = 1}| = |{i : z∗i = 2}| = βn/k − 1.

We fix a set T ∈ [n] such that |T ∩ {i : z∗i = u}| = δβn/k2, ∀u ∈ [k], where δ = o(1) is some

sequence whose value will be specified later. We define a subspace of Z as follow

Z∗ =
{
z ∈ Z : zi = z∗i ,∀i ∈ TC

}
.

10



In this way, for any z, z′ ∈ Z∗, they differ at most |T | = δβn/k nodes, which implies that

`(z, z′) =
1

n

∥∥z − z′
∥∥

0
=

1

n

∑

i∈T
I{zi = z′i}.

So we have

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ inf
ẑ

sup
z∈Z∗

E`(ẑ, z) = inf
ẑ

sup
z∈Z∗

1

n
E
∑

i∈T
I{ẑi = zi}.

Since minimax risk is lower bounded by Bayes risk, we have

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ 1

n|Z∗| inf
ẑ

∑

z∈Z∗
E
∑

i∈T
I{ẑi = zi}.

Without loss of generality, suppose 1 ∈ T . Due to symmetry,
∑

z∈Z∗ EI{ẑi = zi} =

∑
z∈Z∗ EI{ẑ1 = z1} for all i ∈ T . We have

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ |T |
n|Z∗| inf

ẑ

∑

z∈Z∗
EI{ẑ1 = z1}

≥ δβ

k|Z∗| inf
ẑ

∑

z∈Z∗
Pz(ẑ1 = z1).

Here we have the subscript Pz(ẑ1 = z1) in Pz to avoid confusion among different probability

measures. We partition Z∗ into disjoint subsets Z∗ = ∪ku=1Z∗u where Z∗u = {z ∈ Z∗|z1 = u}.

Again due to symmetry, |Z∗u| are equal to each other for all k ∈ [k]. Then

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ δβ

k|Z∗| inf
ẑ

∑

z∈Z∗1∪Z∗2

Pz(ẑ1 = z1) ≥ δβ

k2|Z∗1 |
inf
ẑ

∑

z∈Z∗1∪Z∗2

Pz(ẑ1 = z1).

We are going to pair elements in Z∗1 and Z∗2 so that each pair only differs at the first node.

For any z ∈ Z∗1 we denote z−1 to be remaining part of z after excluding the first node. We

define a subspace of Z∗1 as

Z̄∗1 = {z ∈ Z∗1 : (2, z−1) ∈ Z∗2} .

11



It turns out

|Z̄∗1 |
|Z∗1 |

= 1−

∣∣∣
{
z ∈ Z∗1

∣∣∣|{i : zi = 1}| = βn/k − 1
}∣∣∣

|Z∗1 |

≥ 1−

∣∣∣
{
z ∈ Z∗1

∣∣∣|{i : zi = 1}| = βn/k − 1
}∣∣∣

∣∣∣
{
z ∈ Z∗1

∣∣∣|{i : zi = 1}| = βn/k − 1
}∣∣∣+

∣∣∣
{
z ∈ Z∗1

∣∣∣|{i : zi = 1}| = βn/k
}∣∣∣
.

Now we are going to build the connections between two cardinalities |Z̄∗1,1| and |Z̄∗1,2|, where

Z̄∗1,1 =
{
z ∈ Z∗1

∣∣∣|{i : zi = 1}| = βn/k − 1
}

and Z̄∗1,2 =
{
z ∈ Z∗1

∣∣∣|{i : zi = 1}| = βn/k
}

. For

any z ∈ Z̄∗1,2, for any i ∈ {j ∈ T : j 6= 1, zj = 1} (the cardinality of which is δβn/k2),

we can construct z′ ∈ |Z̄∗1,1| be letting z′j = zj , ∀j 6= i and z′i 6= zi. Hence there are

(δβn/k2)(k− 1) different z′ ∈ |Z̄∗1,1| that can be generated by one single z ∈ |Z̄∗1,2|. One the

other hand, for any z′ ∈ |Z̄∗1,1|, it can be generated by the aforementioned procedure by at

least (δβn/k − δβn/k2) (recall that |T | = δβn/k) different z ∈ |Z̄∗1,2|. This leads to

|Z̄∗1,1|
|Z̄∗1,2|

≤ (δβn/k2)(k − 1)

(δβn/k − δβn/k2)
= 1.

Thus,

|Z̄∗1 |
|Z∗1 |

≥ 1−
|Z̄∗1,1|

|Z̄∗1,1|+ |Z̄∗1,2|
≥ 1

2
.

We have

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ δβ

2k2|Z̄∗1 |
inf
ẑ

∑

z∈Z∗1∪Z∗2

Pz(ẑ1 = z1)

≥ δβ

2k2|Z̄∗1 |
inf
ẑ

∑

z∈Z̄∗1

(
Pz(ẑ1 = z1) + P(2,z−1)(ẑ1 = z1)

)

≥ δβ

k2|Z̄∗1 |
∑

z∈Z̄∗1

inf
ẑ

(
1

2
Pz(ẑ1 = z1) +

1

2
P(2,z−1)(ẑ1 = z1)

)

=
δβ

k2|Z̄∗1 |
∑

z∈Z̄∗1

inf
ẑ1

(
1

2
Pz(ẑ1 = z1) +

1

2
P(2,z−1)(ẑ1 = z1)

)
.

We can use the arguments in Section 3.1 and Lemma 3.1 for lower bounding Bayes risk for

two-point hypothesis testing problem. For any z ∈ Z̄∗1 , we have maxu=1,2{|{i ∈ [n] : zi =
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u}|} ≤ βn/k + δβn/k. Thus

1

2
Pz(ẑ1 = z1) +

1

2
P(2,z−1)(ẑ1 = z1) ≥ exp(−(1 + η′)(1 + δ)βnI/k),

for some positive sequence η′ = o(1), if βnI/k → ∞. Otherwise it is lower bounded by

some constant c > 0. Then we have

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ δβ

k2
exp

(
−(1 + η′)(1 + δ)

βnI

k

)
.

Under the assumption βnI/(k log k)→∞ and log(1/δ) = o(βnI/k), there exists a positive

sequence η = o(1) such that

inf
ẑ

sup
z∈Z

E`(ẑ, z) ≥ exp(−(1 + η)βnI/k).

Case k = 2. The least favorable situation is when two communities are almost equal sized.

We construct Z∗ analogous as the case k ≥ 3, but instead require the community sizes to

be almost equal. The proof is almost identical to the case k ≥ 3, and hence is omitted in

this thesis.

3.3 Minimax Upper Bound

The minimax upper bound can be achieved by maximum likelihood estimator (MLE). For

any z ∈ Z(n, k, β), its likelihood function takes a form as

f(z;A) =
∏

i<j,zi=zj

pAi,j (1− p)1−Ai,j
m∏

i<j,zi 6=zj
qAi,j (1− q)1−Ai,j

= exp


 ∑

i<j,zi=zj

(
Ai,j log

p

1− p + log(1− p)
)

+
∑

i<j,zi 6=zj

(
Ai,j log

q

1− q + log(1− q)
)


= C exp


 ∑

i<j,zi=zj

(
Ai,j log

p(1− q)
q(1− p) − log

1− q
1− p

)
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for some C independent of z. Here the third equation is due to the fact
∏
i<j,zi=zj

Ai,j +

∏
i<j,zi 6=zj Ai,j =

∑
i<j Ai,j does not depend on the choice of z. Thus the MLE has an

expression as

ẑMLE = argmax
z∈Z(n,k,β)

log f(z;A)

= argmax
z∈Z(n,k,β)

∑

i<j,zi=zj

(
Ai,j log

p(1− q)
q(1− p) − log

1− q
1− p

)

= argmax
z∈Z(n,k,β)

∑

i<j,zi=zj

(Ai,j − λ) , (3.5)

where λ is defined as

t =
1

2
log

p(1− q)
q(1− p) , λ =

1

2t
log

1− q
1− p. (3.6)

Now we are going to prove ẑMLE is a minimax estimator. Denote z∗ ∈ Z(n, k, β) be

the ground truth where A is generated from. We will show it is unlikely for ẑMLE to be far

away from z∗, which is equivalent to show it is unlikely some z not in a neighborhood of

z∗ has likelihood f(z;A) greater than f(z∗;A). The main technique we use to prove it is

union bound with chaining.

Note that

I {f(z;A) > f(z∗;A)} ⇐⇒ I





∑

i<j,zi=zj

(Ai,j − λ) >
∑

i<j,z∗i =z∗j

(Ai,j − λ)





⇐⇒ I





∑

i<j,zi=zj ,z∗i 6=z∗j

Ai,j −
∑

i<j,zi 6=zj ,z∗i =z∗j

Ai,j > λ(γ(z; z∗)− α(z; z∗))



 ,

where

α(z; z∗) = |{(i, j) : i < j, zj 6= zj , z
∗
i = z∗j }|, (3.7)

and γ(z; z∗) = |{(i, j) : i < j, zj = zj , z
∗
i 6= z∗j }|. (3.8)

We have Proposition 3.1 to upper bound the probability P(f(z;A) ≥ f(z∗;A)), which is an
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immediate consequence of Chernoff bound.

Proposition 3.1. Let z, z∗ ∈ Z(n, k, β) with z∗ being the ground truth. Then

P(f(z;A) ≥ f(z∗;A)) ≤ exp(−(α(z; z∗) + γ(z; z∗))I/2).

The following Proposition provides control on α(z; z∗) + γ(z; z∗).

Proposition 3.2. For any z, z∗ ∈ Z(n, k, β). Denote m = n`(z, z∗), we have

α(z; z∗) + γ(z; z∗) ≥





m(n−m), k = 2;

βnm/(16k), k ≥ 3.

In addition, when k ≥ 3 and m ≤ βn/(2k), we have α(z; z∗) + γ(z; z∗) ≥ 2(βnm/k −m2).

Proposition 3.3 provides a control of cardinality as we will later implement union bound.

It is worthwhile pointing out that, we should not use the cardinality of {z ∈ Z(n, k, β) :

n`(z, z∗) = m}, which is too large due to counting assignments equivalent under permuta-

tion.

Proposition 3.3. The cardinality of equivalent class that has distance m from z∗ is upper

bounded as follows,

∣∣∣
{

Γ : ∃z ∈ Γ s.t. n`(z, z∗) = m
}∣∣∣ ≤ min

{(
enk

m

)m
, kn
}
,

where 0 < m < n is a positive integer.

Define Pm as

Pm = P(∃z ∈ Z(n, k, β) : n`(z, z∗) = m and f(z;A) ≥ f(z∗;A)). (3.9)

By union bound we have

Pm ≤
∣∣∣
{

Γ : ∃z ∈ Γ s.t. n`(z, z∗) = m
}∣∣∣ max

z:n`(z,z∗)=m
P(f(z;A) ≥ f(z∗;A)).
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In the following we consider the case k ≥ 3. The proof for the case when k = 2 is similar

and hence omitted. Note that we have βnI
k log k →∞. We consider three scenarios as follows.

1) If βnI/k > (1 + ε) log n, define m0 = 1 and m′ = εβn/k. Then P1 ≤ n exp(−(βn/k−

1)I). Denote R = n exp(−(βn/k − 1)I). We have

Pm ≤





( enk2 )m exp(−(βnm/k −m2)I) ≤ Rn−ε(m−1)/6, for m0 < m ≤ m′

( enkm′ )m exp(−βnmI
32k ) ≤ R exp(−βn(m−4)I

64k ), for m′ < m ≤ n/2.

Then nE`(ẑ, z∗) ≤∑n/2
m=1mPm = (1 + o(1))R.

2) If βnI/k < (1−ε) log n, definem0 = n exp(−(1−e−εnI/2)βnI/k) andm′ = n exp(−βnI/8k).

We have

Pm ≤





( enkm0
)m exp(−(βnm/k −m2)I) = exp(−e− εnI2 βnmI

4k ), for m0 < m ≤ m′,

( enkm′ )m exp(−βnmI
32k ) ≤ exp(−βnmI

64k ), for m′ < m ≤ n/2.

Then E`(ẑ, z∗) ≤ m0/n+
∑n/2

m>m0
Pm = (1 + o(1))m0/n.

3) If βnI
k logn → 1, there exists a positive sequence w → 0 such that | βnIk logn − 1| � w and

1√
logn
≤ w. Define m0 = n exp(−(1− w)βnI/k) and m′ = w2n.

Pm ≤





( enkm0
)m exp(−(βnm/k −m2)I) ≤ exp(−wβnmI

2k ), for m0 < m ≤ m′

( enkm′ )m exp(−βnmI
32k ) ≤ exp(−βnmI

4k ), for m′ < m ≤ n/2.

Then E`(ẑ, z∗) ≤ m0/n+
∑n/2

m>m0
Pm = (1 + o(1))m0/n.

3.4 Extension

Theorem 3.1 can be generalized to inhomogeneous SBM Θ(n, k, β, p, q) with the same min-

imax rate holds.

Theorem 3.2. Under the assumption βnI/(k log k)→∞, there exists a sequence η = o(1)
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that only depends on n, k, β, p, q, such that

min
ẑ

max
(z,B)∈Θ(n,k,β,p,q)

E`(ẑ, z) =





exp (−(1 + η)nI/2) , k = 2;

exp (−(1 + η)βnI/k) , k ≥ 3.

Proof. The proof of lower bound is trivial, noticing that Z(n, k, β) serves as the least fa-

vorable case for the inhomogeneous SBM. For the upper bound, we use the same procedure

defined as in Equation (3.5). This is no longer the MLE for Θ(n, k, β, p, q), but still minimax

optimal. Its proof is identical. �

3.5 Proof of Propositions

Proof of Proposition 3.1. We use α, γ instead of α(z; z∗), γ(z; z∗) for simplicity. Note that

P(f(z;A) ≥ f(z∗;A)) = P

(
γ∑

i=1

Xi −
α∑

i=1

Yi ≥ λ(γ − α)

)
,

where {Xi}γi=1
iid∼ Ber(q) and {Yi}αi=1

iid∼ Ber(p) and they are independent of each other. By

Chernoff bound, we have

P(f(z;A) ≥ f(z∗;A)) ≤ exp(−tλ(γ − α)) (E exp(tX))γ (E exp(−tY ))α ,

where t is defined as in Equation (3.6). Simple algebra with Proposition 3.4 immediately

leads to the desired result. �

Proposition 3.4. Assume 0 < q < p < 1. Let X ∼ Ber(q) and Y ∼ Ber(p). Recall the

definition λ = log 1−q
1−p/ log p(1−q)

q(1−p) , t = 1
2 log p(1−q)

q(1−p) and I = −2 log[
√
pq +

√
(1− p)(1− q)].

Then the following two equations hold

etλ =

(
EetX

Ee−tY

) 1
2

, and EetXEe−tY = exp(−I). (3.10)

Proof. The proof is straightforward and all by calculation. Note that E exp(tX) = qet+1−q

17



and E exp(tY ) = pet + 1− p. We can easily obtain

EetXEe−tY = (qet + 1− q)(pe−t + 1− p) = (
√
pq +

√
(1− p)(1− q))2 = exp(−I).

We can justify the first part of Equation (3.10) in a similar way. �

Proof of Proposition 3.2. The case when k = 2 is straightforward, noting that m has to be

smaller than n/2 by the definition of `(·, ·). We mainly focus on k ≥ 3 case.

We use α, γ instead of α(z; z∗), γ(z; z∗) for simplicity. Without loss of generality we

assume ‖z − z∗‖0 = n`(z, z∗). Define Cu = {i : z∗i = u} and Lu,v =
∑

i∈Cu I{zi = v}. We

have the equality
∑

v Lu,v = |Cu| and also

α =
1

2

∑

u

[
|Cu|2 −

∑

w

L2
u,w

]
=

1

2

∑

u

∑

w 6=w′
Lu,wLu,w′

and γ =
1

2

∑

u6=v

∑

w

Lu,wLv,w.

We define [k] into two disjoint subsets S1 and S2 where

S1 =
{
u ∈ [k] : ∀v 6= u, Lu,v ≤

3

4
|Cu|
}
,

and S2 =
{
i ∈ [k] : ∃v 6= u, Lu,v >

3

4
|Cu|
}
.

Define Lu =
∑

v 6=u Lu,v. For any u ∈ S1, if Lu,u ≥ |Cu|/4, we have |Cu|2 −
∑

w L
2
u,w ≥

Lu,uLu ≥ |Cu|Lu/4. If Lu,u <
1
4 |Cu| we have |Cu|2 −

∑
w L

2
u,w ≥ 3

8 |Cu|2 ≥ |Cu|Lu/4 as well.

This leads to

α ≥ 1

2

∑

u∈S1

[
|Cu|2 −

∑

w

L2
u,w

]
≥ 1

8

∑

u∈S1

|Cu|Lu.

For any u ∈ S2 there exists a v 6= u such that Lu,v >
3
4 |Cu|. We must have Lu,u + Lv,v ≥

Lu,v + Lv,u otherwise ‖z − z∗‖0 = n`(z, z∗) does not hold since we can switch the u-th and

v-th columns of z to make ‖z − z∗‖0 smaller. Consequently, we have Lv,v ≥ Lu/2. So we
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have
∑

u′ 6=u
∑

w Lu,wLu′,w ≥ Lu,vLv,v ≥ 3|Cu|Lu/8. Then we have

γ ≥ 1

2

∑

u∈S2

∑

u′ 6=u

∑

w

Lu,wLu′,w ≥
3

8

∑

u∈S2

|Cu|Lu.

Thus,

α+ γ ≥ 1

16

∑

u

|Cu|Lu ≥
βn

16k

∑

u

Lu ≥
βn

16k
‖z − z∗‖1 =

βnm

16k
.

We have stronger result when m ≤ βn/(2k). Without loss of generality we assume

m = n`(z, z∗), which is equivalent to be stated as m =
∑

i I{zi 6= z∗i }. Define mu =

∑
i I{zi 6= z∗i , z

∗
i = u},∀u ∈ [k] and γu = |{(i, j) : i < j, zj = zj , z

∗
i 6= z∗j }|,∀u ∈ [k]. Thus

γu ≥ |{i : zi = z∗i = u}||{i : zi = u, z∗i 6= u}| ≥ mu(βn/k −mu),∀u ∈ [k].

Note that
∑

umu = m and
∑

u γu = γ. We have

α+ γ ≥
∑

u

mu(βn/k −mu) ≥ βnm/k −m2.

�

Proof of Proposition 3.3. Without loss of generality we assume that ‖z − z∗‖0 = m. Then

z assigns m nodes with different values from z∗, and there are k possible values for each

node. Thus

∣∣∣
{

Γ : ∃z ∈ Γ s.t. ‖z − z∗‖0 = m
}∣∣∣ ≤

(
n

m

)
km ≤

(
enk

m

)m
.

In addition, since each node has at most k possible choices, we have a naive bound for the

cardinality of Γ as |{Γ}| ≤ kn. �
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Chapter 4

Methodology

Starting with the proposal of a series of methodologies [21, 27, 32, 42], we have seen a large

literature devoted to algorithmic solutions to uncovering community structure. There are

two desired properties of any algorithm: 1) computability: whether it is a polynomial-time

algorithm or not; 2) optimality: whether it has provable theoretical guarantee that matches

with minimax rate. Unfortunately, the existing methods do not satisfy both properties

simultaneously, and this motivates us to propose a computationally feasible algorithm for

community detection in the SBM with adaptive minimax optimal performance.

4.1 Hypothesis Testing for One Single Node: Revisit

Now let us revisit the two-point hypothesis testing problem introduced in Section 3.1.

H0 : {Xi}m1
i=1

iid∼ Ber(q), {Yi}m2
i=1

iid∼ Ber(p);

H1 : {Xi}m1
i=1

iid∼ Ber(p), {Yi}m2
i=1

iid∼ Ber(q).

By Neyman-Pearson lemma, the likelihood ratio test is optimal. Same as in Section 3.1,

the two likelihoods take forms as

fH0 = exp

(
m1∑

i=1

(
Xi log

q

1− q + log(1− q)
)

+

m2∑

i=1

(
Yi log

p

1− p + log(1− p)
))

,
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and similarly under H̄1 is

fH1 = exp

(
m1∑

i=1

(
Xi log

p

1− p + log(1− p)
)

+

m2∑

i=1

(
Yi log

q

1− q + log(1− q)
))

.

The φ̂ the likelihood ratio test takes a form as

φ̂ = I{fH1 ≥ fH0}

= I

{
m1∑

i=1

(
Xi log

p(1− q)
q(1− p) − log

1− q
1− p

)
≥

m2∑

i=1

(
Yi log

p(1− q)
q(1− p) − log

1− q
1− p

)}

= I

{
m1∑

i=1

Xi −
m2∑

i=1

Yi ≥ λ(m1 −m2)

}
,

where λ is defined in Equation (3.6). Chernoff bound leads to the following Lemma 4.1,

which matches with the lower bound (i.e., Lemma 3.1) when m1 = m2.

Lemma 4.1. The likelihood ratio test φ̂ satisfies

1

2
PH0(φ = 1) +

1

2
PH1(φ = 0) ≤ exp(−(m1 +m2)I/2).

Proof. Let {Xi}m1
i=1

iid∼ X and {Yi}m2
i=1

iid∼ Y and they are independent of each other, where

X ∼ Ber(q) and Y ∼ Ber(p). Then

PH0(φ = 1) = P

(
m1∑

i=1

Xi −
m2∑

i=1

Yi ≥ λ(m1 −m2)

)
,

By Chernoff bound, we have

PH0(φ = 1) ≤ exp(−tλ(m1 −m2)) (E exp(tX))m1 (E exp(−tY ))m2 ,

where t is defined as in Equation (3.6). Simple algebra with Proposition 3.4 immediately

leads to PH0(φ = 1) ≤ exp(−(m1 +m2)I/2). We have same result for PH1(φ = 0). �
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4.2 Spectral Clustering

Spectral clustering has been one of the most popular methods for community detection.

It has been investigated by [12, 13, 17, 30, 31, 34, 35, 44, 46, 47, 50] with provable upper

bound established. The spectral clustering usually takes two steps:

1. Eigendecomposition on A. Let u1, u2, . . . , un be the eigenvectors corresponding to

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Denote U = [u1, u2, . . . , uk] be the eigenspace with

k-leading eigenvectors.

2. Perform k-means on the rows is U (i.e., {Ui,·}ni=1) to partition the n nodes.

Despite the fact that spectral clustering being easy to implement, its existing theoretical

results (e.g., [35]) require strong assumptions on the parameters. The main techniques used

are Davis-Khan Theorem and a sharp upper bound ‖A − P‖op. The former one needs a

lower bound on the eigengap of P : this is trivial when z∗ ∈ Z(n, k, β) but may not hold

for the inhomogeneous SBM as B may be singular. The latter one needs the network to be

dense, in the sense that p, q = O((log n)/n) otherwise the desired upper bound on ‖A−P‖op

no longer holds.

We propose a novel low-rank based spectral clustering in Algorithm 1. The additional

truncation step (i.e., Step 1) makes it possible to have similar control on the operator norm

even for the sparse network. In Step 2 we use a low rank approximation instead of the

eigenspace to avoid the use of Davis-Khan Theorem, thus we have no requirement on the

eigengap any more. The provable result for Algorithm 1 is given in Theorem 4.1.

Algorithm 1: Low-rank Based Spectral Clustering

Input: Adjacency matrix A ∈ {0, 1}n×n, number of communities k, parameter p

Output: Partition of the network z

1 Define T (A) ∈ {0, 1}n×n by replacing the ith row and column of A whose row sum

or column sum is larger than 20np by zeroes for each i ∈ [n];

2 Singular value decomposition (SVD) on T (A) to obtain T (A) =
∑n

i=1 λiuiu
T
i with

λ1 ≥ λ2 ≥ . . . ≥ λn. Let P̂ =
∑k

i=1 λiuiu
T
i be the rank-k approximation of T (A);

3 Perform k-means on the rows of P̂ (i.e., {P̂i,·}ni=1) to obtain a partition of the

network.
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Theorem 4.1. Assume z∗ ∈ Z(n, k, β). Let ẑ be the result from Algorithm 1. Under the

assumption β2n(p− q)2/(k3p)→∞, with probability at least 1− n−2, we have

`(ẑ, z∗) ≤ ck2p

βn(p− q)2
,

for some positive constant c.

Proof. The proof contains two parts: one for Step 1 and 2, and the other for the k-means

in Step 3.

1) By the definition of P̂ , we have

P̂ = argmin
rank(X)≤k

‖T (A)−X‖F .

Define P ′ = P +pIn such that P ′ is a rank-k matrix and differs from P only by the diagonal

entries. Thus, we have
∥∥∥T (A)− P̂

∥∥∥
F
≤ ‖T (A)− P ′‖F. After rearrangement, we have

‖P̂ − P‖2F ≤ 2
∣∣∣
〈
P̂ − P ′, T (A)− P

〉∣∣∣+ ‖P ′ − P‖2F

≤ 2‖P̂ − P ′‖F sup
{X:‖X‖F=1,rank(X)≤2k}

|〈X,T (A)− P 〉|+ ‖P ′ − P‖2F

≤ 1

4
‖P̂ − P ′‖2F + 4 sup

{X:‖X‖F=1,rank(X)≤2k}
|〈X,T (A)− P 〉|2 + ‖P ′ − P‖2F

≤ 1

2
‖P̂ − P‖2F +

3

2
‖P ′ − P‖2F + 4 sup

{X:‖X‖F=1,rank(X)≤2k}
|〈X,T (A)− P 〉|2 .

Therefore,

‖P̂ − P‖2F ≤ 3‖P ′ − P‖2F + 8 sup
{X:‖X‖F=1,rank(X)≤2k}

|〈X,T (A)− P 〉|2 . (4.1)

Apply singular value decomposition to X and we get X =
∑2k

l=1 σlvlv
T
l . Then,

|〈X,T (A)− P 〉| ≤
2k∑

l=1

|σl||vTl (T (A)− P )vl| ≤ ‖T (A)− P‖op

2k∑

l=1

|σl| ≤
√

2k‖T (A)− P‖op.

By Lemma 4.2, we have ‖T (A)− P‖op ≤ c
√
np with probability at least 1− n−2 for some
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constant c > 0. Hence, sup{X:‖X‖F=1,rank(X)≤2k} |〈X,T (A)− P 〉|2 ≤ c2np, with probability

at least 1−n−2. Moreover, ‖P ′−P‖2F = np. Using Equation (4.1), with probability at least

1− n−2 we have

‖P̂ − P‖2F ≤ (3 + 16c2k)np,

and consequently by triangle inequality ‖P̂ − P ′‖F ≤ ‖P̂ − P‖F + ‖P − P ′‖F we have

‖P̂ − P ′‖2F ≤ c′knp,

for some constant c′.

2) By the definition of k-means, its output ẑ, {vu}ku=1 satisfies

(ẑ, {vu}ku=1) = argmin
z

argmin
{vu}ku=1

n∑

i=1

∥∥∥P̂i,· − vzi
∥∥∥

2
.

Let V ∈ Rn×n such that Vi,· = vzi ,∀i ∈ [n]. Then we have

‖V − P̂‖2F ≤ ‖P ′ − P̂‖2F ≤ c′knp.

Note that P ′ only have k unique rows which are well separated. If zi = zj then
∥∥∥P ′i,· − P ′j,·

∥∥∥
2

=

0; and

∥∥P ′i,· − P ′j,·
∥∥2 ≥ 2(p− q)2βn/k, for all (i, j) such that zj 6= zj . (4.2)

Define

S =

{
i :
∥∥∥Vi,· − P̂ ′j,·

∥∥∥
2
≥ (p− q)2βn/(4k)

}
.

Then

|S|(p− q)2βn/(2k) ≤ ‖V − P̂‖2F,
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which implies

n−1|S| ≤ 4k2c′p
βn(p− q)2

.

We are going to show under the assumption β2n(p − q)2/(k3p) → ∞ (which implies

|S| = o(βn/k)), all the nodes in SC will be correctly clustered. Define

Cu =
{
i ∈ [n] : z∗i = u, i ∈ SC

}
,∀u ∈ [k].

We have the following arguments:

• For each u ∈ [k], Cu cannot be empty, as |Cu| ≥ |{i : z∗i = u}| − |S| > 0.

• For each pair u 6= v, there cannot exist some i ∈ Cu, j ∈ Cv such that ẑi = ẑj .

Otherwise Vi,· = Vj,· which implies

∥∥P ′i,· − P ′j,·
∥∥2 ≤

(∥∥P ′i,· − Vi,·
∥∥+

∥∥P ′j,· − Vj,·
∥∥+ ‖Vi,· − Vj,·‖

)2 ≤ (p− q)2βn/k,

contradicting with Equation (4.2).

Since ẑi can only take values in 1, 2, . . . , k, we conclude {ẑi : i ∈ Cu} contains only one and

different element for all u ∈ [k]. That is, there exists a permutation ρ on [k], such that

ẑi = ρ(u), ∀i ∈ Cu,∀u ∈ [k].

Which indicates
∑

i∈SC I{ẑi 6= ρ(zi)} = 0. Hence

1

n

∑

i∈[n]

I{ẑi 6= ρ(zi)} ≤
|S|
n
≤ 4k2c′p
βn(p− q)2

,

which holds with probability at least 1− n−2.

�

The following lemma on the operator norm of sparse networks is from [12]. In the

original statement of Lemma 12 in [12], “with probability 1− o(1)” is stated. However, its
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proof in [12] gives explicit form of the probability that the statement holds, which is at least

1− n−2.

Lemma 4.2. [Lemma 12 of [12]] Suppose M is random symmetric matrix with zero on the

diagonal whose entries above the diagonal are independent with the following distribution

Mi,j =





1− pi,j , w.p. pi,j ;

−pi,j , w.p. 1− pi,j .

Let p , maxi,j pi,j and M̃ be the matrix obtained from M by zeroing out all the rows and

columns having more than 20np positive entries. Then there exists some constant c > 0

such that

‖M̃‖op ≤ c
√
np,

holds with probability at least 1− n−2.

4.3 Rate-optimal and Computationally Feasible Algorithm

In this section, we propose a polynomial-time algorithm that is also rate-optimal. It consists

two parts: an initialization that provides decent network partition and a follow-up refine-

ment that leads to optimal estimation. The refinement step is inspired by the likelihood

ratio test for one single node (see Section 4.1). The main idea is as follows. For each node,

though we do not know the true labels for the remaining nodes, as long as we have a decent

estimation that is close enough to the truth, then the likelihood ratio test proposed in Sec-

tion 4.1 should also work well. This leads to Algorithm 2 with its theoretical justification

presented in Theorem 4.2.

For any i ∈ [n], define A−i be the matrix after zeroing out the ith row and column of A.

Theorem 4.2. Under the assumption z∗ ∈ Z(n, k, β) and β2n(p−q)2/(k3p)→∞, if we use

Algorithm 1 as the initial community detection method in Algorithm 2, with high probability,

26



Algorithm 2: A Two-stage Algorithm for SBM

Input: Adjacency matrix A ∈ {0, 1}n×n, number of communities k, parameters
p, q, initial community detection method z̃

Output: Partition of the network z

Penalized majority voting:
for i = 1, 2, . . . , n do

1 Define λ as in Equation (3.6);

2 Apply z̃ on A−i to obtain z̃
(−i)
j for all j 6= i;

3 Define ẑ
(−i)
j = z̃

(−i)
j ,∀j 6= i. Let

ẑ
(−i)
i = argmax

u∈[k]

∑

j:j 6=i,ẑ(−i)j =u

(Ai,j − λ).

end

Consensus:
4 Define ẑ1 = ẑ

(−1)
1 . For i = 2, 3, . . . , n, define

ẑi = argmax
u∈[k]

∣∣∣{j : ẑ
(−1)
j = u} ∩ {j : ẑ

(−i)
j = ẑ

(−i)
i }

∣∣∣ .

we have

`(ẑ, z∗) ≤





exp (−(1− η)nI/2) , k = 2;

exp (−(1− η)βnI/k) , k ≥ 3,

for some positive sequence η = o(1).

Proof. The proof consists of three parts.

1). Denote F be the event that ‖T (A) − P‖op ≤ c
√
np for some constant c1 > 0. By

Lemma 4.2 we have P(F) ≥ 1−n−2. Let z̃(0) be the result after implementing Algorithm 1

on A. From Theorem 4.1, we know `(z̃(0), z∗) ≤ c2k
2p/(βn(p− q)2) holds for some constant
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c2 > 0 if event F holds. Note that

‖T (A−i)− P−i‖op = max
u:‖u‖≤1

uT (T (A−i)− P−i)u

= max
u:‖u‖≤1,ui=0

uT (T (A−i)− P−i)u

= max
u:‖u‖≤1,ui=0

uT (T (A)− P )u

≤ ‖T (A)− P‖op,

which implies

`(z̃(−i), z∗) ≤ `(z̃(0), z∗) ≤ c2k
2p/(βn(p− q)2) + 1/n,

holds simultaneously for all i ∈ [n], by the proof of Theorem 4.1, assuming the event F

holds. The addition 1/n term is due to the fact that z̃(−i) provides no valid value for the

ith label.

2). Now we investigate the refinement step for the ith node. Note that we have inde-

pendence between z̃(−i) and the data to be used {Ai,j}j 6=i. Without loss of generality, we

assume
∥∥z̃(−i) − z∗

∥∥
0

= n`(z̃(−i), z∗). Hence, we have

P(ẑ
(−i)
i 6= z∗i ) ≤

∑

u6=z∗i

P




∑

j:j 6=i,ẑ(−i)j =u

(Ai,j − λ) ≥
∑

j:j 6=i,ẑ(−i)j =z∗i

(Ai,j − λ)


 .

If `(z̃(−i), z∗) = η1βn/k for some η1 = o(1), Lemma 4.3 leads to

P(ẑ
(−i)
i 6= z∗i ) ≤

∑

u6=z∗i

exp

(
−(1− η)

|{j 6= i : z∗j = z∗i or u}|I
2

)

≤ k exp(−(1− η2)nminI),

where nmin = minu6=v |{i : z∗j = u, v}|/2.
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3). Now we can combine the above arguments together. If the event F holds, we have

max
i
`(z̃(−i), z∗) ≤ η1βn/k

holds for some sequence η1 = o(1). The concensus step in Algorithm 2 is essentially to

permute all the labels such that

max
i
n
∥∥∥ẑ(−i) − z∗

∥∥∥
0
≤ η1βn/k.

Thus

P
({
ẑ

(−i)
i 6= z∗i

}
∩ F

)
≤ k exp(−(1− η2)nminI), ∀i ∈ [n],

for some η2 = o(1). Define η3 = η2 +
√
k/(βnI). By Markov inequality, if k exp(−(1 −

η3)nminI) ≥ n−3/2, then we have

P (‖ẑ − z∗‖0 ≥ k exp(−(1− η3)nminI)) ≤
1
n

∑
i P
({
ẑ

(−i)
i 6= z∗i

}
∩ F

)
+ P(FC)

k exp(−(1− η2)nminI),∀i ∈ [n],

≤ exp

(
−
√
βn

k

)
+

n−2

k exp(−(1− η3)nminI)

≤ exp

(
−
√
βn

k

)
+

1√
n

= o(1).

If k exp(−(1− η3)nminI) < n−3/2, we have

P (‖ẑ − z∗‖0 ≥ k exp(−(1− η3)nminI)) ≤ P (‖ẑ − z∗‖0 > 0)

≤
∑

i

P
({
ẑ

(−i)
i 6= z∗i

}
∩ F

)
+ P(FC)

≤ 2n−3/2

= o(1).
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The proof is complete with

nmin ≥





βn/k, k ≥ 3;

n/2, k = 2.

�

Lemma 4.3. Let m1,m2 be positive integers. Fix subsets T1 ⊂ [m1], T2 ⊂ [m2] such

that max{|T1|, |T2|} = o(min{m1,m2}). Let U1, U2, . . . , Um1 , V1, V2, . . . , Vm2 be mutually

independent random variables. Define X ∼ Ber(q) and Y ∼ Ber(p). Let {Ui}i∈[m1]\T1 and

{Vj}j∈T2 be i.i.d. copies of X; let {Ui}i∈T1 and {Vj}j∈[m2]\T2 be i.i.d. copies of Y . Recall

the definition of λ as in Equation (3.6). Under the assumption that cp ≤ q ≤ p for some

positive constant c, we have

P




m1∑

i=1

(Ui − λ) ≥
m2∑

j=1

(Vj − λ)


 ≤ exp

(
−(1− η)

(m1 +m2)I

2

)
,

for some positive sequence η = o(1).

Proof. Denote m′1 = m1−|T1| and m′2 = m2−|T2|. Recall the definition of t as in Equation

(3.6). By using Chernoff bound, we have

P




m1∑

i=1

(Ui − λ) ≥
m2∑

j=1

(Vj − λ)




≤ e−tλ(m1−m2)
(
EetX

)m′1 (EetY
)m1−m′1 (Ee−tY

)m′2 (Ee−tX
)m2−m′2

= e−tλ(m1−m2)
(
EetX

)m1
(
Ee−tY

)m2

(
EetY

EetX

)m1−m′1 (Ee−tX

Ee−tY

)m2−m′2

= e−(m1+m2)I/2

(
EetY

EetX

)m1−m′1 (Ee−tX

Ee−tY

)m2−m′2
,

where the last equation is due to Proposition 3.4. By the assumption that q ≥ cp, we have

|et − 1| =
∣∣∣∣∣

√
p(1− q)
q(1− p) − 1

∣∣∣∣∣ ≤ C1
p− q
p

,
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for some constant C1 > 0. Then

EetY

EetX
=

pet + 1− p
qe−t + 1− q = 1 +

(p− q)(et − 1)

qet + 1− q ≤ 1 +O

(
(p− q)2

p

)
≤ exp

(
O

(
(p− q)2

p

))
.

We have the same result for |e−t − 1| and Ee−tX
/
Ee−tY . By Proposition 4.1, due to

maxm1 −m′1,m2 −m′2 = max{|T1|, |T2|} = o(m1 +m2), we have

P




m1∑

i=1

(Ui − λ) ≥
m2∑

j=1

(Vj − λ)


 ≤ exp (−(1− η)(m1 +m2)I/2) ,

for some positive sequence η = o(1). �

Proposition 4.1 (Lemma B.1 of [52]). Let p and q satisfy ε/n ≤ q ≤ p ≤ 1 − ε for any

small constant 1 > ε > 0. We have I � (p − q)2/(np). In addition if p = o(1), we have

I = (1 + o(1))(
√
p−√q)2.

4.4 Extension

Algorithm 2 is not adaptive, as it requires known p, q. In this section, we present its

adaptive counterpart. The main idea is to estimate p, q from the initial partition of the

network. On top of that, the proposed method (Algorithm 3) also generalizes Algorithm

2 in another direction, in the sense that it works for inhomogeneous SBM. We are able to

provide theoretical guarantees for Algorithm 3 that is very similar to Theorem 4.2. We refer

readers to our paper [19] for details.
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Algorithm 3: A refinement scheme for community detection

Input: Adjacency matrix A ∈ {0, 1}n×n, number of communities k, initial
community detection method z̃

Output: Community assignment ẑ.

Penalized neighbor voting:
1 for i = 1 to n do

2 Apply z̃ on A−i to obtain z̃
(−i)
j for all j 6= i and let z̃

(−i)
i = 0;

3 Define C̃(−i)
u =

{
j : z̃

(−i)
j = u

}
for all u ∈ [k]; let Ẽ(−i)

u be the set of edges within

C̃(−i)
u , and Ẽ(−i)

uv the set of edges between C̃(−i)
u and C̃(−i)

v when u 6= v;
4 Define

B̂(−i)
uu =

|Ẽ(−i)
u |

1
2 |C̃

(−i)
u |(|C̃(−i)

u | − 1)
, B̂(−i)

u,v =
|Ẽ(−i)
uv |

|C̃(−i)
u ||C̃(−i)

v |
, ∀u 6= v ∈ [k], (4.3)

and let

p̂i = min
u∈[k]

B̂(−i)
uu and q̂i = max

u6=v∈[k]
B̂(−i)
uv . (4.4)

5 Define ẑ(−i) : [n]→ [k] by setting ẑ
(−i)
j = z̃

(−i)
j for all j 6= i and

ẑ
(−i)
i = argmax

u∈[k]

∑

z̃
(−i)
j =u

(Aij − λi) (4.5)

where for

ti =
1

2
log

p̂i(1− q̂i)
q̂i(1− p̂i)

, (4.6)

we define

λi = − 1

2ti
log

(
1− q̂i
1− p̂i

)
, (4.7)

end
Consensus:

6 Define ẑ1 = ẑ
(−1)
1 . For i = 2, . . . , n, define

ẑi = argmax
u∈[k]

∣∣∣{j : ẑ
(−1)
j = u} ∩ {j : ẑ

(−i)
j = ẑ

(−i)
i }

∣∣∣ . (4.8)
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Chapter 5

Variational Inference

The Bayesian framework and the variational inference for community detection are consid-

ered in [3, 7, 9, 18, 28, 45]. For high dimensional settings, Celisse et al. [9] and Bickel et al.

[7] are arguably the first to study the statistical properties of the mean field for SBMs. The

authors built an interesting connection between full likelihood and variational likelihood,

and then studied the closeness of maximum likelihood and maximum variational likelihood,

from which they obtained consistency and asymptotic normality for global parameter esti-

mation. From a personal communication with the authors of Bickel et al. [7], an implication

of their results is that the variational method achieves exact community recovery under a

strong signal-to-noise (SNR) ratio. Their analysis idea is fascinating, but it is not clear

whether it is possible to extend the analysis to other SNR conditions under which exact

recovery may never be possible. More importantly, it may not be computationally feasible

to maximize the variational likelihood for the SBM, as seen from Theorem 5.1.

In this chapter, we consider the statistical and computational guarantees of the iterative

variational inference algorithm for community detection. To the best of our knowledge this

provides arguably the first theoretical justification for the iterative algorithm of the mean

field variational method in a high-dimensional and complex setting. Though we focus on

the problem of community detection in this chapter, we hope the analysis would shed some

light on analyzing other models, which may eventually lead to a general framework of

understanding the mean field theory.
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5.1 Mean Field Variational Inference

We first present the mean field method in a general setting and then consider its application

to the community detection problem. Let p(x|y) be an arbitrary posterior distribution for

x, given observation y. Here x can be a vector of latent variables, with coordinates {xi}.

It may be difficult to compute the posterior p(x|y) exactly. The variational Bayes ignores

the dependence among {xi}, by simply taking a product measure q(x) =
∏
i qi(xi) to

approximate it. Usually each qi(xi) is simple and easy to compute. The best approximation

is obtained by minimizing the Kullback-–Leibler divergence between q(x) and p(x|y):

q̂MF = argmin
q∈Q

KL(q‖p). (5.1)

Despite the fact that every measure q has a simple product structure, the global minimizer

q̂MF remains computationally intractable.

To address this issue, an iterative Coordinate Ascent Variational Inference (CAVI) is

widely used to approximate the global minimum. It is a greedy algorithm. The value of

KL(q‖p) decreases in each coordinate update:

q̂i = min
qi∈Qi

KL


qi

∏

j 6=i
qj

∥∥∥∥∥p


 , ∀i. (5.2)

The coordinate update has an explicit formula

q̂i(xi) ∝ exp
[
Eq−i [log p(xi|x−i, y)]

]
, (5.3)

where x−i indicates all the coordinates in x except xi, and the expectation is over q−i =

∏
j 6=i qj(xj). Equation (5.3) is usually easy to compute, which makes CAVI computationally

attractive, although CAVI only guarantees to achieve a local minimum.

In summary, the mean field variational inference via CAVI can be represented in the

following diagram:

p(x|y)
approx.⇐= q̂MF(x)

approx.⇐= q̂CAVI(x),
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where q̂MF(x), the global minimum, serves mainly as an intermediate step in the mean

field methodology. What is implemented in practice to approximate global minimum is

an iterative algorithm like CAVI. This motivates us to consider directly the theoretical

guarantees of the iterative algorithm in this chapter.

5.2 A Bayesian Framework

The SBM formulated in Chapter 2 can also be written in a matrix form, especially the mean

matrix P defined as in Equation (2.1). Let Z ∈ Π0 be the assignment matrix where

Π0 = {π ∈ {0, 1}n×k : ‖πi,·‖0 = 1, ∀i ∈ [n]}.

In each row {Zi,·}ni=1 there is only one 1 with all the other coordinates as 0, indicating the

assignment of community for the corresponding node. Then P can be equivalently written

as Pi,j = Zi,·BZTj,·,∀i < j, or in a matrix form

Pi,j = (ZBZT )i,j , ∀i < j. (5.4)

Consequently, to recover the assignment vector z is equivalent to recover the assignment

matrix Z. The equivalence can be seen by observing that there is a bijection r between

z ∈ [k]n and Z ∈ Π0 which is defined as follows,

r(z) = Z, where Zi,a = I{a = zi}, ∀i ∈ [n], a ∈ [k]. (5.5)

Since they are uniquely determined by each other, in this thesis we may use z directly

without explicitly defining z = r−1(Z) (or vice versa) when there is no ambiguity.

Throughout the whole chapter, we assume k, the number of communities, is known.

We observe the adjacency matrix A. The global parameters p and q and the community

assignment Z are unknown. We can write down the distribution of A as follows:

p(A|Z, p, q) =
∏

i<j

B
Ai,j
zi,zj (1−Bzi,zj )1−Ai,j , (5.6)
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with B = q1k1
T
k + (p − q)Ik and z = r−1(Z). We are interested in Bayesian inference for

estimating Z, with prior to be given on both p, q and Z.

We assume that {zi}ni=1 have independent categorical (a.k.a. multinomial with size one)

priors with hyperparameters {πpri
i,· }ni=1, where

∑k
a=1 π

pri
i,a = 1,∀i ∈ [n]. In other words,

{Zi,·}ni=1 are independently distributed by

P(Zi,· = eTa ) = πpri
i,a , ∀a = 1, 2, . . . , k,

where {ea}ka=1 are the coordinate vectors. Here we allow the priors for Zi,· to be different

for different i. If additionally πi,· = πj,· for all i 6= j is assumed, and then this is reduced to

the usual case of i.i.d. priors.

Since {Ai,j}i<j are Bernoulli, it is natural to consider a conjugate Beta prior for p and

q. Let p ∼ Beta(αpri
p , βpri

p ) and q ∼ Beta(αpri
q , βpri

q ). Then the joint distribution is

p(A,Z, p, q) =

[∏

i

πpri
i,zi

]
∏

i<j

B
Ai,j
zi,zj (1−Bzi,zj )1−Ai,j


 (5.7)

×
[

Γ(αpri
p + βpri

p )

Γ(αpri
p )Γ(βpri

p )
pα

pri
p −1(1− p)βpri

p −1

][
Γ(αpri

q + βpri
q )

Γ(αpri
q )Γ(βpri

q )
qα

pri
q −1(1− q)βpri

q −1

]
.

Our main interest is to infer Z, from the posterior distribution p(Z, p, q|A). However, the

exact calculation of p(Z, p, q|A) is computationally intractable.

5.3 Mean Field Approximation

Since the posterior distribution p(Z, p, q|A) is computationally intractable, we apply the

mean field approximation to approximate it by a product measure,

qπ,αp,βp,αq ,βq(Z, p, q) = qπ(Z)qαp,βp(p)qαq ,βq(q)
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where {r−1(Zi,·)}ni=1 are independent categorical variables with parameters {πi,·}ni=1, i.e.,

qπ(Z) =
∏n
i=1 qπi,·(Zi,·) with

qπi,·(Zi,· = ea) = πi,a,∀i ∈ [n], a ∈ [k],

and qαp,βp(p) and qαq ,βq(q) are Beta with parameters αp, βp, αq, βq due to conjugacy. See

Figure 5.1 for the graphical presentation of qπ,αp,βp,αq ,βq(Z, p, q).
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with B = q1k1
T
k + (p − q)Ik. We are interested in a Bayesian framework for

estimating Z, with prior given on both p, q and Z.
We assume {zi}n

i=1 have categorical (a.k.a. multinomial with size one)
prior with hyperparameter π ∈ [0, 1]n×k, where

∑k
a=1 πi,a = 1, ∀i ∈ [n]. It is

equivalently to state that, {Zi,·}n
i=1 are independently distributed with

P(Zi,· = eT
a ) = πi,a, ∀u = 1, 2, . . . , k,

where {ea}k
a=1 are the coordinate vectors. Here we allow the prior param-

eters on Zi,· varies. If we assume πi,· = πj,· for all i ̸= j, then this can be
degenerated into the usual case with same prior on all {zi}n

i=1.
Due to the fact that p, q ∈ (0, 1) and all the {Ai,j}i<j are Bernoulli random

variable, it is natural to consider the conjugate prior: Beta prior for both
p and q. We let p ∼ Ber(αp,βp) and q ∼ Ber(αq,βq) with hyperparameter
αp,βp,αq,βq. Thus the full likelihood function is
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propositions and their corresponding proofs are in the supplement.
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defined in analogous to that of vectors. That is, ∥X∥1 =

∑
i,j |Xi,j |. For any

set D, we denote |D| to be its cardinality. We denote Ber(p) to be a Bernoulli
random variable with success probability p. For two positive sequences xn

and yn, xn ! yn means xncyn for some constant c not depending on n. We
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In SBM, the value of connectivity probability Pi,j depends on the com-
munities the two endpoints i and j belong to. We assume pi,j = p if both
nodes come from the same community and Pi,j = q otherwise. Usually
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0 along with the increase of n. Our result justifies the phenomenon observed
in [6], that iterations help to reduce errors. The linear linear convergence
speed also indicates that BCAVI achieves statistical optimality within a few
iterations. As far as we know, this is the first theoretical guarantee for mean
field theory, despite a slight difference between BCAVI and classical CAVI,
as the the former one is a batch version of the latter one.

We require very mild conditions on the community sizes, number of com-
munities, the hyperparametes of priors, for the analysis on BCAVI. We al-
low the community sizes vary and not necessary in the same magnitude.
The number of communities, though assumed known, may grow along with
n very fast. Our analysis holds no matter the network is sparse or dense.
The overall assumption we need on the parameters are comparable to the
minimum assumption required in existing literature such as [14, 6, 7, 12, 4].

Organization. The paper is organized as follows. The details of SBM and
mean field theory are included in Section 2.1 and Section 2.3 respectively.
The BCAVI algorithm is given in Section 2.5. All the theoretical justifica-
tions for mean field method are in Section 3. Specifically, we present the-
oretical results for BCAVI in 3.2. The proofs of theorems are in Section 5
and the ones of main lemmas are in Section 6. All the auxiliary lemmas and
propositions and their corresponding proofs are in the supplement.

Notation. Throughout this paper, for any matrix X ∈ Rn×m, its ℓ1 norm is
defined in analogous to that of vectors. That is, ∥X∥1 =

∑
i,j |Xi,j |. For any

set D, we denote |D| to be its cardinality. We denote Ber(p) to be a Bernoulli
random variable with success probability p. For two positive sequences xn

and yn, xn ! yn means xncyn for some constant c not depending on n. We
adopt the notation xn ≍ yn if xn ! yn and yn ! xn. To distinguish from the
probabilities p, q, we use bold nation p and q to indicate distributions.

2. Mean Field Method.

2.1. Stochastic Block Model. Since proposed, Stochastic Block Model
(SBM) has been the most studied model for community detection. Consider
an n-node network with its adjacency matrix denoted by A. It is an un-
weighted and undirected network without self loop, such that A ∈ {0, 1}n,n,
A = AT and Ai,i = 0, ∀i ∈ [n]. Each edge is an independent Bernoulli
random variable, with EAi,j = Pi,j , ∀i < j.

In SBM, the value of connectivity probability Pi,j depends on the com-
munities the two endpoints i and j belong to. We assume pi,j = p if both
nodes come from the same community and Pi,j = q otherwise. Usually

parameter

latent
variable

observation

full Bayesian inference mean field approximation

n

n(n-1)/2 n(n-1)/2

n
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mean field theory usually assumes the independence of these variables in
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Figure 5.1: Graphical model presentations of full Bayesian inference (left panel) and the
mean field approximation (right panel) for community detection. The edges show the
dependence among variables.

Note that the distribution class of q is fully captured by the parameters (π, αp, βp, αq, βq),

and then the optimization in Equation (5.1) is equivalent to minimize over the parameters

as

(π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q ) = argmin
π∈Π1

αp,βp,αq ,βq>0

KL
[
qπ,αp,βp,αq ,βq(Z, p, q)

∥∥∥p(Z, p, q|A)
]
, (5.8)

where Π1 = {π ∈ [0, 1]n×k, ‖πi,·‖1 = 1}.

Here Π1 can be viewed as a relaxation of Π0: it uses an `1 constraint on each row

instead of the `0 constraint used in Π0. The global minimizer qπ̂MF(Z) gives approximate

probabilities to classify every node to each community. The optimization in Equation (5.8)

can be shown to be equivalent to a more explicit optimization as follows. Recall ψ(·) is the

digamma function with ψ(x) = d
dx [log Γ(x)].

Theorem 5.1. The mean field estimator (π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q ) defined in Equation

37



(5.8) is equivalent to

(π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q ) = argmin
π∈Π1

αp,βp,αq ,βq>0

f(π, αp, βp, αq, βq;A),

where

f(π, αp, βp, αq, βq;A) = t〈A− λ1n1Tn + λIn, ππ
T 〉+

1

2
[ψ(αq)− ψ(βq)] ‖A‖1

+
n

2
[ψ(βq)− ψ(αq + βq)]−

n∑

i=1

KL
[
Categorical(πi,·)‖Categorical(πprii,· )

]

−KL
[
Beta(αp, βp)‖Beta(αpri

p , βprip )
]
−KL

[
Beta(αq, βq)‖Beta(αpri

q , βpriq )
]
,

and

t = [[ψ(αp)− ψ(βp)]− [ψ(αq)− ψ(βq)]] /2 (5.9)

λ = [[ψ(βq)− ψ(αq + βq)]− [ψ(βp)− ψ(αp + βp)]] /(2t). (5.10)

The explicit formulation in Theorem 5.1 is helpful to understand the global minimizer

of the mean field method. However, the global minimizer π̂MF remains computationally

infeasible as the objective function is not convex. Fortunately, there is a practically useful

algorithm to approximate it.

5.3.1 Coordinate Ascent Variational Inference

CAVI is possibly the most popular algorithm to approximate the global minimum of the

mean field variational Bayes. It is an iterative algorithm. In Equation (5.8), there are latent

variables {Zi,·}ni=1, p, q. CAVI updates them one by one. Since the distribution class of q is

uniquely determined by the parameters {πi,·}ni=1, αp, βp, αq, βq, equivalently we are updating

those parameters iteratively. Theorem 5.2 gives explicit formulas for the coordinate updates.

Theorem 5.2. Starts with some π, αp, βp, αq, βq, the CAVI update for each coordinate (i.e.,

Equation (5.2) and Equation (5.3)) has an explicit expression as follows:
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• Update on p:

α′p = αpri
p +

∑

i<j

k∑

a=1

πi,aπj,aAi,j , and β′p = βprip +
∑

i<j

k∑

a=1

πi,aπj,a(1−Ai,j).

• Update on q:

α′q = αpri
q +

∑

i<j

∑

a6=b
πi,aπj,bAi,j , and β′q = βpriq +

∑

i<j

∑

a6=b
πi,aπj,b(1−Ai,j).

• Update on Zi,·,∀i = 1, 2, . . . , n:

π′i,a ∝ πprii,a exp


2t

∑

j 6=i
πj,a(Ai,j − λ)


 , ∀a = 1, 2, . . . , k,

where t and λ are defined in Equation (5.9) and Equation (5.10) respectively, and the

normalization satisfies
∑k

a=1 π
′
i,a = 1.

All coordinate updates in Theorem 5.2 have explicit formulas, which makes CAVI a

computationally attractive way to approximate the global optimum q̂MF for the community

detection problem.

5.3.2 Batch Coordinate Ascent Variational Inference

The Batch Coordinate Ascent Variational Inference (BCAVI) is a batch version of CAVI.

The difference lies in that CAVI updates the rows of π sequentially one by one, while

BCAVI uses the value of π to update all rows {π′i,·} according to Theorem 5.2. This makes

BCAVI especially suitable for parallel and distributed computing, a nice feature for large

scale network analysis.

We define a mapping h : Π1 → Π1 as follows. For any π ∈ Π1, we have

[ht,λ(π)]i,a ∝ πpri
i,a exp


2t

∑

j 6=i
πja (Ai,j − λ)


 , (5.11)

with parameters t and λ. For BCAVI, we update π by π′ = ht,λ(π) in each batch iter-

ation, with t, λ defined in Equations (5.14) and (5.15). See Algorithm 4 for the detailed
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implementation of BCAVI algorithm.

Algorithm 4: Batch Coordinate Ascent Variational Inference (BCAVI)

Input: Adjacency matrix A, number of communities k, hyperparameters
πpri, αpri

p , βpri
p , αpri

q , βpri
q , initializer π(0), number of iterations S.

Output: Mean variational Bayes approximation π̂, α̂p, β̂p, α̂q, β̂q.
for s = 1, 2, . . . , S do

1 Update α
(s)
p , β

(s)
p , α

(s)
q , β

(s)
q by

α(s)
p = αpri

p +
k∑

a=1

∑

i<j

Ai,jπ
(s−1)
i,a π

(s−1)
j,a , β(s)

p = βpri
p +

k∑

a=1

∑

i<j

(1−Ai,j)π(s−1)
i,a π

(s−1)
j,a ,

(5.12)

α(s)
q = αpri

q +
∑

a6=b

∑

i<j

Ai,jπ
(s−1)
i,a π

(s−1)
j,b , β(s)

q = βpri
q +

∑

a6=b

∑

i<j

(1−Ai,j)π(s−1)
i,a π

(s−1)
j,b .

(5.13)

2 Define

t(s) =
1

2

[[
ψ(α(s)

p )− ψ(β(s)
p )
]
−
[
ψ(α(s)

q )− ψ(β(s)
q )
]]

(5.14)

λ(s) =
1

2t(s)

[[
ψ(β(s)

q )− ψ(α(s)
q + β(s)

q )
]
−
[
ψ(β(s)

p )− ψ(α(s)
p + β(s)

p )
]]
, (5.15)

where ψ(·) is the digamma function. Then update π(s) with

π(s) = ht(s),λ(s)(π
(s−1)),

where the mapping h(·) is defined as in Equation (5.11).
end

3 We have π̂ = π(S), α̂p = α
(S)
p , β̂p = β

(S)
p , α̂q = α

(S)
q , β̂q = β

(S)
q .

Remark 1. The definitions of t(s) and λ(s) in Equations (5.14) and (5.15) involve the

digamma function, which costs a non-negligible computational resources each time called.

Note that we have ψ(x) ∈ (log(x− 1
2), log x) for all x > 1/2. For the computational purpose,

we propose to use the logarithmic function instead of digamma function in Algorithm 4,

i.e., Equations (5.14) and (5.15) are replaced by

t(s) =
1

2
log

α
(s)
p β

(s)
q

β
(s)
p α

(s)
q

, and λ(s) =
1

2t(s)
log

β
(s)
q (α

(s)
p + β

(s)
p )

(α
(s)
q + β

(s)
q )β

(s)
p

. (5.16)

Later we show that α
(s)
p , β

(s)
p , α

(s)
q , β

(s)
q are all at least in the order of np, which goes to

infinity, and thus the error caused by using the logarithmic function to replace the digamma
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function is negligible. All theoretical guarantees obtained in Section 5.4 for Algorithm 4

(i.e., Theorem 5.3, Theorem 5.4) still hold if we use Equation (5.16) to replace Equations

(5.14) and (5.15).

5.4 Theoretical Justifications

In this section, we establish theoretical justifications for BCAVI for community detection

under the Stochastic Block Model. Though Z, p and q are all unknown, the main interest

of community detection is on the recovery of the assignment matrix Z, while p and q are

nuisance parameters. As a result, our main focus is on developing convergence rate of

BCAVI for π.

5.4.1 Loss Function

We use `1 norm to measure the performance of recovering Z. Then for any Z,Z∗ ∈ Π1, the

loss function is defined as

`(Z,Z∗) =
1

n
min
ρ
‖Z − ρ ◦ Z∗‖1 =

1

n
min
ρ

∑

i,a

|Zi,a − Z∗i,ρ(a)|, (5.17)

where the minimization is over all permutations on [k] to avoid an identifiability issue of

labels.

There are a few reasons for the choice of the `1 norm. When both Z,Z ′ ∈ Π0, the `1

distance between Z and Z ′ is equal to the `0 norm, i.e., the Hamming distance between

the corresponding assignment vectors r−1(Z) and r−1(Z ′), which matches with the distance

used in the previous chapters. Despite a little abuse of notation, we use the same `(·, ·)

notation here.
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5.4.2 Ground Truth

We use the superscript asterisk (∗) to indicate the ground truth. The ground truth of

connectivity matrix B∗ is

B∗ = q∗1k1
T
k + (p∗ − q∗)Ik,

where p∗ is the within community connection probability and q∗ is the between community

connection probability. Throughout the chapter, we assume p∗ > q∗ such that the net-

work satisfies the so-called “assortative” property, with the within-community connectivity

probability larger than the between-community connectivity probability.

We further assume the network is generated by the true assignment matrix Z∗ in the

sense that Pi,j = (Z∗B∗Z∗T )i,j for all i 6= j. We are interested in deriving a statistical

guarantee of `(π̂(s), Z∗). Throughout this section we consider cases Z∗ ∈ Π0 or Z∗ ∈ Π
(ρ,ρ′)
0 ,

where Π
(ρ,ρ′)
0 is defined to be a subset of Π0 with all the community sizes bounded between

ρn/k and ρ′n/k. That is,

Π
(ρ,ρ′)
0 = {π ∈ Π0 : ρn/k ≤ |{i ∈ [n] : πi,a = 1}| ≤ ρ′n/k,∀a ∈ [k]}.

It is worth mentioning that ρ, ρ′ are not necessarily constants. We allow the community

sizes not to be of the same order in the theoretical analysis.

5.4.3 Guarantees

In Theorem 5.3, we present theoretic guarantees of the convergence rate of BCAVI when

initialized properly. Define

w = max
i∈[n]

max
a,b∈[k]

πpri
i,a/π

pri
i,b , and n̄min = min

a6=b
[na + nb]/2.

When w = 1, the priors for {r−1(Zi,·)}ni=1 are Categorical with parameter (1/k, 1/k, . . . , 1/k)

and n̄min = n/2 when there exist only two communities. The following quantity I plays a
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key role in the minimax theory [52]

I = −2 log
[√

p∗q∗ +
√

(1− p∗)(1− q∗)
]
,

which is the Rényi divergence of order 1/2 between two Bernoulli distributions: Ber(p∗)

and Ber(q∗). The proof of Theorem 5.3 is deferred to Section 5.5.3.

Theorem 5.3. Let Z∗ ∈ Π0. Let 0 < c0 < 1 be any constant. Assume 0 < c0p
∗ < q∗ <

p∗ = on(1),

nI/[wk[n/n̄min]2]→∞, and αpri
p , βprip , αpri

q , βpriq = on((p∗ − q∗)n2/k). (5.18)

Under the assumption that the initializer π(0) satisfies `(π(0), Z∗) ≤ cinitn̄min for some

sufficiently small constant cinit with probability at least 1 − ε, there exist some constant

c > 0 and some η = on(1) such that in each iteration for the BCAVI algorithm, we have

`(π(s+1), Z∗) ≤ exp(−(1− η)n̄minI) +
`(π(s), Z∗)√

nI/[wk[n/n̄min]2]
,∀s ≥ 0,

holds uniformly with probability at least 1− exp[−(n̄minI)
1
2 ]− n−c − ε.

Theorem 5.3 establishes a linear convergence rate for BCAVI algorithm. The coefficient

[nI/[wk[n/n̄min]2]]−1/2 is independence of s, and goes to 0 when n grows. The following

theorem is an immediate consequence of Theorem 5.3.

Theorem 5.4. Under the same condition as in Theorem 5.3, for any

s ≥ s0 , [nI/k]/ log[nI/[wk[n/n̄min]2]],

we have

`(π̂(s), Z∗) ≤ exp(−(1− 2η)n̄minI) ≤





exp(−(1− o(1))ρnI/k), k ≥ 3;

exp(−(1− o(1))nI/2), k = 2,

with probability at least 1− exp[−(n̄minI)
1
2 ]− n−c − ε.
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Theorem 5.4 shows that BCAVI provably attains the statistical optimality from the

minimax lower bound in Theorem 3.1 after at most s0 iterations. When the network is

sparse, i.e., p∗ and q∗ are at most in an order of (log n)/n, the quantity s0 can be shown to

be o(log n), and then BCAVI converges to be minimax rate within log n iterations. When the

network is dense, i.e., p∗ and q∗ are far bigger than (log n)/n, log n iterations are not enough

to attain the minimax rate. However, n`(π(s), Z∗) = o(n−a) for any a > 0 when s ≥ log n,

and thus all the nodes can be correctly clustered with high probability by clustering each

note to a community with the highest assignment probability. Therefore, it is enough to

pick the number of iterations to be log n in implementing BCAVI.

To help understand Theorem 5.3, we add a remark on conditions on model parameters

and priors, and a remark on initialization.

Remark 1 (Conditions on model parameters and priors). The community sizes are not

necessarily of the same order in Theorem 5.3. If we further assume ρ, ρ′ are constants,

and the prior πpri
i,a � 1/k,∀i ∈ [n], a ∈ [k] (for example, uniform prior), and then the first

condition in Equation (5.18) is equivalent to

nI/k3 →∞,

noting that n/n̄min � k and w � 1. It is comparable to the condition in Theorem 4.2.

Under the assumption nI/k3 → ∞, since we have I � (p∗ − q∗)2/p∗, it can be shown

that p∗, q∗ are far bigger than n−1, and then the second part of Equation (5.18) can also

be easily satisfied. For instance, we can simply set αpri
p , βpri

p , αpri
q , βpri

q all equals to 1, i.e.,

consider non-informative priors.

Remark 2 (Initialization). The requirement on the initializers for BCAVI in Theorem 5.3 is

relatively weak. When k is a constant and the community sizes are of the same order, the

condition needed is `(π(0), Z∗) ≤ c for some small constant c. Many existing methodologies

in community detection literature can be used. One popular choice is spectral clustering, or

our low-rank based spectral clustering proposed in Algorithm 1. They have a mis-clustering
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error bound as O(k2/I). From Equation (5.18), the error is o(n̄min), and then the condi-

tion that Theorem 5.3 requires for initialization is satisfied. The semidefinite programming

(SDP), another popular method for community detection, also enjoys satisfactory theoret-

ical guarantees [16, 23], and is suitable as an initializer.

5.5 Proofs

5.5.1 Proof of Theorem 5.1

From Equation (5.8), by some algebra we have

(π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q ) = argmin
π∈Π1

αp,βp,αq ,βq>0

Eq[log p(A|Z, p, q)]−KL(q(Z, p, q)‖p(Z, p, q)),

(5.19)

where we use q instead of qπ,αp,βp,αq ,βq for simplicity. From the conditional distribution in

Equation (5.6), the log-likelihood function can be simplified as

log p(A|Z, p, q) =
∑

a,b

∑

i<j

ZiaZjb

[
Ai,j log

Bab
1−Bab

+ log(1−Bab)
]
.

Due to the independence of Z and p, q under q, we have

Eq[log p(A|Z, p, q)] = Eq(p,q)


Eq(Z)


∑

a,b

∑

i<j

Zi,aZj,b

[
Ai,j log

Bab
1−Bab

+ log(1−Bab)
]




= Eq(p,q)


∑

a,b

∑

i<j

πi,aπj,b

[
Ai,j log

Bab
1−Bab

+ log(1−Bab)
]
 .

Since Ba,a = p,∀a ∈ [k] and Ba,b = q,∀a 6= b, we have

Eq[log p(A|Z, p, q)] = Eq(p,q)


∑

a

∑

i<j

πi,aπj,a

[
Ai,j log

p(1− q)
q(1− p) + log

1− p
1− q

]
 (5.20)

+ Eq(p,q)


∑

a,b

∑

i<j

πi,aπj,b

[
Ai,j log

q

1− q + log(1− q)
]

 .
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By properties of Beta distribution, we obtain

Eq(p,q) log
p(1− q)
q(1− p) = Eq(p) [log p− log(1− p)]− Eq(q) [log q − log(1− q)]

= [ψ(αp)− ψ(βp)]− [ψ(αq)− ψ(βq)] ,

and

Eq(p,q) log
1− q
1− p = Eq(q) log(1− q)− Eq(p) log(1− p)

= [ψ(βq)− ψ(αq + βq)]− [ψ(βp)− ψ(αp + βp)] .

This leads to

Eq(p,q)


∑

a

∑

i<j

πi,aπj,a

[
Ai,j log

p(1− q)
q(1− p) + log

1− p
1− q

]
 = 2t


∑

a

∑

i<j

πi,aπj,a(Ai,j − λ)




(5.21)

= t〈A− λ1n1Tn + λIn, ππ
T 〉.

Similarly we can obtain

Eq(p,q)


∑

a,b

∑

i<j

πi,aπj,b

[
Ai,j log

q

1− q + log(1− q)
]

 (5.22)

=

[
Eq(q) log

q

1− q

]∑

i<j

Ai,j
∑

a,b

πi,aπj,b +
[
Eq(q) log(1− q)

]∑

i<j

∑

a,b

πi,aπj,b

=
1

2
[ψ(αq)− ψ(βq)] ‖A‖1 +

n

2
[ψ(βq)− ψ(αq + βq)] ,

where we use the fact that ‖πi,·‖1 = 1,∀i ∈ [n]. Now consider the Kullback-–Leibler

divergence between q(Z, p, q) and p(Z, p, q). Due to the independence of p, q and {Zi,·}ni=1
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in both distributions, we have

KL(q(Z, p, q)‖p(Z, p, q)) = KL(q(Z)‖p(Z)) + KL(q(p)‖p(p)) + KL(q(q)‖p(q)) (5.23)

=

n∑

i=1

KL
[
Categorical(πi,·)‖Categorical(πpri

i,· )
]

+ KL
[
Beta(αp, βp)‖Beta(αpri

p , βpri
p )
]

+ KL
[
Beta(αq, βq)‖Beta(αpri

q , βpri
q )
]
.

By Equations (5.19) - (5.23), we conclude with the desired result.

5.5.2 Proof of Theorem 5.2

Note that

Bzi,zj =

[
k∑

a=1

Zi,aZj,a

]
p+


∑

a6=b
Zi,aZj,b


 q.

We rewrite the joint distribution p(p, q, z, A) in Equation (5.7) as follows,

p(p, q, Z,A) (5.24)

=

[
n∏

i=1

πpri
i,zi

]
∏

i<j

[
pAi,j (1− p)1−Ai,j]

∑k
a=1 Zi,aZj,a




∏

i<j

[
qAi,j (1− q)1−Ai,j]

∑k
a6=b Zi,aZj,b




×
[

Γ(αpri
p + βpri

p )

Γ(αpri
p )Γ(βpri

p )
pα

pri
p −1(1− p)βpri

p −1

][
Γ(αpri

q + βpri
q )

Γ(αpri
q )Γ(βpri

q )
qα

pri
q −1(1− q)βpri

q −1

]
.

Updates on p and q From Equation (5.24), p has conditional probability as

p(p|q, Z,A) ∝


∏

i<j

[
pAi,j (1− p)1−Ai,j]

∑k
a=1 Zi,aZj,a



[

Γ(αpri
p + βpri

p )

Γ(αpri
p )Γ(βpri

p )
pα

pri
p −1(1− p)βpri

p −1

]
.
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Then the CAVI update in Equation (5.3) leads to

q̂(p) ∝ exp
[
Eq(q,Z) log p(p|q, Z,A)

]

∝ exp


Eq(Z)

∑

i<j

k∑

a=1

Zi,aZj,a log
[
pAi,j (1− p)1−Ai,j]



[

Γ(αpri
p + βpri

p )

Γ(αpri
p )Γ(βpri

p )
pα

pri
p −1(1− p)βpri

p −1

]

= exp


∑

i<j

k∑

a=1

πi,aπj,a log
[
pAi,j (1− p)1−Ai,j]



[

Γ(αpri
p + βpri

p )

Γ(αpri
p )Γ(βpri

p )
pα

pri
p −1(1− p)βpri

p −1

]
.

It can be written as

q̂(p) ∝
[
p
∑
i<j

∑k
a=1 πi,aπj,aAi,j (1− p)

∑
i<j

∑k
a=1 πi,aπj,a(1−Ai,j)

] [ Γ(αpri
p + βpri

p )

Γ(αpri
p )Γ(βpri

p )
pα

pri
p −1(1− p)βpri

p −1

]
.

The distribution of p is still Beta p ∼ Beta(α′p, β
′
p), with

α′p = αpri
p +

∑

i<j

k∑

a=1

πi,aπj,aAi,j , and β′p = βpri
p +

∑

i<j

k∑

a=1

πi,aπj,a(1−Ai,j).

Similar analysis on q yields updates on α′q and β′q. Hence, its proof is omitted.

Updates on {Zi,·}ni=1 From Equation (5.24), the conditional distribution on Zi,· is

p(Zi,·|Z−i,·, p, q, A) ∝ πpri
i,zi


∏

j 6=i
B
Ai,j
zi,zj (1−Bzi,zj )1−Ai,j


 .

Consequently, up to a constant not depending on i, we have

logP(Zi,a = 1|Z−i,·, p, q, A)

= log πpri
i,a + log


∑

j 6=i
Zj,a

[
Ai,j log

p

1− p + log(1− p)
]

+
∑

j 6=i

∑

b6=a
Zj,b

[
Ai,j log

q

1− q + log(1− q)
]


= log πpri
i,a + log


∑

j 6=i
Zj,a

[
Ai,j log

p(1− q)
q(1− p) − log

1− q
1− p

]
+
∑

j 6=i

[
Ai,j log

q

1− q + log(1− q)
]
 .
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Then the CAVI update from Equation (5.3) leads to

π′i,a = q̂Zi,·(Zi,a = 1)

∝ exp
[
Eq(p,q,z−i) logP(Zi,a = 1|Z−i,·, p, q, A)

]

= exp
[
Eq(p)Eq(q)Eq(Z−i,·) logP(Zi, = 1|Z−i,·, p, q, A)

]

∝ πpri
i,a exp


Eq(p)Eq(q)

∑

j 6=i
πj,a

[
Ai,j log

p(1− q)
q(1− p) − log

1− q
1− p

]
 , (5.25)

where we use the property that p, q, Z are all independent of each other under q. Recall

that p ∼ Beta(αp, βp) and q ∼ Beta(αq, βq). It can be shown that

Eq(p) log
p

1− p = ψ(αp)− ψ(βp), and Eq(p) log(1− p) = ψ(βp)− ψ(αp + βp),

where ψ(·) is digamma function. Similar results hold for Eq(q) log(q/(1−q)) and Eq(q) log(1−

q). Plug in these expectations to Equation (5.25), we have

π′i,a ∝ πpri
i,a exp


2t

∑

j 6=i
πj,a(Ai,j − λ)


 .

5.5.3 Proof of Theorem 5.3

Theorem 5.3 gives a theoretical justification for all iterations in the BCAVI algorithm. Due

to the limit of pages, in this section we assume n`(π(0), Z∗) = o(n̄min). The proof of the

case n`(π(0), Z∗) in a constant order of n̄min is essentially the same with slight modification

and thus omitted here.

To prove the theorem, it is sufficient if we are able to show the loss `(·, Z∗) decreases in a

desired way for one BCAVI iteration, when the community assignment is in an appropriate

neighborhood of the truth. Let γ = o(1) be any sequence that goes to zero when n grows.

Define t∗ and λ∗ as the true counterparts of t and λ, by

t∗ =
1

2
log

p∗(1− q∗)
q∗(1− p∗) , and λ∗ =

1

2t∗
log

1− q∗
1− p∗ .
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The proof of Theorem 5.3 involves three parts as follows.

Part One: One Iteration. Consider any π ∈ Π1 such that ‖π − Z∗‖1 ≤ γn̄min. Let η′

be any sequence such that η′ = o(1). Consider any t and λ with |t − t∗| ≤ η′(p∗ − q∗)/p∗

and |λ − λ∗| ≤ η′(p∗ − q∗). We define F to be the event, that after applying the mapping

ht,λ(·), there exists some η = o(1) such that

‖ht,λ(π)− Z∗‖1 ≤ n exp(−(1− η)n̄minI) +
‖π − Z∗‖1√

nI/[wk[n/n̄min]2]
,

holds uniformly over all the eligible π, t and λ. We have

P(F) ≥ 1− exp[−(n̄minI)
1
2 )]− n−r,

for some constant r > 0. We defer its proof to the later part of this section.

Part Two: Consistency of Model Parameters. Consider any π ∈ Π1 such that

‖π − Z∗‖1 ≤ γn̄min. Define

αp = αpri
p +

k∑

a=1

∑

i<j

Ai,jπi,aπj,a, βp = βpri
p +

k∑

a=1

∑

i<j

(1−Ai,j)πi,aπj,a, (5.26)

and

αq = αpri
q +

∑

a6=b

∑

i<j

Ai,jπi,aπj,b, βq = βpri
q +

∑

a6=b

∑

i<j

(1−Ai,j)πi,aπj,b, (5.27)

and consequently,

t =
1

2
[[ψ(αp)− ψ(βp)]− [ψ(αq)− ψ(βq)]] (5.28)

λ =
1

2t
[[ψ(βq)− ψ(αq + βq)]− [ψ(βp)− ψ(αp + βp)]] . (5.29)

From Lemma 5.1, we have a concentration of t, λ towards t∗, λ∗. That is, there exists some
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η′ = o(1), such that with probability at least 1− e35−n, the following inequalities hold

|t− t∗| ≤ η′(p∗ − q∗)/p∗, and |λ− λ∗| ≤ η′(p∗ − q∗),

uniformly over all the eligible π.

Part Three: Multiple Iterations. Consider any π ∈ Π1 such that ‖π − Z∗‖1 ≤ γn̄min.

Define αp, βp, αq, βq, t, λ as Equations (5.26) - (5.29). A combination of results from Part

One and Part Two immediately implies that

‖ht,λ(π)− Z∗‖1 ≤ n exp(−(1− η)n̄minI) +
‖π − Z∗‖1√

nI/[wk[n/n̄min]2]
, (5.30)

holds uniformly over all the eligible π with probability at least 1− exp[−(n̄minI)
1
2 )]− n−r.

This is sufficient to show Theorem 5.3.

The only thing left to be proved, the most critical part towards the proof of Theorem

5.3, is the claim we made in Part One. We are going to prove the claim as follow.

Proof Sketch of Part One. The error associated with the [ht,λ(π)]i,· is a function of

π and Ai,·. It can be decomposed into a summation of two terms, one only involves the

ground truth Z∗ and the other involves the deviation π − Z∗. That is,

∥∥[ht,λ(π)]i,· − Z∗i,·
∥∥

1
≤ fi,1(Z∗, Ai,·) + fi,2(π − Z∗, Ai,·).

Consequently,

‖ht,λ(π)− Z∗‖1 ≤
n∑

i=1

fi,1(Z∗, Ai,·)

︸ ︷︷ ︸
involves Z∗

+

n∑

i=1

fi,2(π − Z∗, Ai,·)
︸ ︷︷ ︸

involves π−Z∗

. (5.31)

With a proper choice of f·,1 and f·,2, the first term on the RHS of Equation (5.31) leads to

the minimax rate n exp(−(1−η)n̄minI). Up to a constant not dependent on π, Z∗ or A, the
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second term can be written as

n∑

i=1

fi,2(π − Z∗, Ai,·) .
∑

a

(π·,a − Z∗·,a)T (A− EA)(A− EA)T (π·,a − Z∗·,a).

In this way it is all about the random matrix A − EA and there exist sharp bounds on

‖A − EA‖op. Note that
∑

a

∥∥π·,a − Z∗·,a
∥∥2 ≤ ∑a

∥∥π·,a − Z∗·,a
∥∥

1
≤ ‖π − Z∗‖1. The second

term ends up being upper bounded by ‖π − π∗‖1 multiplied by a coefficient factor.

Proof of Part One. Denote z = r−1(Z∗). By the definition of ht,λ(·) in Equation (5.11),

we have

∥∥[ht,λ(π)]i,· − Z∗i,·
∥∥

1
≤

2
∑

a6=zi π
pri
i,a exp

[
2t
∑

j 6=i πj,a(Ai,j − λ)
]

∑
a π

pri
i,a exp

[
2t
∑

j 6=i πj,a(Ai,j − λ)
]

≤ 2w
∑

a6=zi
1 ∧ exp


2t

∑

j 6=i
(πj,a − πj,zi)(Ai,j − λ)


 .

Define f(x) = 1 ∧ exp(−x). It can be shown that for any x0 < 0 and any integer m ≥ 1

we have f(x) ≤ exp(x0) +
∑m−1

l=0 exp(lx0/m)I{x ≥ (l + 1)x0/m}, which can be seen as a

stepwise approximation of the continuous function f(x). By taking x0 = −(na + nzi)I/2

and letting x = 2t
∑

j 6=i(πj,a − πj,zi)(Ai,j − λ), we have

∥∥[ht,λ(π)]i,· − Z∗i,·
∥∥

1
≤ 2w

∑

a6=zi
exp

[
−(na + nzi)I

2

]
+ 2w

m−1∑

l=0

[
exp

[
− l(na + nzi)I

2m

]

×
∑

a6=zi
I
[
2t
∑

j 6=i
(πj,a − πj,zi)(Ai,j − λ) ≥ −(l + 1)(na + nzi)I

2m

]]
.

We choose some m→∞ slowly such that

m = o(n̄minI) and m = o([wnI/[k[n/n̄min]2]1/4). (5.32)
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Thus, we have

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI) + 2w
m−1∑

l=0

k∑

a=1

∑

b 6=a

[
exp

[
− l(na + nb)I

2m

]

×
∑

i:zi=b

I
[∑

j 6=i
(πj,a − πj,b)(Ai,j − λ) ≥ −(l + 1)(na + nb)I

4mt

]]
(5.33)

where we use the fact that mina6=b(na + bb)/2 ≥ n̄min.

The key to the rest of the analysis is to understand Equation (5.33) through the de-

composition of the critical quantity
∑

j 6=i(πj,a − πj,b)(Ai,j − λ). We will show for any pair

of a, b ∈ [k] such that a 6= b, and any i ∈ [n] such that zi = b, it is equal to a summation

of two terms: one only involves the ground truth Z∗, and the other involves the deviation

π − Z∗. The former remains steady along iterations and contributes to the minimax rate,

while the latter needs to be connected with the error ‖π − Z∗‖1.

Let θa,b be a vector of length n such that [θa,b]j = πj,a−Z∗j,a+Z∗j,b−πj,b,∀j ∈ [n]. Then

we have

∑

j 6=i
(πj,a − πj,b)(Ai,j − λ) =

∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ) +

∑

j 6=i
(πj,a − Z∗j,a + Z∗j,b − πj,b)(Ai,j − λ)

(5.34)

=
∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ) +

∑

j 6=i
(Ai,j − λ)[θa,b]j

=
∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ)

︸ ︷︷ ︸
involves Z∗

+ (Ai,· − EAi,·)θa,b +
∑

j 6=i
(EAi,j − λ)[θa,b]j

︸ ︷︷ ︸
involves π−Z∗

.
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With the help of Equation (5.34), Equation (5.33) can be written as

‖ht,λ(π)− Z∗‖1

≤ 2wnk exp(−n̄minI) + 2w
m−1∑

l=0

k∑

a=1

∑

b 6=a

[
exp

[
− l(na + nb)I

2m

]

×
∑

i:zi=b

I
[∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ) ≥ −(l + 3/2)(na + nb)I

4mt
−
∑

j 6=i
(EAi,j − λ)[θa,b]j

]]

+ 2w

k∑

a=1

∑

b 6=a

[[
m−1∑

l=0

exp

[
− l(na + nb)I

2m

]]
×
∑

i:zi=b

I
[
(Ai,· − EAi,·)θa,b ≥

n̄minI

4mt

]]
.

Equations (5.18) and (5.32) imply
∑m−1

l=0 exp [−l(na + nb)I/(2m)] ≤ 2. Thus, we have

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI) + 2wLsum
1︸ ︷︷ ︸

involves Z∗

+ 4wLsum
2︸ ︷︷ ︸

involves π−Z∗
,

where

Lsum
1 ,

m−1∑

l=0

k∑

a=1

∑

b6=a
exp

[
− l(na + nb)I

2m

] ∑

i:zi=b

L1,i(a, b, l),

with L1,i(a, b, l) , I[
∑

j 6=i(Z
∗
j,a−Z∗j,b)(Ai,j−λ) ≥ −(l+3/2)(na+nb)I/(4mt)−

∑
j 6=i(EAi,j−

λ)[θa,b]j ], and

Lsum
2 ,

k∑

a=1

∑

b 6=a

∑

i:zi=b

I
[
(Ai,· − EAi,·)θa,b ≥

n̄minI

4mt

]
.

In this way we turn ‖ht,λ(π)− Z∗‖1 into calculations on Lsum
1 and Lsum

2 , where the former

only involves the ground truth Z∗ and the latter only involves the deviation π − Z∗.

We can obtain upper bounds on Lsum
1 and Lsum

2 as follows. Their proofs are deferred to

the end of this section.

• For Lsum
1 , there exists a sequence η′′ = o(1) such that with probability at least 1 −

exp[−2(n̄minI)
1
2 ], we have

Lsum
1 ≤ nmk exp

[
−(1− 2η′′)n̄minI

]
. (5.35)
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• For Lsum
2 , there exist constants c and r such that with probability at least 1− n−r −

exp(−5np∗), we have

Lsum
2 ≤ cknp∗ ‖π − Z∗‖1

(n̄minI/(mt∗))2
+
cn2kp∗ exp(−5np∗)

n̄minI/(mt∗)
. (5.36)

Thus, we have

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI) + 2wnmk exp
[
−(1− 2η′′)n̄minI

]

+
4cwknp∗ ‖π − Z∗‖1

(n̄minI/(mt∗))2
+

4cwkn2p∗ exp(−5np∗)
n̄minI/(mt∗)

,

with probability at least 1− exp[−2(n̄minI)
1
2 ]−n−r− exp(−5np∗). By Propositions 4.1 and

5.1, we have p∗t∗2 � I. Then due to Equation (5.32), we have

wknp∗

(n̄minI/(mt∗))2
� wm2

[
n

n̄min

]2 k

nI
= o

[
1√

nI/[wk[n/n̄min]2]

]
,

and

wkn2p∗ exp(−5np∗)
n̄minI/(mt∗)

� wmk
√
np∗√
nI

[
n

n̄min

]
n exp(−5np∗) ≤ n exp(−5n̄minI).

Thus, with probability at least 1− exp[−(n̄minI)
1
2 ]− n−r, there exists some η = o(1), such

that

‖ht,λ(π)− Z∗‖1 ≤ n exp(−(1− η)n̄minI) +
‖π − Z∗‖1√

nI/[wk[n/n̄min]2]
.

The proof for Part One is complete. The very last thing remained to be obtained is

upper bounds on Lsum
1 and Lsum

2 , i.e., Equations (5.35) and (5.36). Recall the definition

of θa,b. We have some properties on θa,b which will be useful in the analysis for Lsum
1 and

Lsum
2 : ‖θa,b‖∞ ≤ 2 and

‖θa,b‖1 ≤
∥∥π·,a − Z∗·,a

∥∥
1

+
∥∥π·,b − Z∗·,b

∥∥
1
≤ ‖π − Z∗‖1 ≤ γn̄min, (5.37)
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and

k∑

a=1

∑

b6=a
‖θa,b‖1 ≤ 2k

∑

a

∥∥π·,a − Z∗·,a
∥∥

1
≤ 2k ‖π − Z∗‖1 . (5.38)

1. Bounds on Lsum
1 . By applying Markov inequality, we have

EL1,i(a, b, l)

= P


t∗

∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ) ≥ − t

∗(l + 3/2)(na + nb)I

4mt
− t∗

∑

j 6=i
(EAi,j − λ)[θa,b]j




≤ exp

[
t∗(l + 3/2)(na + nb)I

4mt
+ t∗(EAi,j − λ1Tn )θa,b

]
E exp


t∗

∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ)


 .

With the help of Proposition 3.4, we have

E exp


t∗

∑

j 6=i
(Z∗j,a − Z∗j,b)(Ai,j − λ)




= exp(−t∗(λ− λ∗)(na − nb)) exp(−t∗λ∗(na − nb))
∏

j 6=i
E exp(t∗(Z∗j,a − Z∗j,b)Ai,j)

= exp(−t∗(λ− λ∗)(na − nb))
[
e−tλ

EetX

Ee−tY

]na−nb
2 [

EetXEe−tY
]na+nb

2

= exp(−t∗(λ− λ∗)(na − nb)) exp

[
−(na + nb)I

2

]
.

Hence

ELsum
1 (5.39)

=

m−1∑

l=0

k∑

a=1

∑

b6=a

[
exp

[
− l(na + nb)I

2m

]
exp


 t
∗(l + 3/2)(na + nb)I

4mt
+ t∗

∑

j 6=i
(EAi,j − λ)[θa,b]j




× exp(−t∗(λ− λ∗)(na − nb)) exp

[
−(na + nb)I

2

]]

≤
m−1∑

l=0

k∑

a=1

∑

b6=a
exp


−(1 + l

m −
t∗(l+3/2)

2mt )(na + nb)I

2
− t∗(λ− λ∗)(na − nb) + t∗

∑

j 6=i
(EAi,j − λ)[θa,b]j


 .
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We are going to show −(1 − η′′)n̄minI upper bounds terms in the exponent of RHS of

Equation (5.39) by some η′′ = o(1). We first present some properties of λ∗, t∗ and I that

will be helpful:

I � (p∗ − q∗)2/p∗, (5.40)

λ∗ ∈ (q∗, p∗), (5.41)

and t∗ � (p∗ − q∗)/p∗. (5.42)

Here Equations (5.40) and (5.41) are proved by Propositions 4.1 and 5.1 respectively. Equa-

tion (5.42) is due to t∗ � log(1 + (p∗ − q∗)/q∗) � (p∗ − q∗)/p∗ under the assumption that

p∗, q∗ = o(1), p∗ � q∗.

The first term in the exponent of Equation (5.39) is upper bounded by−(1−7/(8m))n̄minI

by the assumption t∗/t = 1 + o(1). Since |t∗(λ − λ∗)| ≤ η′t∗(p∗ − q∗), by Equations (5.40)

and (5.42) the second term is upper bounded by η′n̄minI up to a constant factor. For the

last term in the exponent of Equation (5.39), since |λ− λ∗| ≤ η′(p∗ − q∗) we have

t∗
∣∣∣∣
∑

j 6=i
(EAi,j − λ)[θa,b]i

∣∣∣∣ ≤ t∗
∣∣∣∣
∑

j 6=i
(EAi,j − λ∗)[θa,b]i

∣∣∣∣+ t∗
∣∣∣∣
∑

j 6=i
(λ∗ − λ)[θa,b]i

∣∣∣∣

≤ (1 + η′)t∗(p∗ − q∗) ‖θa,b‖1
≤ (1 + η′)t∗(p∗ − q∗)γn̄min

. γn̄minI,

where we use Equations (5.37) and (5.40) - (5.42).

As a consequence, there exists a sequence η′′ = o(1) that goes to zero slower than

m−1, γ, η′, such that the summation of three terms in the exponent of the RHS of Equation

(5.39) is upper bounded by −(1− η′′)n̄minI. Thus, Equation (5.39) can be written as

ELsum
1 ≤ nmk exp

[
−(1− η′′)n̄minI

]
.

Since η′′ goes to 0 slower than m−1, we have η′′ ≥ m−1 ≥ (n̄minI)
1
4 by Equation (5.32).
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Then by applying Markov inequality, we have

P
[
Lsum

1 ≥ nmk exp
[
−(1− 2η′′)n̄minI

]]
≤ exp

[
−η′′n̄minI

]
≤ exp

[
−2(n̄minI)

1
2

]
.

That is, with probability at least 1− exp[−2(n̄minI)
1
2 ], Equation (5.35) holds.

2. Bounds on Lsum
2 . Depending on whether the network is dense or sparse, we consider two

scenarios.

(1) Dense Scenario: q∗ ≥ (log n)/n. In this scenario, we have a sharp bound on ‖A −

EA‖op. First we observe that

∑

i:zi=b

[(Ai,· − EAi,·)θa,b]2 = θTa,b
∑

i:zi=b

[(Ai,· − EAi,·)T (Ai,· − EAi,·)]θa,b

≤ θTa,b
∑

i

[(Ai,· − EAi,·)T (Ai,· − EAi,·)]θa,b

= θTa,b[(A− EA)T (A− EA)]θa,b.

By applying Markov inequality, we have

Lsum
2 ≤

k∑

a=1

∑

b 6=a

θTa,b[(A− EA)T (A− EA)]θa,b

(n̄minI/(4mt))2
.

Since ‖θa,b‖∞ ≤ 2, we have ‖θa,b‖2 ≤ 2 ‖θa,b‖1. Lemma 5.4 shows ‖A − EA‖op ≤ √c1np

holds with probability at least 1−n−r for some constants c1, r > 0. Together with Equation

(5.38), we have

k∑

a=1

∑

b6=a
θTa,b[(A− EA)T (A− EA)]θa,b ≤

k∑

a=1

∑

b 6=a
‖A− EA‖2op ‖θa,b‖2

≤
k∑

a=1

∑

b 6=a
2c1np ‖θa,b‖1

≤ 4c1knp ‖π − Z∗‖1 .
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Thus, with probability at least 1− n−r,

Lsum
2 ≤ 4c1knp ‖π − Z∗‖1

(n̄minI/(4mt))2
.

(2) Sparse Scenario: q∗ < (log n)/n. When the network is sparse, the previous upper

bound on ‖A−EA‖op no longer holds. Instead, removing nodes with large degrees is required

to yield provably sharp bound on ‖A− EA‖op. Define S = {i ∈ [n],
∑

j Ai,j ≥ 20np∗}. We

define Ã, P̃ such that Ãi,j = Ai,jI{i, j /∈ S} and P̃i,j = (EAi,j)I{i, j /∈ S}. Then we have

the decomposition as

L2(a, b) ,
∑

i:zi=b

I
[
(Ai,· − EAi,·)θa,b ≥

n̄minI

4mt

]

≤
∑

i:zi=b

I
[
(Ãi,· − P̃i,·)θa,b ≥

n̄minI

8mt

]

+
∑

i:zi=b

I


∑

j 6=i
(Ai,j − EAi,j)[θa,b]i,jI{i ∈ S or j ∈ S} ≥ n̄minI

8mt




, L2,1(a, b) + L2,2(a, b).

Define Lsum
2,1 ,

∑k
a=1

∑
b 6=a L2,1(a, b). We have

Lsum
2,1 ≤

k∑

a=1

∑

b6=a

θTa,b[(Ã− P̃ )T (Ã− P̃ )]θa,b

(n̄minI/(8mt))2
≤

k∑

a=1

∑

b6=a

2‖Ã− P̃‖2op ‖θa,b‖1
(n̄minI/(8mt))2

.

Lemma 4.2 shows ‖Ã − P̃‖op ≤ √c2np holds with probability at least 1 − n−1 for some

constant c2 > 0. Then we have

Lsum
2,1 ≤

4c2knp ‖π − Z∗‖1
(n̄minI/(8mt))2

.

Lemma 5.3 shows
∑

i,j |Ai,j − EAi,j |I{i ∈ S} ≤ 20n2p∗ exp(−5np∗) holds with probability
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at least 1− exp(−5np∗). Then by applying Markov inequality, we have

Lsum
2,2 ,

k∑

a=1


∑

b 6=a
L2,2(a, b)




≤
k∑

a=1

n∑

i,j=1

|Ai,j − EAi,j ||[θa,b]i,j |I{i ∈ S or j ∈ S}
n̄minI/(8mt)

≤
k∑

a=1

4
∑

i,j |Ai,j − EAi,j |I{i ∈ S}
n̄minI/(8mt)

≤ 80n2kp∗ exp(−5np∗)
n̄minI/(8mt)

.

As a consequence, we have

Lsum
2 ≤ Lsum

2,1 + Lsum
2,2 ≤

4c2knp
∗ ‖π − Z∗‖1

(n̄minI/(8mt))2
+

80n2kp∗ exp(−5np∗)
n̄minI/(8mt)

,

with probability at least 1−n−1− exp(−5np∗). By the bounds on Lsum
1 and Lsum

2 , and due

to t/t∗ = 1 + o(1), we obtain Equation (5.36).

5.5.4 Additional Lemmas and Propositions and Their Proofs

Lemma 5.1. Let cinit be some sufficiently small constant. Consider any π ∈ Π1 such that

‖π − Z∗‖1 ≤ cinitn/k. Let αp, βp, αq, βq, t, λ be the outputs after one step CAVI iteration

from π described in Algorithm 4. That is, they are defined as Equations (5.26) - (5.29).

Define

p̂ =

∑
i<j

∑k
a=1 πi,aπj,aAi,j∑

i<j

∑k
a=1 πi,aπj,a

, and q̂ =

∑
i<j

∑
a6=b πi,aπj,bAi,j∑

i<j

∑
a6=b πi,aπj,b

.

Under the same assumption as in Theorem 5.3, there exists some sequence ε = o(1) such

that with probability at least 1− e35−n, the following inequality holds

max

{ |p̂− p∗|
p∗ − q∗ ,

|q̂ − q∗|
p∗ − q∗ ,

|t− t∗|
(p∗ − q∗)/p∗ ,

|λ− λ∗|
p∗ − q∗

}
≤ ε+ 24c0

‖π − Z∗‖1
n/k

,

uniformly over all the eligible π. In addition if we further assume cinit goes to 0, the LHS

of the above inequality will be simply upper bounded by ε.
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Proof. We are going to obtain tight bounds on |p̂− p∗| and |q̂− q∗| first. Note that we have

the “variance-bias” decomposition as in

|p̂− p∗| ≤
|∑i<j

∑k
a=1 πi,aπj,a(Ai,j − EAi,j)|
∑

i<j

∑k
a=1 πi,aπj,a

+

∣∣∣∣∣

∑
i<j

∑k
a=1 πi,aπj,aEAi,j∑

i<j

∑k
a=1 πi,aπj,a

− p∗
∣∣∣∣∣ .

We have concentration inequality holds for the numerator in the first term by Lemma 5.2.

That is, with probability at least 1− e35−n, we have

∣∣∣∣∣∣
∑

i<j

k∑

a=1

πi,aπj,a(Ai,j − EAi,j)

∣∣∣∣∣∣
=

∣∣∣∣
1

2
〈A− EA, ππT 〉

∣∣∣∣ ≤ 3n
√
np∗

holds uniformly over all π ∈ Π1. For the denominator, we have

n2

2
≥
∑

i<j

k∑

a=1

πi,aπj,a =
1

2

k∑

a=1

‖π·,a‖21 ≥
n2

2k
,

since
∑k

a=1 ‖π·,a‖1 = n. Thus, we are able to obtain an upper bound on the first term as

|∑i<j

∑k
a=1 πi,aπj,a(Ai,j − EAi,j)|
∑

i<j

∑k
a=1 πi,aπj,a

≤ 6

√
k2p∗

n
.

For the second term, since EAi,j = p∗
∑k

a=1 Z
∗
i,aZ

∗
j,a + q∗(1−∑k

a=1 Z
∗
i,aZ

∗
j,a), we have

∣∣∣∣∣

∑
i<j

∑k
a=1 πi,aπj,aEAi,j∑

i<j

∑k
a=1 πi,aπj,a

− p∗
∣∣∣∣∣ = (p∗ − q∗)

∣∣∣
∑

i<j

[∑k
a=1 πi,aπj,a

] [∑k
a=1 1− Z∗i,aZ∗j,a

]∣∣∣
∑

i<j

∑k
a=1 πi,aπj,a

= (p∗ − q∗)
∣∣〈ππT , 11T − Z∗Z∗T 〉

∣∣
∑

i<j

∑k
a=1 πi,aπj,a

= (p∗ − q∗)
∣∣〈ππT − Z∗Z∗T , 11T − Z∗Z∗T 〉

∣∣
∑

i<j

∑k
a=1 πi,aπj,a

,

where in the last inequality we use the orthogonality between Z∗Z∗T and 11T −Z∗Z∗T . For
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its numerator, we have

∣∣〈ππT − Z∗Z∗T , 11T − Z∗Z∗T 〉
∣∣ ≤

∥∥ππT − Z∗Z∗T
∥∥

1

≤ ‖π − Z∗‖1 (‖π‖1 + ‖Z∗‖1)

≤ ‖π − Z∗‖1 (2 ‖Z∗‖1 + ‖π − Z∗‖1)

≤ 3n ‖π − Z∗‖1 .

This leads to

∣∣∣∣∣

∑
i<j

∑k
a=1 πi,aπj,aEAi,j∑

i<j

∑k
a=1 πi,aπj,a

− p∗
∣∣∣∣∣ ≤

3n ‖π − Z∗‖1 (p∗ − q∗)
n2/k

≤ 3kn−1(p∗ − q∗) ‖π − Z∗‖1 .

Thus,

|p̂− p∗| ≤ 6

√
k2p∗

n
+ 3kn−1(p∗ − q∗) ‖π − Z∗‖1 ≤

[√
k2p∗

n(p∗ − q∗)2
+

3 ‖π − Z∗‖1
n/k

]
(p∗ − q∗).

Similar result holds for |q̂ − q∗|. Denote η0 =
√

k2p∗
n(p∗−q∗)2 +

3‖π−Z∗‖1
n/k , thus

max{|p̂− p∗|, |q̂ − q∗|} ≤ η0(p∗ − q∗).

By the assumption of nI in Equation (5.18) and Proposition 4.1, we have n(p∗−q∗)2/(k2p∗) �

nI/k2 → ∞. Therefore, the first term in η0 goes to 0. The second term in η0 is at most

3cinit which implies η0 ≤ 4cinit.

By the fact that the digamma function satisfies ψ(x) ∈ (log(x − 1/2), log x), ∀x ≥ 1/2,

we have

ψ(αp)− ψ(βp) ≥ log
αp − 1/2

βp

= log




[
αpri
p − 1/2 +

∑
i<j

∑k
a=1 πi,aπj,aAi,j

] / [∑
i<j

∑k
a=1 πi,aπj,a

]

1 +
[
βpri
p −

∑
i<j

∑k
a=1 πi,aπj,aAi,j

] / [∑
i<j

∑k
a=1 πi,aπj,a

]




= log



p̂+ (αpri

p − 1/2)
/ [∑

i<j

∑k
a=1 πi,aπj,a

]

1− p̂+ βpri
p

/ [∑
i<j

∑k
a=1 πi,aπj,a

]


 .
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Recall that we have shown
∑

i<j

∑k
a=1 πi,aπj,a lies in the interval of (n2/(2k), n2/2). By

Equation (5.18), there exists a sequence η′ = o(1) such that αp, βp ≤ η′(p∗− q∗)n2/k. Then

we have

ψ(αp)− ψ(βp) ≥ log
p∗ − |p∗ − p̂| − η′(p∗ − q∗)

1− p∗ + |p∗ − p̂|+ η′(p∗ − q∗) .

Similar analysis leads to

ψ(αq)− ψ(βq) ≤ log
q∗ + |q∗ − q̂|+ η′(p∗ − q∗)

1− q∗ − |q∗ − q̂| − η′(p∗ − q∗) .

Together we have

t− t∗ ≥ log

[
p∗ − |p∗ − p̂| − η′(p∗ − q∗)

1− p∗ + |p∗ − p̂|+ η′(p∗ − q∗)
1− q∗ − |q∗ − q̂| − η′(p∗ − q∗)
q∗ + |q∗ − q̂|+ η′(p∗ − q∗)

]
− t∗

≥ log

[[
1− |p

∗ − p̂|+ η′(p∗ − q∗)
q∗

]4 p∗(1− q∗)
q∗(1− p∗)

]
− t∗

= 4 log

[
1− (η0 + η′)

p∗ − q∗
q∗

]
.

Recall that we assume c0p
∗ < q∗ < p∗. Thus (η0 + η′)(p∗ − q∗)/p∗ ≤ 5cinitc0. When cinit is

sufficiently small, we have (η0+η′)(p∗−q∗)/p∗ ≤ 1/2. Then using the fact −x ≥ log(1−x) ≥

−2x, ∀x ∈ (0, 1/2). We have

t− t∗ ≥ −8(η0 + η′)(p∗ − q∗)/q∗.

Analogously we can obtain the same upper bound on t̂− t∗, and then

|t− t∗| ≤ 8c0(η0 + η′)
p∗ − q∗
p∗

.
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Identical analysis can be applied towards bounds on |λ̂− λ∗|. Note that

log
βp

αp + βp
= log




1− p̂+ βpri
p

/ [∑
i<j

∑k
a=1 πi,aπj,a

]

1 + (αpri
p + βpri

p )
/ [∑

i<j

∑k
a=1 πi,aπj,a

]


 ,

similarly for αq, βq. Omitting the immediate steps, we end up with

|λ− λ∗| = | [ψ(βq)− ψ(αq + βq)]− [ψ(βp)− ψ(αp + βp)]− λ∗| ≤ 8(η0 + η′)(p∗ − q∗).

The proof is complete after we unify and rephrase all the aforementioned results. �

Lemma 5.2. Let A ∈ [0, 1]n×n such that A = AT and Ai,i = 0, ∀i ∈ [n]. Assume

{Ai,j}i<j are independent random variable, and there exists p ≤ 1 such that 9n−1 ≤
2

n(n−1)

∑
i<j Var(Ai,j) ≤ p, and then we have

sup
π∈Π1

∣∣∣〈A− EA, ππT 〉
∣∣∣ ≤ 6n

√
np,

with probability at least 1− e35−n.

Proof. This result is a direct consequence of Grothendieck inequality [22] (see also Theorem

3.1 of [23] for a rephrased statement) on the matrix A−EA. The Lemma 4.1 of [23] proves

that with probability at least 1− e35−n,

sup
s,t∈{−1,1}n

∣∣∣
∑

i,j

(Ai,j − EAi,j)sitj
∣∣∣ ≤ 3n

√
np.

Then by applying Grothendieck inequality we obtain

sup
‖Xi‖2≤1,∀i∈[n]

∣∣∣
∑

i,j

(Ai,j − EAi,j)XT
i Xj

∣∣∣ ≤ 3cn
√
np,

where c is a positive constant smaller than 2. This concludes with

sup
π∈Π1

∣∣∣〈A− EA, ππT 〉
∣∣∣ ≤ 6n

√
np,

�
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Lemma 5.3. Let A ∈ {0, 1}n×n be a symmetric binary matrix with Ai,i = 0,∀i ∈ [n],

and {Ai,j}i<j are independent Bernoulli random variable. Let p ≥ maxi,j EAi,j. Define

S = {i ∈ [n],
∑

j Ai,j ≥ 20np} and Zi =
∑

j |Ai,j − EAi,j |I{i ∈ S}. Then with probability at

least 1− exp(−5np), we have

∑

i

Zi ≤ 20n2p exp(−5np).

Proof. Note that E
∑

j |Ai,j − EAi,j | ≤ 2np(1− p) ≤ 2np. For any s ≥ 20np, we have

P(Zi > s) ≤ P


∑

j

|Ai,j − EAi,j | − E
∑

j

|Ai,j − EAi,j | > s− 2np




≤ exp

[
−

1
2(s− 2np)2

np+ 1
3(s− 2np)

]

≤ exp(−s/2),

by implementing Bernstein inequality. Applying Bernstein inequality again we have

P(Zi > 0) = P


∑

j

Ai,j ≥ 20np




≤ P


∑

j

Ai,j − E
∑

j

Ai,j ≥ 18np




≤ exp

[
− (18np)2/2

np+ 18np/3

]

≤ exp(−21np/2).

Thus, we are able to bound EZi with

EZi ≤
∫ 20np

0
P(Zi > 0)ds+

∫ ∞

20np
P(Zi > s)ds

≤ 20np exp(−21np/2) +

∫ ∞

20np
exp(−s/2)

≤ 20np exp(−10np).
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By Markov inequality, we have

P


∑

i,j

|Ai,j − EAi,j |I{i ∈ S} ≥ 20n2p exp(−5np)


 = P

[∑

i

Zi ≥ 20n2p exp(−5np)

]

≤ nEZ1

20n2p exp(−5np)

≤ exp(−5np).

�

Proposition 5.1. Define λ = log 1−q
1−p/ log p(1−q)

q(1−p) . For any p, q > 0 such that p, q = o(1)

and p � q, there exists a constant 0 < c < 1/2 such that

λ− q
p− q ∈ (c, 1− c).

Proof. First we are going to establish the lower bound. Let x = p − q, and then we can

rewrite λ as

λ =
1

1 + log(1+x/q)
log(1+x/(1−q−x))

.

Case I: x ≥ q/10 Define s = (p − q)/q. Since p � q we have s ≥ 1/10 and also upper

bounded by some constant. We have

λ− q
p− q =

1

s


1

q

1

1 + log(1+s)
log(1+sq/(1−(s+1)q))

− 1




=
1

s

[
(1− q) log(1 + sq/(1− (s+ 1)q))− q log(1 + s)

q log(1 + sq/(1− (s+ 1)q)) + q log(1 + s)

]

≥ 1

s

(1− q) sq
1−(s+1)q − q log(1 + s)

2q log(1 + s)

≥ 1

8

1− q
log(1 + s)

,

which is lower bounded by some constant c > 0.
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Case II: x < q/10 By Taylor theorem, there exist 0 ≤ ε1, ε2 ≤ 1/10 such that

log

[
1 +

x

q

]
=
x

q
− 1− ε1

2

[
x

q

]2

,

and log

[
1 +

x

1− q − x

]
=

x

1− q − x −
1− ε2

2

[
x

1− q − x

]2

.

Thus, we have

log(1 + x
q )

log(1 + x
1−q−x)

=
q(1− q)2 −

[
2q(1− q) + 1−ε1

2 (1− q)2
]
x+ c1x

2 + c2x
3

q2(1− q)− 3−ε2
2 q2x

,

where c1 = (1− ε1)(1− q) + q and c2 = −(1− ε1)/2. Thus,

λ− q
p− q =

1

x

[
q2(1− q)− 3−ε2

2 q2x

q(1− q)−
[
2q(1− q) + 1−ε1

2 (1− q)2 + 3−ε2
2 q2

]
x+ c1x2 + c2x3

− q
]

=

[
1
2q(1− q) + ε2

2 q
2(1− q)− ε1

2 (1− q)2q
]

+ c1qx+ c2qx
2

q(1− q)−
[
2q(1− q) + 1−ε1

2 (1− q)2 + 3−ε2
2 q2

]
x+ c1x2 + c2x3

Note that |c1|, |c2| ≤ 1. We have

λ− q
p− q ≥

1
4q(1− q)
2q(1− q) ≥ 1/8.

By using exactly the same discussion, we can show (p−λ)/(p− q) > c. Thus, we proved

the desired bound stated in the proposition. �

Lemma 5.4. [Theorem 5.2 of [35]] Let A ∈ {0, 1}n×n be a symmetric binary matrix

with Ai,i = 0,∀i ∈ [n], and {Ai,j}i<j are independent Bernoulli random variable. If

p , maxi,j EAi,j ≥ log n/n. Then there exist constants c, r > 0 such that

‖A− EA‖op ≤ c
√
np,

with probability at least 1− n−r.
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Chapter 6

Generalization: Degree-corrected

Block Model

Despite a rich literature dedicated to their theoretical properties, SBMs suffer significant

drawbacks when it comes to modeling real world social and biological networks. In par-

ticular, due to the model assumption, all nodes within the same community in an SBM

are exchangeable and hence have the same degree distribution. In comparison, nodes in

real world networks often exhibit degree heterogeneity even when they belong to the same

community [43]. For example, Bickel and Chen [8] showed that for a karate club network,

SBM does not provide a good fit for the data set, and the resulting clustering analysis is

qualitatively different from the truth.

One way to accommodate degree heterogeneity is to introduce a set of degree-correction

parameters {θi : i = 1, . . . , n}, one for each node, which can be interpreted as the popularity

or importance of a node in the network. Then one could revise the edge distributions to

Aij = Aji
ind.∼ Bern(θiθjBz(i)z(j)) for all i > j, and this gives rise to the Degree-Corrected

Block Model (DCBM) [14, 33]. In a DCBM, within the same community, a node with a

larger value of degree-correction parameter is expected to have more connections than that

with a smaller value. On the other hand, SBMs are special cases of DCBM in which the

degree-correction parameters are all equal. Empirically, the larger class of DCBM is able

to provide possibly much better fits to many real world network datasets [43]. Throughout
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the chapter, we allow k and B to scale with n as n tends to infinity. Since the pro-

posal of the model, there have been various methods proposed for community detection

in DCBM, including but not limited to spectral clustering [25, 30, 35, 44] and modularity

based approaches [5, 11, 33, 54]. On the theoretical side, [24] provides an information-

theoretic characterization of the impossibility region of community detection for DCBM

with two clusters, and sufficient conditions have been given in [11, 54] for strongly and

weakly consistent community detection. However, two fundamental statistical questions

remain unanswered:

• What are the fundamental limits of community detection in DCBM?

• Once we know these limits, can we achieve them adaptively via some polynomial time

algorithm?

These two questions are also the main topics of Chapter 3 and 4 for the SBM. We are

going to provide answers for them in this chapter for the DCBM.

6.1 Model

Recall that a random graph of size n generated by a DCBM has its adjacency matrix A

satisfying Aii = 0 for all i ∈ [n] and

Aij = Aji
ind∼ Bern(θiθjBz(i)z(j)) for all i 6= j ∈ [n]. (6.1)

For each u ∈ [k] and a given z ∈ [k]n, we let nu = nu(z) =
∑n

i=1 1{z(i)=u} be the size of the

uth community. Let P = E[A] ∈ [0, 1]n×n. We propose to consider the following parameter
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space for DCBM of size n:

Pn(θ, p, q, k, β; δ) =
{
P ∈ [0, 1]n×n : ∃z ∈ [k]n and B = BT ∈ Rk×k,

s.t. Pii = 0, Pij = θiθjBz(i)z(j), ∀i 6= j ∈ [n],

1

nu

∑

z(i)=u

θi ∈ [1− δ, 1 + δ], ∀u ∈ [k],

max
u6=v

Buv ≤ q < p ≤ min
u
Buu,

n

βk
− 1 ≤ nu ≤

βn

k
+ 1, ∀u ∈ [k]

}
.

(6.2)

We are mostly interested in the behavior of minimax risks over a sequence of such

parameter spaces as n tends to infinity and the key model parameters θ, p, q, k scale with n

in some appropriate way. On the other hand, we take β ≥ 1 as an absolute constant and

require the (slack) parameter δ to be an o(1) sequence throughout the chapter.

To see the rationale behind the definition in (6.2), let us examine each of the parameters

used in the definition. The starting point is θ ∈ Rn+, which we treat for now as a given

sequence of degree-correction parameters. Given θ, we consider all possible label vectors z

such that the approximate normalization 1
nu

∑
z(i)=u θu = 1+o(1) holds for all communities.

The introduction of the slack parameter 0 < δ = o(1) rules out those parameter spaces in

which community detection can be trivially achieved by only examining the normalization

of the θi’s. On the other hand, the proposed normalization ensures that for all u 6= v ∈ [k],

Buu ≈
1

nu(nu − 1)

∑

i:z(i)=u

∑

j 6=i:z(j)=u
Pij and Buv ≈

1

nunv

∑

i:z(i)=u

∑

j:z(j)=v

Pij .

Therefore, Buu and Buv can be understood as the (approximate) average connectivity within

the uth community and between the uth and the vth communities, respectively. Under this

interpretation, p can be seen as a lower bound on the within community connectivities and

q an upper bound on the between community connectivities. We require the assumption

p > q to ensure that the model is “assortative” in an average sense. Finally, we also require

the individual community sizes to be contained in the interval [n/(βk) − 1, βn/k + 1]. In

other words, the community sizes are assumed to be of the same order. Although we have
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focused on the case of assortative networks, we expect the same expression of minimax rates

to hold in the disassortative case, i.e., minu6=v Buv ≥ q > p ≥ maxuBuu.

6.2 Minimax Risks

The key information-theoretic quantity that governs the minimax risk of community detec-

tion is I, which is defined through

exp(−I) =





1
n

∑n
i=1 exp

(
−θi n2 (

√
p−√q)2

)
, k = 2,

1
n

∑n
i=1 exp

(
−θi nβk (

√
p−√q)2

)
, k ≥ 3.

(6.3)

Note that it is very similar to Equation (3.2), thus we use the same notation I despite a bit

abuse of notation.

Minimax upper bounds Given any parameter space Pn(θ, p, q, k, β; δ), we can define

the following estimator:

ẑ = argmax
z′∈Pn(θ,p,q,k,β;δ)

∏

1≤i<j≤n

[
(θiθjp)

Aij (1− θiθjp)1−Aij1{z′(i)=z′(j)}

+ (θiθjq)
Aij (1− θiθjq)1−Aij1{z′(i)6=z′(j)}

]
.

(6.4)

If there is a tie, we break it arbitrarily. The estimator (6.4) is the maximum likelihood

estimator for a special case of DCBM where Buu = p and Buv = q for all u 6= v ∈ [k]. In

other cases, the objective function in (6.4) is a misspecified likelihood function. For any

sequences {an} and {bn}, we write an = Ω(bn) if an ≥ Cbn for some absolute constant

C > 0 for all n ≥ 1. The following theorem characterizes the asymptotic behavior of the

risk bounds for the estimator (6.4).

Theorem 6.1 (Minimax Upper Bounds). Consider any sequence

{Pn(θ, p, q, k, β; δ)}∞n=1 such that as n → ∞, I → ∞, p > q, ‖θ‖∞ = o(n/k), mini∈[n] θi =

Ω(1) and log k = o(min(I, log n)). When k ≥ 3, further assume β ∈ [1,
√

5/3). Then the
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estimator in (6.4) satisfies

lim sup
n→∞

1

I
log

(
sup

Pn(θ,p,q,k,β;δ)
E `(ẑ, z)

)
≤ −1.

Before proceeding, we briefly discuss the conditions in Theorem 6.1. First, the condition

mini∈[n] θi = Ω(1) requires that all θi’s are at least of constant order. One should note that

this condition does not rule out the possibility that maxi θi � mini θi, and so a great

extent of degree variation, even within the same community, is allowed. Next, log k =

o(log n) requires that the number of communities k, if it diverges to infinity, grows at a

sub-polynomial rate with the number of nodes n. Furthermore, β ∈ [1,
√

5/3) is a technical

condition that we need for a combinatorial argument in the proof to go through when k ≥ 3.

When k = O(1) and Ω(1) = mini θi ≤ ‖θ‖∞ = O(1), Theorem 6.1 only requires I → ∞,

which is equivalent to n(p− q)2/p→∞. Informed readers might find the result in Theorem

6.1 in parallel to that in [52]. However, due to the presence of degree-correction parameters,

the proof of Theorem 6.1 is significantly different from that of the corresponding result in

[52]. For example, a new folding argument is employed to deal with degree heterogeneity.

Minimax lower bounds We now show that the rates in Theorem 6.1 are asymptotic

minimax optimal by establishing matching minimax lower bounds. To this end, we require

the following condition on the degree-correction parameters θ ∈ Rn+. The condition guar-

antees that Pn(θ, p, q, k, β; δ) is non-empty. Moreover, it is only needed for establishing

minimax lower bounds.

Condition 1. We say that θ ∈ Rn+ satisfies Condition N if

1. When k = 2, there exists a disjoint partition C1, C2 of [n], such that |C1| = bn/2c,

|C2| ∈ {bn/2c, bn/2c+ 1} and |Cu|−1
∑

i∈Cu θi ∈ (1− δ/4, 1 + δ/4) for u = 1, 2.

2. When k ≥ 3, there exists a disjoint partition {Cu}u∈[k] of [n], such that |C1| ≤ |C2| ≤

... ≤ |Ck|, |C1| = |C2| = bn/(βk)c and |Cu|−1
∑

i∈Cu θi ∈ (1−δ/4, 1+δ/4) for all u ∈ [k].

We note that the condition is only on θ (as opposed to the parameter space) and the

actually communities in the data generating model need not coincide with the partition
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that occurs in the statement of the condition.

With the foregoing definition, we have the following result.

Theorem 6.2 (Minimax Lower Bounds). Consider any sequence

{Pn(θ, p, q, k, β; δ)}∞n=1 such that as n → ∞, I → ∞, 1 < p/q = O(1), p‖θ‖2∞ = o(1),

log k = o(I), log(1/δ) = o(I) and θ satisfies Condition N. Then

lim inf
n→∞

1

I
log

(
inf
ẑ

sup
Pn(θ,p,q,k,β;δ)

E `(ẑ, z)
)
≥ −1.

Compared with the conditions in Theorem 6.1, the conditions of Theorem 6.2 are slightly

different. The condition 1 < p/q = O(1) ensures that the smallest average within commu-

nity connectivity is of the same order as (albeit larger than) the largest average between

community connectivity. Such an assumption is typical in the statistical literature on block

models. The condition ‖θ‖2∞ p = o(1) ensures that the maximum expected node degree

scales at a sublinear rate with the network size n. Furthermore, when k = O(1), the con-

dition log k = o(I) can be dropped because it is equivalent to I → ∞, which in turn is

necessary for the minimax risk to converge to zero.

Combining both theorems, we have the minimax risk of the problem.

Theorem 6.3. Under the conditions of Theorems 6.1 and 6.2, we have

inf
ẑ

sup
Pn(θ,p,q,k,β;δ)

E`(ẑ, z) = exp(−(1 + o(1))I),

where o(1) stands for a sequence whose absolute values tend to zero as n tends to infinity.

When θ = 1n, the foregoing minimax risk reduces to the corresponding result for SBM

in the sparse regime where q < p = o(1). In this case, Equation (6.3) implies that the

minimax risk is

exp(−(1 + o(1))I) =





exp
(
−(1 + o(1))n2 (

√
p−√q)2

)
, k = 2,

exp
(
−(1 + o(1))βnk (

√
p−√q)2

)
, k ≥ 3.

Note that when q < p = o(1), the Rényi divergence of order 1
2 used in the minimax risk

73



expression in Theorem 3.1 is equal to (1+o(1))(
√
p−√q)2, indicating a match with Theorem

3.1.

6.3 An Adaptive and Computationally Feasible Procedure

Theorem 6.1 shows that the minimax rate can be achieved by the estimator (6.4) obtained

via combinatorial optimization which is not computationally feasible. Moreover, the proce-

dure depends on the knowledge of the parameters θ, p and q. These features make it not

applicable in practical situations. In this section, we introduce a two-stage algorithm for

community detection in DCBM which is not only computationally feasible but also adap-

tive over a wide range of unknown parameter values. We show that the procedure achieves

minimax optimal rates under certain regularity conditions.

6.3.1 A Two-Stage Algorithm

We first give the method for initialization (Algorithm 5), and then present the complete

algorithm (Algorithm 6).

Initialization: weighted k-medians clustering. We first give Algorithm 5, which is

an analogous of the low-rank based spectral clustering (i.e., Algorithm 1) for the regular

SBM.

To explain the rationale behind our proposal, with slight abuse of notation, let P =

(Pij) ∈ [0, 1]n×n, where for all i, j ∈ [n], Pij = Pji = θiθjBz(i)z(j). Except for the diagonal

entries, P is the same as in (6.2). For any i ∈ [n], let Pi denote the ith row of P . Then for

all i such that z(i) = u, we observe that

θ−1
i Pi = (θ1Bu,z(1), . . . , θnBu,z(n))

are all equal. Thus, there are exactly k different vectors that the normalized row vectors

{θ−1
i Pi}ni=1 can be. Moreover, which one of the k vectors the ith normalized row vector

equals is determined solely by its community label z(i). This observation suggests one can
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Algorithm 5: Weighted k-medians Clustering

Data: Adjacency matrix A ∈ {0, 1}n×n, number of clusters k, tuning parameter τ .
Result: Initial label estimator ẑ0.

1 Define Tτ (A) ∈ {0, 1}n×n by replacing the ith row and column of A whose row sum
is larger than τ by zeroes for each i ∈ [n];

2 Solve

P̂ = argmin
rank(P )≤k

‖Tτ (A)− P‖2F;

3 Let P̂i be the ith row of P̂ . Define S0 = {i ∈ [n] :
∥∥∥P̂i
∥∥∥

1
= 0}. Set ẑ0(i) = 0 for

i ∈ S0, and define P̃i = P̂i/
∥∥∥P̂i
∥∥∥

1
for i /∈ S0;

4 Solve a (1 + ε)-k-median optimization problem on Sc0. That is, find {ẑ0(i)}i∈Sc0 in

[k]|S
c
0| that satisfies

k∑

u=1

min
vu∈Rn

∑

{i∈Sc0:ẑ0(i)=u}

∥∥∥P̂i
∥∥∥

1

∥∥∥P̃i − vu
∥∥∥

1
≤ (1+ε) min

z∈[k]n

k∑

u=1

min
vu∈Rn

∑

{i∈Sc0:z(i)=u}

∥∥∥P̂i
∥∥∥

1

∥∥∥P̃i − vu
∥∥∥

1
.

(6.5)

design a reasonable community detection procedure by clustering the sample counterparts

of the vectors {θ−1
1 P1, θ

−1
2 P2, ..., θ

−1
n Pn}, which leads us to the proposal of Algorithm 5.

In Algorithm 5, Steps 1 and 2 aim to find an estimator P̂ of P by solving a low rank

approximation problem. Then, in Step 3, we can use
∥∥∥P̂i
∥∥∥
−1

1
P̂i as a surrogate for θ−1

i Pi.

Finally, Step 4 performs a weighted k-median clustering procedure applied on the row

vectors of the n× k matrix.

Full algorithm. The full algorithm for community detection in DCBM is given in Algo-

rithm 6. It is analogous to Algorithm 2 for the regular SBM, with the only difference that

we use normalized majority voting in Algorithm 6 instead of penalized majority voting as

in Algorithm 2.

6.3.2 Performance Guarantees

In this part, we state high probability performance guarantees for the proposed procedure.

The theoretical property of the algorithms requires an extra bound on the maximal entry
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Algorithm 6: A Two-stage Algorithm for DCBM

Data: Adjacency matrix A ∈ {0, 1}n×n and number of clusters k;
Result: Clustering label estimator ẑ ∈ [k]n;

1 For each i ∈ [n], apply Algorithm 5 to A−i. The result, which is a vector of
dimension n− 1, is stored in (ẑ0

−i(1), ..., ẑ0
−i(i− 1), ẑ0

−i(i+ 1), ..., ẑ0
−i(n));

2 For each i ∈ [n], the ith entry of ẑ0
−i is set as

ẑ0
−i(i) = argmax

u∈[k]

1

|{j : ẑ0
−i(j) = u}|

∑

j:ẑ0−i(j)=u

Aij ;

3 Set ẑ(1) = ẑ0
−1(1). For each i ∈ {2, ..., n}, set

ẑ(i) = argmax
u∈[k]

|{j : ẑ0
−1(j) = u} ∩ {j : ẑ0

−i(j) = ẑ0
−i(i)}|. (6.6)

of EA. We incorporate this condition into the following parameter space

P ′n(θ, p, q, k, β; δ, α)

=
{
P = (θiθjBz(i)z(j)1{i 6=j}) ∈ Pn(θ, p, q, k, β; δ) : max

u∈[k]
Buu ≤ αp

}
.

The parameter α is assumed to be a constant no smaller than 1 that does not change with

n. By studying the proofs of Theorem 6.2 and Theorem 6.1, the minimax lower and upper

bounds do not change for the slightly smaller parameter space P ′n(θ, p, q, k, β; δ, α). There-

fore, the rate exp(−(1 + o(1))I) still serves as a benchmark for us to develop theoretically

justifiable algorithms for the parameter space P ′n(θ, p, q, k, β; δ, α).

Error rate for the initialization stage. As a first step, we provide the following high

probability error bound for Algorithm 5.

Theorem 6.4 (Error Bound for Algorithm 5). Assume δ = o(1), 1 < p/q = O(1) and

‖θ‖∞ = o(n/k). Let τ = C1(np ‖θ‖2∞ + 1) for some sufficiently large constant C1 > 0 in

Algorithm 5. Then, there exist some constants C ′, C > 0, such that for any generative

model in P ′n(θ, p, q, k, β; δ, α), we have with probability at least 1− n−(1+C′),

min
ρ

∑

{i:ẑ(i) 6=ρ(z(i))}
θi ≤ C

(1 + ε)k5/2
√
n ‖θ‖2∞ p+ 1

p− q ,
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where the minimization is over all the permutations on [k].

Theorem 6.4 provides a uniform high probability bound for the sum of θi’s of the nodes

which are assigned wrong labels. In the special case when θi = 1,∀i ∈ [1] (i.e., under

the regular SBM), it immediately implies `(ẑ, z) . (1 + ε)k5/2
√
np+ 1/(p − q), a slightly

weaker result compared to Theorem 4.1. The proof of Theorem 6.4 essentially follows that

of Theorem 4.1, with additional effort to handle θ. Thus we omit it in this thesis and refer

the readers to our paper [20] for details.

Error rate for the refinement stage. We now state a general high probability error

bound for Algorithm 6. To introduce this result, we define another information-theoretic

quantity. For any t ∈ (0, 1), define

Jt(p, q) = 2
(
tp+ (1− t)q − ptq1−t) . (6.7)

By Jensen’s inequality, it is straightforward to verify that Jt(p, q) ≥ 0 and Jt(p, q) = 0 if

and only if p = q. As a special case, when t = 1
2 , we have

J 1
2
(p, q) = (

√
p−√q)2. (6.8)

For a given z ∈ [k]n, let n(1) ≤ ... ≤ n(k) be the order statistics of community sizes

{nu(z) : u = 1, . . . , k}. Then, we define the quantity J by through

exp(−J) =
1

n

n∑

i=1

exp

(
−θi

(
n(1) + n(2)

2

)
Jt∗(p, q)

)
(6.9)

with t∗ =
n(1)

n(1)+n(2)
. With the foregoing definitions, the following theorem gives a general

error bound for Algorithm 6.

Theorem 6.5. Under the conditions of Theorem 6.4, we further assume that δ = o(p−qp ),
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‖θ‖2∞ p ≥ n−1,

(1 + ε)k5/2 ‖θ‖∞
√
p√

n(p− q) = o

(
p− q
kp

)
, and (6.10)

min
γ≥0

{
n−1|{i ∈ [n] : θi ≤ γ}|+

(1 + ε)k5/2 ‖θ‖∞
√
p

γ
√
n(p− q)

}
= o

(
p− q
k2p

)
. (6.11)

Then there is a sequence η = o(1) such that the output ẑ of Algorithm 6 satisfies

lim
n→∞

inf
P ′n(θ,p,q,k,β;δ,α)

P
{
`(ẑ, z) ≤ exp

(
− (1− η)J

)}
= 1.

Theorem 6.5 gives a general error bound for the performance of Algorithm 6. It shows

that Algorithm 6 converges at the rate exp(−(1 + o(1))J). According to the properties

of Jt(p, q) stated in Appendix B of [20], one can show that when n(1) = (1 + o(1))n(2),

J = (1 + o(1))I, and that in general

n(1)(
√
p−√q)2 ≤

(
n(1) + n(2)

2

)
Jt∗(p, q) ≤

(
n(1) + n(2)

2

)
(
√
p−√q)2.

Using this relation, we can state the convergence rate in Theorem 6.5 using the quantity I.

Corollary 6.1. Under the conditions of Theorem 6.5, there is a sequence η = o(1) such

that the output ẑ of Algorithm 6 satisfies

lim
n→∞

inf
P ′n(θ,p,q,2,β;δ,α)

P
{
`(ẑ, z) ≤ exp

(
− (1− η)β−1I

)}
= 1,

lim
n→∞

inf
P ′n(θ,p,q,k,β;δ,α)

P
{
`(ẑ, z) ≤ exp

(
− (1− η)I

)}
= 1, for k ≥ 3.

Therefore, when k ≥ 3, the minimax rate exp(−(1 + o(1))I) is achieved by Algorithm 6.

The only situation where the minimax rate is not achieved by Algorithm 6 is when k = 2

and β > 1. For this case, there is an extra β−1 factor on the exponent of the convergence

rate. The proof of Theorem 6.3 essentially follows that of Theorem 2 for the regular SBM.

Hence we omitted it in this thesis and we refer readers to our paper [20] for details.
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