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This supplement includes all the technical proofs. In Appendix A, we first give proofs for

all the results established in Section 4: Theorem 4.1, Theorem 4.2 and Theorem 4.3. After

that, we prove Theorem 3.4 and Theorem 6.1 in Appendix B. We then include the proofs

of Theorem 7.1 and Theorem 7.2 in Appendix C, the the proof of Lemma 8.5 in Appendix

D, and the proofs of all the other technical lemmas in Appendix E. The count method is

discussed in Appendix F.

A Analysis of the Spectral Method

We prove results for the spectral method in this section. This includes Theorem 4.1, Theorem

4.2 and Theorem 4.3. The proofs of Theorem 4.1 and Theorem 4.2 are given in Section A.1,

and then we prove Theorem 4.3 in Section A.2.

A.1 Proofs of Theorem 4.1 and Theorem 4.2

The proof of Theorem 4.1 relies on a leave-one-out argument introduced by [3]. Without

loss of generality, we consider r∗i = i so that θ∗r∗i
= θ∗i . Following [3], we define a transition

matrix P (m) for each m ∈ [n]. For any i 6= j, P
(m)
ij = Pij if i 6= m and j 6= m and otherwise

P
(m)
ij = p

dψ(θ∗i − θ∗j ). For any i ∈ [n], P
(m)
ii =

∑
j∈[n]\{i} P

(m)
ij . Let π(m) be the stationary

distribution of P (m). The following `2 norm bound has essentially been proved in [3].

Lemma A.1. Under the setting of Theorem 4.1, there exists a constant C > 0 such that

max
m∈[n]

‖π(m) − π̂‖ ≤ C 1

n

√
log n

npL
,

max
m∈[n]

‖π(m) − π∗‖∞ ≤ C
1

n

√
log n

npL
,
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max
m∈[n]

‖π(m) − π∗‖ ≤ C 1

n

√
1

pL
,

with probability at least 1−O(n−4).

Proof. By Lemma 5.6 and Lemma 5.7 of [3], one can obtain ‖π(m) − π̂‖ ≤ C1

√
logn
npL ‖π

∗‖∞ +

‖π̂ − π∗‖∞ for some constant C1 > 0 with probability at least 1 − O(n−5). Theorem 2.6 of

[3] gives the bound ‖π̂ − π∗‖∞ ≤ C2

√
logn
npL ‖π

∗‖∞ with probability at least 1 − O(n−5). A

union bound argument together with the fact that ‖π∗‖∞ � n−1 leads to the first conclusion.

The second conclusion is a consequence of triangle inequality. By Theorem 5.2 of [3], we

have ‖π̂ − π∗‖ ≤ C3
1
n

√
1
pL with probability at least 1 − O(n−1). Thus, we obtain the last

conclusion by applying triangle inequality again.

We also need a lemma that relates the asymptotic variance of π̂i to the function V (κ).

Lemma A.2. For any positive κ1, κ2 = O(1), we have

min
x1,...,xk∈[0,κ1]
xk+1,...,xn∈[0,κ2]

(
∑k

i=1 ψ(xi) +
∑n

i=k+1 ψ(−xi))2∑k
i=1 ψ

′(xi)(1 + exi)2 +
∑n

i=k+1 ψ
′(xi)(1 + e−xi)2

=
(kψ(κ1) + (n− k)ψ(−κ2))2

kψ′(κ1)(1 + eκ1)2 + (n− k)ψ′(κ2)(1 + e−κ2)2
,

for n that is sufficiently large.

Proof. The problem is equivalent to the solution of the following: the optimum of the problem

min
x1,...,xk∈[1,M1]
xk+1,...,xn∈[1,M2]

(
∑k

i=1
2xi

1+xi
+
∑n

i=k+1
2

1+xi
)2∑k

i=1 xi +
∑n

i=k+1
1
xi

= min
x1,...,xk∈[1,M1]
xk+1,...,xn∈[1,M2]

f(x1, · · · , xn)

is obtained at x1 = ... = xk = M1, xk+1 = ... = xn = M2. We will show that for any given

xk+1, ..., xn ∈ [1,M2], the function is minimized at x1 = ... = xk = M1. Moreover, for any

given x1, ..., xk, the function is minimized at xk+1 = ... = xn = M2. We only need to prove

the former claim and the latter one can be proved similarly. Define

g(x1, · · · , xk) =

(∑k
i=1

2xi
1+xi

+ α
)2

∑k
i=1 xi + β

,

where α =
∑n

i=k+1
2

1+xi
, β =

∑n
i=k+1

1
xi

. We first analyze the behavior of g(x1, · · · , xk) at

each coordinate. By direct calculation, we have

∂ log g(x1, · · · , xk)
∂x1

=
4

(1 + x1)2(
∑k

i=1
2xi

1+xi
+ α)

− 1∑k
i=1 xi + β

=
4(
∑k

i=1 xi + β)− (1 + x1)2(
∑k

i=1
2xi

1+xi
+ α)

(1 + x1)2(
∑k

i=1
2xi

1+xi
+ α)(

∑k
i=1 xi + β)

.
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The sign of the partial derivative is determined by its numerator

4(
k∑
i=1

xi + β)− (1 + x1)2(
k∑
i=1

2xi
1 + xi

+ α)

= −

(
k∑
i=2

2xi
1 + xi

+ α+ 2

)
x2

1 −

(
k∑
i=2

4xi
1 + xi

+ 2α− 2

)
x1

+4(

k∑
i=2

xi + β)−

(
k∑
i=2

2xi
1 + xi

+ α

)
,

which is a quadratic decreasing function of x1 ∈ [1,M1]. Therefore, g(x1, · · · , xk) is either

monotone of x1 ∈ [1,M1], or it is first increasing then decreasing. This implies that the

optimum is achieved either at x1 = 1 or x1 = M1. Since g(x1, · · · , xk) is symmetric, we

therefore know that the optimizer must satisfy (x1, · · · , xk) ∈ {1,M1}k. Using symmetry

again, we can conclude that the value of minx1,··· ,xk∈[1,M1] g(x1, · · · , xk) is determined by the

number of coordinates that take M1. For i ∈ [k], we define gi to be the value of g(x1, · · · , xk)
with x1 = · · · = xi = M1 and xi+1 = · · · = xk = 1. We now need to show gi is nonincreasing

in i ∈ [k]. Note that

gi ≥ gi+1 ⇐⇒
(i 2M1
M1+1 + k − i+ α)2

iM1 + k − i+ β
≥

(M1−1
M1+1 + i 2M1

M1+1 + k − i+ α)2

M1 − 1 + iM1 + k − i+ β

⇐⇒ M1 − 1

iM1 + k − i+ β
≥

(M1−1
M1+1)2

(i 2M1
M1+1 + k − i+ α)2

+
2(M1−1
M1+1)

i 2M1
M1+1 + k − i+ α

⇐⇒ (M1 + 1)2

iM1 + k − i+ β
− M1 − 1

(i 2M1
M1+1 + k − i+ α)2

− 2(M1 + 1)

i 2M1
M1+1 + k − i+ α

≥ 0

⇐⇒
(iM1−1
M1+1 + k + α)(M1 + 1)2

i(M1 − 1) + k + β
− M1 − 1

iM1−1
M1+1 + k + α

− 2(M1 + 1) ≥ 0

⇐⇒ i(M1 − 1) + (k + α)(M1 + 1)

i(M1 − 1) + k + β
− M1 − 1

i(M1 − 1) + (k + α)(M1 + 1)
− 2 ≥ 0

⇐=
i(M1 − 1) + (k + β)(M1 + 1)

i(M1 − 1) + k + β
− M1 − 1

i(M1 − 1) + (k + β)(M1 + 1)
− 2 ≥ 0 (S1)

⇐⇒ −i(M1 − 1) + (k + β)(M1 − 1)

i(M1 − 1) + k + β
− M1 − 1

i(M1 − 1) + (k + β)(M1 + 1)
≥ 0

⇐=
−i+ (k + β)

i(M1 − 1) + k + β
− 1

i(M1 − 1) + (k + β)(M1 + 1)
≥ 0

⇐⇒ (k + β)2(M1 + 1) ≥ i(M1 − 1) + i2(M1 − 1) + (2i+ 1)(k + β)

⇐= (k + β)2(M1 + 1) ≥ (k − 1)2(M1 − 1) + (k − 1)(M1 − 1) + (2k − 1)(k + β)

⇐⇒ k2(M1 + 1) + 2β(M1 + 1)k + β2(M1 + 1) ≥ k2(M1 + 1) + (−M1 + 2β)k − β
⇐⇒ (2β + 1)M1k + β2(M1 + 1) + β ≥ 0

where the last display is trivially true. We have used α ≥ β for the step (S1). Therefore,

minx1,··· ,xk∈[1,M1] g(x1, · · · , xk) = gk, and the proof is complete.
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Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. When the error exponent is of constant order, the bound is also a

constant, and the result already holds since Hk(r̂, r
∗) ≤ 1. Therefore, we only need to consider

the case when the error exponent tends to infinity. We first introduce some notation. Define

η =
1

2
− V (κ)

(1− δ̄)∆2npL
log

n− k
k

, (S2)

where δ̄ = o(1) is chosen so that η > 0 is satisfied. The specific choice of δ̄ will be determined

later in the proof. We will continue to use the notation ∆̄i that is defined in (55). Since the

diverging exponent implies SNR→∞, we have mini∈[n] ∆̄2
iLnp→∞ and maxi∈[n] ∆̄i → 0.

Since π̂ is the stationary distribution of P , we have π̂TP = π̂T . This implies that for any

m ∈ [n], we have
∑n

j=1 Pjmπ̂j = π̂m. We can equivalently write this identity as

π̂m =

∑
j∈[n]\{m} Pjmπ̂j

1− Pmm
=

∑
j∈[n]\{m}Ajmȳmj π̂j∑
j∈[n]\{m}Ajmȳjm

.

We approximate π̂m by

π̄m =

∑
j∈[n]\{m}Ajmȳmjπ

∗
j∑

j∈[n]\{m}Ajmȳjm
. (S3)

The approximation error can be bounded by

|π̂m − π̄m| ≤

∣∣∣∣∣∣
∑

j∈[n]\{m}Ajmȳmj(π̂j − π
(m)
j )∑

j∈[n]\{m}Ajmȳjm

∣∣∣∣∣∣ (S4)

+

∣∣∣∣∣∣
∑

j∈[n]\{m}Ajmȳmj(π
(m)
j − π∗j )∑

j∈[n]\{m}Ajmȳjm

∣∣∣∣∣∣ . (S5)

The two terms (S4) and (S5) share a common denominator, which can be lower bounded by

∑
j∈[n]\{m}

Ajmȳjm ≥
∑

j∈[n]\{m}

Ajmψ(θ∗j − θ∗m)−

∣∣∣∣∣∣
∑

j∈[n]\{m}

Ajm(ȳjm − ψ(θ∗j − θ∗m))

∣∣∣∣∣∣ . (S6)

By Lemma 8.1 and Lemma 8.4, we have
∑

j∈[n]\{m}Ajmȳjm ≥ c1np for some constant c1 > 0

with probability at least 1−O(n−10). With this lower bound, we then bound (S4) as∣∣∣∣∣∣
∑

j∈[n]\{m}Ajmȳmj(π̂j − π
(m)
j )∑

j∈[n]\{m}Ajmȳjm

∣∣∣∣∣∣ ≤
√∑

j∈[n]\{m}A1j ȳ2
mj‖π̂ − π(m)‖

c1np

≤

√∑
j∈[n]\{m}A1j‖π̂ − π(m)‖

c1np

≤ C1
1

n

√
log n

(np)2L
,
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with probability at least 1 − O(n−4). In the last inequality, we have used Lemma 8.1 and

Lemma A.1. For (S5), we can bound it as∣∣∣∣∣∣
∑

j∈[n]\{m}Ajmȳmj(π
(m)
j − π∗j )∑

j∈[n]\{m}Ajmȳjm

∣∣∣∣∣∣
≤

∣∣∣∑j∈[n]\{m}Ajm(ȳmj − ψ(θ∗m − θ∗j ))(π
(m)
j − π∗j )

∣∣∣
c1np

+
p
∣∣∣∑j∈[n]\{m} ψ(θ∗m − θ∗j )(π

(m)
j − π∗j )

∣∣∣
c1np

+

∣∣∣∑j∈[n]\{m}(Ajm − p)ψ(θ∗m − θ∗j )(π
(m)
j − π∗j )

∣∣∣
c1np

.

We bound the three terms above separately. For the first term, we use Hoeffding’s inequality

(Lemma E.1), and get∣∣∣∑j∈[n]\{m}Ajm(ȳmj − ψ(θ∗m − θ∗j ))(π
(m)
j − π∗j )

∣∣∣
c1np

≤ C2

√
x
L

∑
j∈[n]\{m}Ajm(π

(m)
j − π∗j )2

np
,

(S7)

with probability at least 1− e−x. By Lemma 8.1 and Lemma A.1, we have√ ∑
j∈[n]\{m}

Ajm(π
(m)
j − π∗j )2 ≤ ‖π(m) − π∗‖∞

√ ∑
j∈[n]\{m}

Ajm ≤ C3
1

n

√
log n

L
,

with probability at least 1−O(n−4). Taking x = ∆̄2
mnpL

√
npL
logn , we have∣∣∣∑j∈[n]\{m}Ajm(ȳmj − ψ(θ∗m − θ∗j ))(π

(m)
j − π∗j )

∣∣∣
c1np

≤ C4
1

n
∆̄m

(
log n

Lnp

)1/4

,

with probability at least 1−O(n−4)− exp
(
−∆̄2

mnpL
√

npL
logn

)
. Next, for the second term, we

apply Lemma A.1 and get

p
∣∣∣∑j∈[n]\{m} ψ(θ∗m − θ∗j )(π

(m)
j − π∗j )

∣∣∣
c1np

≤ ‖π
(m) − π∗‖
c1
√
n

≤ C5
1

n

√
1

npL
,

with probability at least 1 − O(n−4). For the third term, we use Bernstein’s inequality

(Lemma E.2), and get∣∣∣∑j∈[n]\{m}(Ajm − p)ψ(θ∗m − θ∗j )(π
(m)
j − π∗j )

∣∣∣
c1np

≤ C6

√
px‖π(m) − π∗‖

np
+ C6

x‖π(m) − π∗‖∞
np

,

(S8)
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with probability at least 1− e−x. We choose x = min
(

∆̄2
mLnp

np
logn , 4 log n

)
. Then, with the

help of Lemma A.1, we have∣∣∣∑j∈[n]\{m}(Ajm − p)ψ(θ∗m − θ∗j )(π
(m)
j − π∗j )

∣∣∣
c1np

≤ C7
1

n

1

np
√
L

√
min

(
∆̄2
mLnp

np

log n
, log n

)
+ C7

1

n

1

np

√
log n

npL
min

(
∆̄2
mLnp

np

log n
, log n

)
,

(S9)

with probability at least 1−O(n−4)− exp
(
−∆̄2

mnpL
np

logn

)
.

To summarize, we have proved that

|π̂m − π̄m|
π∗m

≤ δ(1− e−∆̄m), (S10)

for some δ = o(1) with probability at least 1−O(n−4)−exp
(
−∆̄2

mnpL
np

logn

)
−exp

(
−∆̄2

mnpL
√

npL
logn

)
under the assumption that ∆̄m = o(1), npL∆̄2

m →∞ and np
logn →∞.

Next, we note that by the definition of π̄m, we have

π̄m − π∗m =

∑
j∈[n]\{m}Ajm(ȳmj − ψ(θ∗m − θ∗j ))(π∗j + π∗m)∑

j∈[n]\{m}Ajmȳjm
. (S11)

By Lemma 8.4 and the inequality (S6), the denominator of (S11) satisfies∣∣∣∣∣
∑

j∈[n]\{m}Ajmȳjm∑
j∈[n]\{m}Ajmψ(θ∗j − θ∗m)

− 1

∣∣∣∣∣ ≤ δ, (S12)

for some δ = o(1) with probability at least 1 − O(n−10). Note that we can choose the same

δ to accommodate both bounds (S10) and (S12).

We will apply Lemma 3.1 with

t =
e(1−η)θ∗k+ηθ∗k+1∑n

j=1 e
θ∗j

(S13)
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to finish the proof. Recall the definition of η in (S2). For i ≤ k, we have

P

(
π̂i ≤

e(1−η)θ∗k+ηθ∗k+1∑n
j=1 e

θ∗j

)

= P
(
π̂i − π∗i
π∗i

≤ e(1−η)θ∗k+ηθ∗k+1−θ
∗
i − 1

)
≤ P

(
π̂i − π∗i
π∗i

≤ e−∆̄i − 1

)
≤ P

(
π̄i − π∗i
π∗i

≤ −(1− δ)(1− e−∆̄i)

)
+ P

(
|π̄i − π̂i|
π∗i

> δ(1− e−∆̄i)

)
≤ P

(∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1− δ)2(1− e−∆̄i)

)

+P
(
|π̄i − π̂i|
π∗i

> δ(1− e−∆̄i)

)
+ P

(∣∣∣∣∣
∑

j∈[n]\{i}Ajiȳji∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

− 1

∣∣∣∣∣ > δ

)

≤ P

(∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1− δ)2(1− e−∆̄i)

)

+O(n−4) + exp

(
−∆̄2

inpL
np

log n

)
+ exp

(
−∆̄2

inpL

√
npL

log n

)
, (S14)

where the last inequality is by (S10) and (S12). Define the event

Ai =

A :

∣∣∣∣∣∣∣
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

p
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2 − 1

∣∣∣∣∣∣∣ ≤ δ,
∣∣∣∣∣
∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
p
∑

j∈[n]\{i} ψ(θ∗j − θ∗i )
− 1

∣∣∣∣∣ ≤ δ
 .

(S15)

Then, by Bernstein’s inequality, we have

P

(∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1− δ)2(1− e−∆̄i)

)

≤ sup
A∈Ai

P

(∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1− δ)2(1− e−∆̄i)

∣∣∣A)
+P(A ∈ Aci )

≤ exp

−(1− o(1))Lp∆̄2
i

(∑
j∈[n]\{i} ψ(θ∗j − θ∗i )

)2

2
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

+O(n−4) (S16)

≤ exp

−(1− o(1))Lp(∆̄ + θ∗i − θ∗k)2
(∑

j∈[n]\{i} ψ(θ∗j − θ∗i )
)2

2
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

+O(n−4). (S17)
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The inequality (S17) is by the same argument that leads to (70) and (71). We use the notation

∆̄ = min

(
η(θ∗k − θ∗k+1),

(
logn
np

)1/4
)

in (S17). Define

hi(t) =
(∆̄ + t)2

(∑
j∈[n]\{i} ψ(θ∗j − θ∗k − t)

)2

∑
j∈[n]\{i} ψ

′(t+ θ∗k − θ∗j )
(

1 + eθ
∗
j−θ∗k−t

)2 , for all t ≥ 0.

Though hi(t) is a complicated function, by the fact that ∆̄ = o(1) and maxj,k |θ∗j − θ∗k| ≤
κ = O(1), one can directly analyze the derivative of hi(t) to conclude that there exists some

small constant c2 > 0 such that hi(t) is increasing on [0, c2]. Moreover, there also exists a

small constant c3 > 0 such that mint∈[c2,κ] hi(t) ≥ c3n. This implies

Lp(∆̄ + θ∗i − θ∗k)2
(∑

j∈[n]\{i} ψ(θ∗j − θ∗i )
)2

2
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

≥
Lp∆̄2

(∑
j∈[n]\{i} ψ(θ∗j − θ∗k)

)2

2
∑

j∈[n]\{i} ψ
′(θ∗k − θ∗j )

(
1 + eθ

∗
j−θ∗k

)2 ∧
c3npL

2

=
Lp∆̄2

(∑
j∈[n]\{i} ψ(θ∗j − θ∗k)

)2

2
∑

j∈[n]\{i} ψ
′(θ∗k − θ∗j )

(
1 + eθ

∗
j−θ∗k

)2 ,

where the last inequality is due to the fact that ∆̄ = o(1). We further bound the above

exponent by

Lp∆̄2
(∑

j∈[n]\{i} ψ(θ∗j − θ∗k)
)2

2
∑

j∈[n]\{i} ψ
′(θ∗k − θ∗j )

(
1 + eθ

∗
j−θ∗k

)2

= (1− o(1))
Lp∆̄2

(∑n
j=1 ψ(θ∗j − θ∗k)

)2

2
∑n

j=1 ψ
′(θ∗k − θ∗j )

(
1 + eθ

∗
j−θ∗k

)2

≥ (1− o(1))
Lp∆̄2

2
min

κ1+κ2≤κ
κ1,κ2≥0

min
x1,··· ,xk∈[0,κ1]
xk+1,··· ,xn∈[0,κ2]

(∑k
j=1 ψ(xj) +

∑n
j=k+1 ψ(−xj)

)2

∑k
j=1 ψ

′(xj)(1 + exj )2 +
∑n

j=k+1 ψ
′(xj)(1 + e−xj )2

= (1− o(1))
Lp∆̄2

2
min

κ1+κ2≤κ
κ1,κ2≥0

(kψ(κ1) + (n− k)ψ(−κ2))2

kψ′(κ1)(1 + eκ1)2 + (n− k)ψ′(κ2)(1 + e−κ2)2
(S18)

= (1− o(1))
Lpn∆̄2

2V (κ)
.

The equality (S18) is due to Lemma A.2. With the above analysis of the error exponent, we
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can further bound (S17) as

exp

(
−1− o(1)

2
Lpmin

(
η2∆2,

√
log n

np

)
n

V (κ)

)
+O(n−4)

≤ exp

(
−(1− o(1))η2∆2npL

2V (κ)

)
+O(n−4).

The last inequality holds because when min
(
η2∆2,

√
logn
np

)
=
√

logn
np , the first term becomes

exp
(
− (1−o(1))L

√
np logn

2V (κ)

)
, which can be absorbed by O(n−4). Since exp

(
−∆̄2

inpL
np

logn

)
+

exp
(
−∆̄2

inpL
√

npL
logn

)
≤ exp

(
− (1−o(1))η2∆2npL

2V (κ)

)
+O(n−4), we have

P

(
π̂i ≤

e(1−η)θ∗k+ηθ∗k+1∑n
j=1 e

θ∗j

)
≤ exp

(
−(1− δ1)η2∆2npL

2V (κ)

)
+O(n−4), (S19)

with some δ1 = o(1) for all i ≤ k. With a similar argument, we also have

P

(
π̂i ≥

e(1−η)θ∗k+ηθ∗k+1∑n
j=1 e

θ∗j

)
≤ exp

(
−(1− δ1)(1− η)2∆2npL

2V (κ)

)
+O(n−4), (S20)

for all all i ≥ k + 1. It can be checked that the δ1 above can be set independent of the δ̄ in

the definition of η. Now we choose η as in (S2) with δ̄ = δ1. By Lemma 3.1, we have

EHk(r̂, r∗) ≤ exp

(
−(1− δ̄)η2∆2npL

2V (κ)

)
+
n− k
k

exp

(
−(1− δ̄)(1− η)2∆2npL

2V (κ)

)
+O(n−4)

≤ 2 exp

−1

2


√

(1− δ̄)SNR
2

− 1√
(1− δ̄)SNR

log
n− k
k

2
+O(n−4).

By Markov’s inequality, the above bound implies

Hk(r̂, r
∗) ≤ exp

−1

2


√

(1− δ′)SNR
2

− 1√
(1− δ′)SNR

log
n− k
k

2
+O(n−3),

for some δ′ = o(1) with high probability. One can take, for example,

δ′ = δ̄ +
1√

(1−δ̄)SNR
2 − 1√

(1−δ̄)SNR
log n−k

k

.

When O(n−3) dominates the bound, we have Hk(r̂, r
∗) = O(n−3), which implies Hk(r̂, r

∗) = 0

since Hk(r̂, r
∗) ∈ {0, (2k)−1, 2(2k)−1, 3(2k)−1, · · · , 1}. Therefore, we always have

Hk(r̂, r
∗) ≤ 2 exp

−1

2


√

(1− δ′)SNR
2

− 1√
(1− δ′)SNR

log
n− k
k

2
 ,

with high probability with some δ′ = o(1). The proof is complete.

Proof of Theorem 4.2. The proof is the same as that of Theorem 3.3.
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A.2 Proof of Theorem 4.3

To prove Theorem 4.3, we need two additional lemmas. The first lemma can be viewed as a

reverse version of the inequality in Lemma 3.1.

Lemma A.3. Suppose r̂ is a rank vector induced by θ̂, we then have

Hk(r̂, r
∗) ≥ 1

k
max
t∈R

min

 ∑
i:r∗i≤k

I
{
θ̂i < t

}
,
∑
i:r∗i>k

I
{
θ̂i > t

} .

The inequality holds for any r∗ ∈ Sn.

Proof. Following the proof of Lemma 3.1, we have

2kHk(r̂, r
∗) = 2 max

(
k∑
i=1

I {r̂i > k},
n∑

i=k+1

I {r̂i ≤ k}

)

≥ 2 max

(
k∑
i=1

I
{
θ̂i < θ̂(k)

}
,

n∑
i=k+1

I
{
θ̂i > θ̂(k+1)

})

≥ 2 min
t

max

(
k∑
i=1

I
{
θ̂i < t

}
,

n∑
i=k+1

I
{
θ̂i > t

})
(S21)

= 2 max
t

min

(
k∑
i=1

I
{
θ̂i < t

}
,

n∑
i=k+1

I
{
θ̂i > t

})
. (S22)

where (S21) and (S22) follow the same argument that leads to (S159) and (S160).

Proof of Theorem 4.3. We first note that condition (20) necessarily implies ∆ = o(1). Through-

out the proof, we assume κ = Ω(1) and there exists some δ1 = o(1) such that√
(1 + δ1)SNR

2
− 1√

(1 + δ1)SNR
log

n− k
k
→∞. (S23)

The case with κ = o(1) or SNR not satisfying (S23) will be addressed at the end of the proof.

Choose κ1, κ2 ≥ 0 such that we have both κ1 + κ2 ≤ κ and

kψ′(κ1)(1 + eκ1)2 + (n− k)ψ′(κ2)(1 + e−κ2)2

(kψ(κ1) + (n− k)ψ(−κ2))2/n
= V (κ).

Let ρ = o(1) be a vanishing number that will be specified later. Since k →∞ and κ = Ω(1),

one can easily check that κ2 = Ω(1). Define θ∗i = κ1 for all 1 ≤ i ≤ k − ρk, θ∗i = 0 for

k − ρk < i ≤ k, θ∗i = −∆ for k < i ≤ k + ρ(n − k) and θ∗i = −κ2 for k + ρ(n − k) < i ≤ n.

For the simplicity of proof, we choose ρ so that both ρk and ρ(n− k) are integers. Define r∗

to be r∗i = i,∀i ∈ [n]. Then we have

sup
r∈Sn

θ∈Θ(k,∆,κ)

E(θ,r)Hk(r̂, r) ≥ E(θ∗,r∗)Hk(r̂, r
∗).

10



We will utilize several results established in the proof of Theorem 4.1. Define

η =
1

2
− V (κ)

(1 + δ̄)∆2npL
log

n− k
k

, (S24)

for δ̄ = o(1). The specific choice of δ̄ will be specified later in the proof. Also define

t = e
(1−η)θ∗k+ηθ∗k+1∑n

j=1 e
θ∗
j

= e−η∆∑n
j=1 e

θ∗
j

. Then, by Lemma A.3, we have

Hk(r̂, r
∗) ≥ 1

k
min

(
k∑
i=1

I {π̂i < t},
n∑

i=k+1

I {π̂i > t}

)

≥ 1

k
min

 ∑
k−ρk<i≤k

I {π̂i < t},
∑

k<i≤k+ρ(n−k)

I {π̂i > t}

 .

For any δ > 0, define the function φ(δ) =

√
(1+δ)SNR

2 − 1√
(1+δ)SNR

log n−k
k . It suffices to show

there exists some constant C > 0 such that

P(θ∗,r∗)

 ∑
k−ρk<i≤k

I {π̂i < t} ≥ Ck exp

(
−φ(δ̄)2

2

) ≥ 1− o(1), (S25)

and P(θ∗,r∗)

 ∑
k<i≤k+ρ(n−k)

I {π̂i > t} ≥ Ck exp

(
−φ(δ̄)2

2

) ≥ 1− o(1). (S26)

Suppose both inequalities hold, we have

P(θ∗,r∗) (Hk(r̂, r
∗) > 0) ≥ 1− o(1).

By Markov’s inequality, we also have

E(θ∗,r∗)Hk(r̂, r
∗) ≥ C exp

(
−φ(δ̄)2

2

)
P(θ∗,r∗)

(
Hk(r̂, r

∗) ≥ C exp

(
−φ(δ̄)2

2

))
≥ C

2
exp

(
−φ(δ̄)2

2

)
.

Therefore, we obtain the desired conclusions.

In the rest of the proof, we are going to establish (S25). Recall the definition of π̄ in (S3).

For any k − ρk < i ≤ k, define the event F as

Fi =

{
|π̂i − π̄i|
π∗i

≤ δ0(1− e−η∆) and

∣∣∣∣∣
∑

j∈[n]\{i}Ajiȳji∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

− 1

∣∣∣∣∣ ≤ δ0

}
.

Using a similar argument that leads to (S10) and (S12), we can show that there exists some

δ0 = o(1) not dependent on δ̄, such that

P(θ∗,r∗)(Fi) ≥ 1−

(
O(n−4) + exp

(
−η2∆2npL

np

log n

)
+ exp

(
−η2∆2npL

√
npL

log n

))
. (S27)
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Suppose Fi holds, we then have

I {π̂i < t} = I

{
π̂i <

e(1−η)θ∗k+ηθ∗k+1∑n
j=1 e

θ∗j

}

= I
{
π̂i − π∗i
π∗i

≤ e(1−η)θ∗k+ηθ∗k+1−θ
∗
i − 1

}
= I

{
π̂i − π∗i
π∗i

≤ e−η∆ − 1

}
≥ I

{
π̄i − π∗i
π∗i

≤ −(1 + δ0)(1− e−η∆)

}
≥ I

{∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + δ0)2(1− e−η∆)

}

≥ I

{∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + δ0)2η∆

}
. (S28)

We use the notation Li for the indicator function on the right hand side of (S28). In other

words, we have shown that∑
k−ρk<i≤k

I {π̂i < t} ≥
∑

k−ρk<i≤k
LiIFi

≥
∑

k−ρk<i≤k
Li −

∑
k−ρk<i≤k

IFci .

By (S27), we have

E

 ∑
k−ρk<i≤k

IFci

 ≤ O(n−3) + ρk exp

(
−η2∆2npL

np

log n

)
+ ρk exp

(
−η2∆2npL

√
npL

log n

)
.

Since the above bounds is of smaller order than k exp

(
−η2∆2npL

2V (κ)

(
np

logn

)1/4
)

, we can use

Markov’s inequality and obtain

P(θ∗,r∗)

 ∑
k−ρk<i≤k

IFci ≤ k exp

(
−η

2∆2npL

2V (κ)

(
np

log n

)1/4
) ≥ 1− o(1). (S29)
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To lower bound
∑

k−ρk<i≤k Li, we define

A =

{
A : ∀k − ρk < i ≤ k,

∣∣∣∣∣∣∣
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

p
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2 − 1

∣∣∣∣∣∣∣ ≤ δ0, (S30)

∣∣∣∣∣
∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
p
∑

j∈[n]\{i} ψ(θ∗j − θ∗i )
− 1

∣∣∣∣∣ ≤ δ0, (S31)∣∣∣∣∣∣
∑

k−ρk<j<k
Ajiψ

′(θ∗i − θ∗j )(1 + eθ
∗
j−θ∗i )2

∣∣∣∣∣∣ ≤ 2ρkp+ 10 log n

}
.

(S32)

By Bernstein’s inequality and union bound, we have P(A ∈ A) ≥ 1−O(n−3). From now on,

we use the notation PA for the conditional probability P(θ∗,r∗)(·|A) given A. For any s > 0,

P(θ∗,r∗)

 ∑
k−ρk<i≤k

Li ≥ s

 ≥ P(A ∈ A) inf
A∈A

PA

 ∑
k−ρk<i≤k

Li ≥ s

 . (S33)

To study PA
(∑

k−ρk<i≤k Li ≥ s
)

, we define the set S = {i ∈ [n] : i ≤ k − ρk or i > k}. Note

that for each k − ρk < i ≤ k, we have Li ≥ Li,1 − Li,2 − Li,3, where

Li,1 = I

{∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + 2δ′)(1 + δ0)2η∆

}

Li,2 = I

{∑
k−ρk<j<iAji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≥ δ′(1 + δ0)2η∆

}

Li,3 = I

{∑
i<j≤k Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≥ δ′(1 + δ0)2η∆

}
,

for some δ′ = o(1) whose value will be determined later. We are going to control each term

separately.

(1). Analysis of Li,1. Note that conditional on A, {Li,1}k−ρk<i≤k are all independent

Bernoulli random variables. We have Li,1 ∼ Bernoulli(pi), where pi = E(θ∗,r∗)(Li,1|A). By

Chebyshev’s inequality, we have

PA

 ∑
k−ρk<i≤k

Li,1 ≥
1

2

∑
k−ρk<i≤k

pi

 ≥ 1− 4∑
k−ρk<i≤k pi

.

By Lemma A.4 stated and proved at the end of the section, we can lower bound each pi by

pi = PA

(∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + 2δ′)(1 + δ0)2η∆

)

≥ C1 exp

(
−(1 + δ2)η2∆2npL

2V (κ)
− C ′1η

√
∆2npL

V (κ)

)
,
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for some constants C1, C
′
1 > 0 and some δ2 = o(1) that are not dependent on η. By (S23),

there exists some δ3 = o(1) such that∑
k−ρk<i≤k

pi ≥ C1k exp

(
−(1 + δ3)η2∆2npL

2V (κ)

)
. (S34)

To obtain (S138), we need to set ρ that tends to zero sufficiently slow so that it can be ab-

sorbed into the exponent. Note that condition (20) is equivalent to (1+ε)SNR
2

(
1
2 −

1
(1+ε)SNR

log n−k
k

)2
<

log k. Since ε is a constant, it implies

SNR

2

(
1

2
− 1

(1 + δ̄)SNR
log

n− k
k

)2

< (1− ε′)−1 log k,

for some constant ε′ > 0. As a result, under the condition that k →∞, we have∑
k−ρk<i≤k

pi ≥
∑

k−ρk<i≤k
C1 exp

(
−(1 + δ3)(1− ε′) log k

)
≥ k

ε′
2 →∞.

Hence, we have proved

inf
A∈A

PA

 ∑
k−ρk<i≤k

Li,1 ≥
1

2
C1k exp

(
−(1 + δ2)η2∆2npL

2V (κ)
− C ′1η

√
∆2npL

V (κ)

) ≥ 1− o(1).

(2). Analysis of Li,2. By (S133)-(S135) and Bernstein’s inequality, we can bound

E(Li,2|A) by

exp

−
(
δ′(1 + δ0)2η∆L

∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

)2

2
(
L
∑

k−ρk<j<iAjiψ
′(θ∗i − θ∗j )(1 + eθ

∗
j−θ∗i )2 + 1

3δ
′(1 + δ0)2η∆L

∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

)


≤ exp

−
(
δ′(1 + δ0)2η∆L

∑
j∈[n]\{i} pψ(θ∗j − θ∗i )

)2

4
(

2Lρkp+ 10 log n+ 1
3δ
′(1 + δ0)2η∆L

∑
j∈[n]\{i} pψ(θ∗j − θ∗i )

)
 .

Now we set δ′ = max{ρ
1
2 ,∆

4
3 ,
(

logn
np

) 1
2 }. Then, there exists some constant C2, C3 > 0 such

that

E(Li,2|A) ≤ exp
(
−C2ρ

− 1
2npLη2∆2

)
≤ exp

(
−C3ρ

−1/2 η
2∆2npL

2V (κ)

)
.

Then,

E

 ∑
k−ρk<i≤k

Li,2

∣∣∣∣∣A
 ≤ ρk exp

(
−C3ρ

−1/2 η
2∆2npL

2V (κ)

)
.

By Markov inequality, we have

inf
A∈A

PA

 ∑
k−ρk<i≤k

Li,2 ≥ ρk exp

(
−1

2
C3ρ

−1/2 η
2∆2npL

2V (κ)

) ≤ exp

(
−1

2
C3ρ

−1/2 η
2∆2npL

2V (κ)

)
.

(S35)
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(3). Analysis of Li,3. By a similar argument, we also have

inf
A∈A

PA

 ∑
k−ρk<i≤k

Li,3 ≥ ρk exp

(
−1

2
C3ρ

−1/2 η
2∆2npL

2V (κ)

) ≤ exp

(
−1

2
C3ρ

−1/2 η
2∆2npL

2V (κ)

)
.

(S36)

Now we can combine the above analyses of Li,1, Li,2 and Li,3. Since ρ = o(1), the bounds

(S139) and (S140) are of smaller order than (S138). We have

inf
A∈A

PA

 ∑
k−ρk<i≤k

Li ≥ C4k exp

(
−(1 + δ2)η2∆2npL

2V (κ)
− C ′1η

√
∆2npL

V (κ)

) ≥ 1− o(1),

(S37)

for some constant C4 > 0. Then (S132) and (S136) lead to

P(θ∗,r∗)

 ∑
k−ρk<i≤k

I {π̂i < t} ≥ C4k exp

(
−(1 + δ2)η2∆2npL

2V (κ)
− C ′1η

√
∆2npL

V (κ)

) ≥ 1− o(1).

(S38)

We are going to show it leads to (S25) by selecting an appropriate δ̄ as follows. We write

η = ηδ̄ = 1
2 −

V (κ)

(1+δ̄)∆2npL
log n−k

k to make the dependence on δ̄ explicit. Recall that δ2 and C ′1

are independent of the δ̄ in the definition of ηδ̄. First we can let δ̄ > δ1, then we have

(1 + δ2)η2
δ̄
∆2npL

2V (κ)
+ C ′1ηδ̄

√
∆2npL

V (κ)
≤

(
1 + δ2 + 2C ′1

(
ηδ̄

∆2npL

V (κ)

)− 1
2

)
η2
δ̄
∆2npL

2V (κ)

≤

(
1 + δ2 + 2C ′1

(
ηδ1

∆2npL

V (κ)

)− 1
2

)
η2
δ̄
∆2npL

2V (κ)

≤ (1 + δ4)
η2
δ̄
∆2npL

2V (κ)
,

for some δ4 = o(1) not dependent on δ̄. Here the second inequality is due to the fact that ηδ
is in increasing function of δ, and the last inequality is due to (S23). Then we can let δ̄ ≥ δ4

to have the above expression to be upper bounded by
(
1 + δ̄

) η2
δ̄
∆2npL

2V (κ)
. Hence, (S142) leads

to

P(θ∗,r∗)

 ∑
k−ρk<i≤k

I {π̂i < t} ≥ C4k exp

(
−

(1 + δ̄)η2
δ̄
∆2npL

2V (κ)

) ≥ 1− o(1), (S39)

witch establishes (S25).
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Similar to (S142), we can establish

P(θ∗,r∗)

 ∑
k<i≤k+ρ(n−k)

I {π̂i > t} ≥ C4(n− k) exp

(
−(1 + δ2)(1− ηδ̄)2∆2npL

2V (κ)
− C ′1(1− ηδ̄)

√
∆2npL

V (κ)

)
≥ 1− o(1).

Due to (S23), we have (1− ηδ̄) ∈ [0, 1], then

(1 + δ2)(1− ηδ̄)2∆2npL

2V (κ)
+ C ′1(1− ηδ̄)

√
∆2npL

V (κ)
≤ (1 + δ2)(1− ηδ̄)2∆2npL

2V (κ)
+ C ′1

√
∆2npL

V (κ)

≤ (1 + δ5)
(1− ηδ̄)2∆2npL

2V (κ)
,

for some δ5 = o(1) not dependent on δ̄. Since (1−ηδ̄)2∆2npL/(2V (κ)) = η2
δ̄
∆2npL/(2V (κ))+

2 log n−k
k /(1 + δ̄), we have

(n− k) exp

(
−(1 + δ2)(1− ηδ̄)2∆2npL

2V (κ)
− C ′1ηδ̄

√
∆2npL

V (κ)

)

≥ k exp

(
log

n− k
k
− (1 + δ5)

(1− ηδ̄)2∆2npL

2V (κ)

)
= k exp

(
δ̄ − δ5

1 + δ̄
log

n− k
k
− (1 + δ5)

η2
δ̄
∆2npL

2V (κ)

)
.

By letting δ̄ ≥ δ5 and using the same argument as in obtaining (S39), we have

P(θ∗,r∗)

 ∑
k<i≤k+ρ(n−k)

I {π̂i > t} ≥ C4k exp

(
−

(1 + δ̄)η2
δ̄
∆2npL

2V (κ)

) ≥ 1− o(1), (S40)

which establishes (S26). To sum up, we can choose δ̄ = max{δ1, δ4, δ5} to establish (S25) and

(S26).

The above proof assumes that κ = Ω(1) and SNR satisfies (S23). When these two con-

ditions do not hold, we need to slightly modify the argument. When (S23) is not satisfied,

there must exist some small constant ε̄ > 0 such that

√
(1+ε̄)SNR

2 − 1√
(1+ε̄)SNR

log n−k
k = O(1).

We can then take ρ to be a sufficiently small constant, and the proof will go through with

some slight modification. When κ = o(1), we can simply construct θ∗ by θ∗i = 0 for 1 ≤ i ≤ k
and θ∗i = −∆ for k + 1 ≤ i ≤ n.

Finally, we state and prove Lemma A.4 to close this section.

Lemma A.4. Assume np
logn → ∞, κ = O(1), ρ = o(1), k → ∞ and (20) holds for some

arbitrarily small constant ε > 0. Choose κ1, κ2 ≥ 0 such that we have both κ1 + κ2 ≤ κ and

kψ′(κ1)(1 + eκ1)2 + (n− k)ψ′(κ2)(1 + e−κ2)2

(kψ(κ1) + (n− k)ψ(−κ2))2/n
= V (κ).
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Define θ∗i = κ1 for all 1 ≤ i ≤ k − ρk, θ∗i = 0 for k − ρk < i ≤ k, θ∗i = −∆ for k + 1 ≤ i ≤
k + ρ(n− k) and θ∗i = −κ2 for k + ρ(n− k) < i ≤ n and S = {i ∈ [n] : i ≤ k − ρk or i > k}.
There exists some constants C1 > 0 such that for any δ̃ = o(1), there exists C2 > 0 and

δ1 = o(1) such that for any η < 1/2 and any A ∈ A where A is defined in (S133)-(S135), we

have

P

(∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + δ̃)η∆

∣∣∣∣∣A
)

≥ C1 exp

(
−1 + δ1

2
η2

+SNR− C2η+

√
SNR

)
. (S41)

for any k − ρk < i ≤ k.

Proof. We suggest readers to go through the proof of Lemma B.3 in Section B.2 first. The

proof of Lemma A.4 basically follows that of Lemma B.3. We will omit repeated details in

the proof of Lemma B.3 and only present key steps and calculations specific to this Lemma

A.4.

We denote qj = ψ(θi − θj). Then 1 + eθ
∗
j−θ∗i = 1/qj and ψ(θj − θi) = 1− qj . Then what

we need to lower bound can be written as

PA

∑
`∈[L]

∑
j∈S

Aji
qj − yij`

qj
≥ Lt′

 ,

where t′ = (1 + δ′)η∆
∑

j∈[n]\{i} p(1− qj) for some δ′ = o(1) due to (S133)-(S135), and PA is

the conditional probability given A. Note that δ′ can be chosen independent of η. We remark

that

SNR = (1 + δ′′)
L∆2(

∑
j∈[n]\{i} p(1− qj))2∑
j∈S p

1−qj
qj

due to ρ = o(1) for some δ′′ = o(1) independent of η. We still first consider the regime when

η
√
SNR→∞, (S42)

This implies η ∈ (0, 1/2).

The conditional cumulant of
∑

j∈S Aji
qj−yijl
qj

for each l ∈ [L] is

ν(u) =
∑
j∈S

Aji log

(
qje

u(qj−1)

qj + (1− qj)eu
)

=
∑
j∈S

Aji

[
−u1− qj

qj
+ log((1− qj)eu/qj + qj)

]
.

The function ν(u) acts as the same role as K(u) in the proof of Lemma B.3. Define

u∗ = arg min
u≥0

(
Lν(u)− uLt′

)
.

Its first derivative is

ν ′(u) =
∑
j∈S

Aji

 (1−qj)
qj

eu/qj

(1− qj)eu/qj + qj
− 1− qj

qj

 .
17



Following the same argument in the proof of Lemma B.3, we need to pin down a range for u∗.

First due to (S42) and ν ′(0) = 0, we have t′ > 0 and thus ν ′(0) − t′ < 0. Now for u = o(1),

we can approximate ν ′(u) by Taylor expansion and obtain

1− δ2 ≤
ν ′(u)

ν ′(u)
≤ 1 + δ2, (S43)

for some 0 < δ2 = o(1), where ν ′(u) =
∑

j∈S p
1−qi
qi
u. Note that we can replace Aji by

p because of the condition A ∈ A. Then we consider ũ = 2t′∑
j∈S p

1−qi
qi

, which is o(1) since

∆ = o(1) and ρ = o(1). Therefore,

ν ′(ũ)− t′ ≥ (1− δ2)ν ′(ũ)− t′ = (1− δ2)t′ > 0.

This implies that u∗ ∈
(

0, 2t′∑
j∈S p

1−qi
qi

)
. Thus u∗ = o(1).

When u = o(1), ν(u) also follows a second order Taylor expansion such that:

1− δ3 ≤
ν(u)

ν̄(u)
≤ 1 + δ3,

where ν̄(u) = 1
2

∑
j∈S p

1−qj
qj

u2 and δ3 = o(1) due to (S133)-(S135).

Following the change-of-measure argument in the proof of Lemma B.3, the probability of

interest can be lower bounded by

exp
(
−u∗T + Lν(u∗)− Lu∗t′

)
QA

0 ≤
L∑
l=1

∑
j∈S

Zjl − Lt′ ≤ T

 ,

where QA is a measure under which Zjl are all independent given A and follow

QA(Zjl = s) = eAjiu
∗s−Ajiνj(u∗)PA

(
Aji

qj − yijl
qj

= s

)
and νj(u) = −u1−qj

qj
+ log((1− qj)eu/qj + qj). Then for each Zjl such that Aij = 1, its second

and 4th moment under QA can be analyzed:

QA((Zjl −QA(Zjl))
2) = ν ′′j (u∗) =

1− qj
qj

eu
∗/qj

[(1− qj)eu
∗/qj + qj ]2

∈ (C ′1, C
′
2), (S44)

QA((Zjl −QA(Zjl))
4) = ν ′′′′j (u∗) + 3ν ′′j (u∗) ≤ (3 + C ′4)ν ′′j (u∗) ≤ C ′3, (S45)

where (S45) comes from

ν ′′′′j (u) =
1− qj
q3
j

eu/qj
(1− qj)3e3u/qj − 3(1− qj)2qje

2u/qj − 3(1− qj)q2
j e

2u/qj + q3
j

[(1− qj)eu/qj + qj ]5

≤ max
j∈S

1/q2
j ν
′′(u) ≤ C ′4ν ′′(u).
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Now, to lower bound Lν(u∗)− Lu∗t′:

Lν(u∗)− Lu∗t′ ≥ L(1− δ3)
1

2

∑
j∈S

p
1− qj
qj

u∗2 − Lu∗t′

≥ L min
u∈(0,1)

(1− δ3)
1

2

∑
j∈S

p
1− qj
qj

u∗2 − u∗t′
 (S46)

≥ −1

2

Lt′2

(1− δ3)
∑

j∈S p
1−qj
qj

≥ −1 + δ4

2
η2SNR,

where (S46) is achieved at u = t′

(1−δ3)
∑
j∈S p

1−qj
qj

and δ4 = o(1) since ρ = o(1). This gives us

the desired exponent. We remark that δ4 is independent of η.

To choose T , observe that

VarQA

∑
l∈[L]

∑
j∈S

Zjl

 ≤ C̃1npL,

for some constant C̃1 > 0 using (S133) - (S135) , (S44) and ρ = o(1). Thus we choose

T =

√
C̃1npL, which leads to a term C2η

√
SNR in the exponent for some C2 > 0 independent

of η.

Finally, to lower bound the QA measure, we only need to verify the vanishing property

of the 4th moment approximation bound in Lemma E.3:√√√√√L
∑
j∈S

Aji

(
QA((Zj1 −QA(Zj1)4)

(L
∑

j∈S AjiQA((Zj1 −QA(Zj1)2))2

)3/4

≤ C̃2(npL)−1/4 (S47)

where (S47) is by (S44), (S45) and ρ = o(1). To summarize, we have proved

PA

∑
l∈[L]

∑
j∈S

Aji
qj − yijl

qj
≥ Lt′

 ≥ C1 exp

(
−1 + δ5

2
η2SNR− C2η

√
SNR

)
for some constant C1, C2 > 0 and δ5 = o(1), when (S42) holds. This δ5 can be used as the δ1

in (S41). We remark that C1, C2, δ5 are all independent of η.

Finally, when

η
√

SNR ≤ C3

for some constant C3 > 0. This condition, together with (S133)-(S135) and ρ = o(1), implies

that

Lt′ ≤ C4

√
L
∑
j∈S

Aji
1− qi
qi

.
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Therefore,

PA

∑
l∈[L]

∑
j∈S

Aji
qj − yijl

qj
≥ Lt′

 ≥ PA

∑
l∈[L]

∑
j∈S

Aji
qj − yijl

qj
≥ C5

√
L
∑
j∈S

Aji
1− qi
qi


≥ c1 − o(1) (S48)

where (S48) comes from Lemma E.3. The 4th moment approximation can be checked to be

of order (npL)−1/4 similarly as in (S47) using (S133)-(S135) and ρ = o(1) since the second

and fourth moment of
qj−yijl
qj

are at the constant order under measure PA, which completes

the proof.

B Proofs of Lower Bounds

This section collects the proofs of lower bound results of the paper. The lower bound for

exact recovery is proved in Section B.1, and the partial recovery lower bound is proved in

Section B.2.

B.1 Proof of Theorem 3.4

The key mathematical argument in the proof of Theorem 3.4 is to characterize the maximum

of dependent binomial random variables. For this purpose, we need a high-dimensional central

limit theorem result by [4]. The following lemma is adapted from [4] for our purpose.

Lemma B.1. Consider independent random vectors X1, · · · , Xn ∈ Rd with mean zero. As-

sume there exist constants c1, c2, C1, C2 > 0 such that mini,j EX2
ij ≥ c1, maxi,j E exp(|Xij |/C1) ≤

2 and (log(nd))7 ≤ C2n
−(1+c2). Then, there exist independent Gaussian vectors Z1, · · · , Zn

satisfying EZi = 0 and Cov(Zi) = Cov(Xi), such that

sup
t∈R

∣∣∣∣∣P
(

max
j∈[d]

n∑
i=1

Xij ≤ t

)
− P

(
max
j∈[d]

n∑
i=1

Zij ≤ t

)∣∣∣∣∣ ≤ Cn−c,
for some constants c, C > 0 only depending on c1, c2, C1, C2.

With the above Gaussian approximation, we only need to analyze the maximum of de-

pendent Gaussian random variables. The following lemma can be found in [6].

Lemma B.2. Consider Z = (Z1, · · · , Zn)T ∼ N(0,Σ). Then, for any α ∈ (0, 1), there exists

some constant Cα > 0 such that for all n ≥
√

2πe3 log 1/α,

P
(

max
i∈[n]

Zi > λ1/2
√

2 log n− log log n− Cα − Λ1/2Φ−1(1− α)

)
≥ 1− 2α,

where λ = mini∈[n] Σii −
maxi∈[n]

∑
j∈[n]\{i} Σ2

ij

λmin(Σ) and Λ = maxi∈[n] Σii.
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Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. We first note that the condition (16) implies that ∆ = o(1). Choose

κ1, κ2 ≥ 0 such that we have both κ1 + κ2 ≤ κ and

n

kψ′(κ1) + (n− k)ψ′(κ2)
= V (κ).

We first consider the case k → ∞ and κ = Ω(1). In this case, one can easily check that

κ2 = Ω(1). Our least favorable θ∗ ∈ Θ(k,∆, κ) is constructed as follows. Let ρ = o(1) be a

vanishing number that will be specified later. Define θ∗i = κ1 for all 1 ≤ i ≤ k − ρk, θ∗i = 0

for k− ρk < i ≤ k, θ∗i = −∆ for k < i ≤ k+ ρ(n− k) and θ∗i = −κ2 for k+ ρ(n− k) < i ≤ n.

For the simplicity of proof, we choose ρ so that both ρk and ρ(n− k) are integers. Consider

a subset Rk,ρ ⊂ Sn that is defined by

Rk,ρ = {r ∈ Sn : ri = i for all i ≤ k − ρk or i > k + ρ(n− k)} . (S49)

We then have the lower bound

inf
r̂

sup
r∗∈Sn

θ∗∈Θ(k,∆,κ)

P(θ∗,r∗) (Hk(r̂, r
∗) > 0) ≥ inf

r̂
sup

r∗∈Rk,ρ
P(θ∗,r∗) (Hk(r̂, r

∗) > 0) .

For each z = {zi}k−ρk<i≤k+ρ(n−k) ∈ {0, 1}ρn, we define Qz as a joint probability of the

observations {Aij} and {yijl}. To sample data from Qz, we first sample A ∼ G(n, p), and

then for any (i, j) such that Aij = 1, sample yijl ∼ Bernoulli(ψ(µi(z)−µj(z))) independently

for l ∈ [L]. The vector µ(z) is defined by µi(z) = θ∗i for all i ≤ k − ρk or i > ρ(n − k) and

µi(z) = ∆I {zi = 1} for all k − ρk < i ≤ k + ρ(n− k). Then, we have

inf
r̂

sup
r∗∈Rk,ρ

P(θ∗,r∗) (Hk(r̂, r
∗) > 0) ≥ inf

ẑ
sup
z∗∈Zk

Qz∗ (ẑ 6= z∗)

≥ inf
ẑ

1

|Zk|
∑
z∗∈Zk

Qz∗(ẑ 6= z∗),

where

Zk =

{
z = {zi}k−ρk<i≤k+ρ(n−k) ∈ {0, 1}ρn :

∑
i

zi = ρk

}
.

The Bayes risk 1
|Zk|

∑
z∗∈Zk Qz∗(ẑ 6= z∗) is minimized by

ẑ = argmin
z∈Zk

`n(µ(z)), (S50)

where

`n(µ(z)) =
∑

1≤i<j≤n
Aij

[
ȳij log

1

ψ(µi(z)− µj(z))
+ (1− ȳij) log

1

1− ψ(µi(z)− µj(z))

]
.
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It suffices to lower bound the probability Qz∗(ẑ 6= z∗) for the estimator (S50) and for each

z∗ ∈ Zk. By symmetry, the value of Qz∗(ẑ 6= z∗) is the same for any z∗ ∈ Zk. We therefore

can set z∗i = I {i ≤ k} without loss of generality. Define

N (z∗) =

{
z ∈ Zk :

∑
i

I {zi 6= z∗i } = 2

}
.

Then, we have

Qz∗(ẑ 6= z∗) ≥ Qz∗

(
min

z∈N (z∗)
`n(µ(z)) < `n(µ(z∗))

)
.

By direct calculation, we have

`n(µ(z))− `n(µ(z∗))

=
∑

1≤i<j≤n
Aij(ȳij − ψ(µi(z

∗)− µj(z∗)))(µi(z∗)− µj(z∗)− µi(z) + µj(z))

+
∑

1≤i<j≤n
AijD (ψ(µi(z

∗)− µj(z∗))‖ψ(µi(z)− µj(z))) .

For any z ∈ N (z∗), there exists some k − ρk < a ≤ k and some k < b ≤ k + ρ(n − k) such

that za = 0, zb = 1 and zi = z∗i for all other i’s. Then,∑
1≤i<j≤n

AijD (ψ(µi(z
∗)− µj(z∗))‖ψ(µi(z)− µj(z)))

≤
k−ρk∑
i=1

AiaD(ψ(κ1)‖ψ(κ1 + ∆)) +

n∑
i=k+ρ(n−k)+1

AiaD(ψ(−κ2)‖ψ(−κ2 + ∆))

+

k−ρk∑
i=1

AibD(ψ(κ1 + ∆)‖ψ(κ1)) +
n∑

i=k+ρ(n−k)+1

AibD(ψ(−κ2 + ∆)‖ψ(−κ2))

+
k∑

i=k−ρk+1

AiaD(ψ(0)‖ψ(∆)) +

k+ρ(n−k)∑
i=k+1

AiaD(ψ(−∆)‖ψ(0))

+
k∑

i=k−ρk+1

AibD(ψ(∆)‖ψ(0)) +

k+ρ(n−k)∑
i=k+1

AibD(ψ(0)‖ψ(−∆)) +AabD(ψ(∆)‖ψ(−∆))

≤ (1 + δ)(1− ρ)p [kD(ψ(κ1)‖ψ(κ1 + ∆)) + (n− k)D(ψ(−κ2)‖ψ(−κ2 + ∆))] (S51)

+(1 + δ)(1− ρ)p [kD(ψ(κ1 + ∆)‖ψ(κ1)) + (n− k)D(ψ(−κ2 + ∆)‖ψ(−κ2))]

+(1 + δ)ρp [kD(ψ(0)‖ψ(∆)) + (n− k)D(ψ(−∆)‖ψ(0))]

+(1 + δ)ρp [kD(ψ(∆)‖ψ(0)) + (n− k)D(ψ(0)‖ψ(−∆))] + (1 + δ)pD(ψ(∆)‖ψ(−∆))

≤ (1 + δ)2(1− ρ)p∆2
[
kψ′(κ1) + (n− k)ψ′(κ2)

]
+ (1 + δ)2ρp∆2n

4
(S52)

≤ (1 + δ)3p∆2 n

V (κ)
. (S53)

The inequality (S51) holds with probability at least 1 − O(n−10) by Bernstein’s inequality.

The inequality (S52) is a Taylor expansion argument with the help of ∆ = o(1). We obtain
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(S53) by the choice that ρ = o(1). Note that we can choose some δ = o(1) to make all of

(S51), (S52) and (S53) hold. We also have∑
1≤i<j≤n

Aij(ȳij − ψ(µi(z
∗)− µj(z∗)))(µi(z∗)− µj(z∗)− µi(z) + µj(z))

= −∆
∑

i∈[n]\{a}

Aia(ȳia − Eȳia) + ∆
∑

i∈[n]\{b}

Aib(ȳib − Eyib).

Therefore,

min
z∈N (z∗)

`n(µ(z))− `n(µ(z∗))

≤ − max
(1−ρ)k<a≤k

∆
∑

i∈[n]\{a}

Aia(ȳia − Eȳia) + ∆ min
k<b≤k+ρ(n−k)

∑
i∈[n]\{b}

Aib(ȳib − Eyib)

+(1 + δ)3p∆2 n

V (κ)
,

with probability at least 1−O(n−10). This leads to the bound

Qz∗

(
min

z∈N (z∗)
`n(µ(z)) < `n(µ(z∗))

)
≥ Qz∗

(
max

(1−ρ)k<a≤k

∑
i∈[n]\{a}

Aia(ȳia − Eȳia)

− min
k<b≤k+ρ(n−k)

∑
i∈[n]\{b}

Aib(ȳib − Eyib) > (1 + δ)3p∆
n

V (κ)

)
−O(n−10)

≥ Qz∗

(
max

(1−ρ)k<a≤k

∑
i∈[n]\{a}

Aia(ȳia − Eȳia)− min
k<b≤k+ρ(n−k)

∑
i∈[n]\{b}

Aib(ȳib − Eyib) (S54)

>
√

2(1− ε/2)

√
np

LV (κ)

(√
log k +

√
log(n− k)

))
−O(n−10)

≥ Qz∗

 max
(1−ρ)k<a≤k

∑
i∈[n]\{a}

Aia(ȳia − Eȳia) >
√

2(1− ε/2)

√
np

LV (κ)

√
log k

 (S55)

+Qz∗

− min
k<b≤k+ρ(n−k)

∑
i∈[n]\{b}

Aib(ȳib − Eyib) >
√

2(1− ε/2)

√
np

LV (κ)

√
log(n− k)


−1−O(n−10),

where we have used the condition of the theorem to derive (S54). The last inequality (S55)

is by union bound P(A ∩ B) ≥ P(A) + P(B) − 1. To lower bound (S55), we introduce the

notation

Ta =
∑

i∈[n]\{a}

Aia(ȳia − Eȳia), (1− ρ)k < a ≤ k.
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The covariance structure of {Ta}(1−ρ)k<a≤k can be quantified by the matrix Σ ∈ R(ρk)×(ρk),

which is defined by Σab = Cov(Ta, Tb|A). We then construct a vector S = {Sa}(1−ρ)k<a≤k
that is jointly Gaussian conditioning on A. The conditional covariance of S is also Σ. By

Lemma B.1, we have

Qz∗

 max
(1−ρ)k<a≤k

∑
i∈[n]\{a}

Aia(ȳia − Eȳia) >
√

2(1− ε/2)

√
np

LV (κ)

√
log k

 (S56)

≥ P
(

max
(1−ρ)k<a≤k

Sa >
√

2(1− ε/2)

√
np

LV (κ)

√
log k

)
−O

(
1

(log n)c

)
. (S57)

To see how Lemma B.1 implies (S57), we can take Xla = 1√
np

∑
i∈[n]\{a}Aia(yial − Eyial).

Conditioning on A, we observe that {Xla} is independent across l ∈ [L]. The conditional

variance of Xla given A is bounded away from zero with high probability by Lemma 8.1.

Moreover, one can find a constant C > 0, such that E
[
exp(|Xla|/C)

∣∣A] ≤ 2 by Hoeffding’s

inequality. Then, we can apply Lemma B.1 for a given A and obtain (S57) under the condition

L > (log n)8. We need Lemma B.2 to lower bound the probability in (S57). For each a,

Σaa = Var(Ta|A)

=
1

L

∑
i∈[n]\{a}

Aiaψ
′(µi(z

∗)− µa(z∗))

=
ψ′(κ1)

L

k−ρk∑
i=1

Aia +
1

4L

k∑
i=k−ρk+1

Aia +
ψ′(κ2)

L

k+ρ(n−k)∑
i=k+1

Aia +
ψ′(∆)

L

n∑
i=k+ρ(n−k)+1

Aia.

By Lemma 8.1, we have

max
(1−ρ)k<a≤k

Σaa ≤
1

4L

∑
i∈[n]\{a}

Aia ≤
np

2L
, (S58)

with probability at least 1− O(n−10). Similar to the proof of Lemma 8.1, we can use Bern-

stein’s inequality and a union bound argument to obtain that

min
(1−ρ)k<a≤k

Σaa ≥ min
(1−ρ)k<a≤k

ψ′(κ1)

L

k−ρk∑
i=1

Aia +
ψ′(κ2)

L

k+ρ(n−k)∑
i=k+1

Aia


≥ (1− δ)(1− ρ)p

L

(
kψ′(κ1) + (n− k)ψ′(κ2)

)
=

(1− δ)(1− ρ)pn

LV (κ)
, (S59)

for some δ = o(1) with probability at least 1−O(n−10). For each a 6= b,

Σab = Cov(Ta, Tb|A) = Aab
ψ′(µa(z

∗)− µb(z∗))
L

.
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Then, Bernstein’s inequality and a union bound argument, we have

max
a

∑
b:b 6=a

Σ2
ab ≤

1

16L2
max

(1−ρ)k<a≤k

∑
b:b 6=a

Aab ≤ C1
ρkp+ log n

L2
, (S60)

with probability at least 1−O(n−10). We can also obtain a similar bound for maxa
∑

b:b 6=a Σab.

This allows us to give a lower bound on λmin(Σ):

λmin(Σ) ≥ min
(1−ρ)k<a≤k

Σaa−max
a

∑
b:b 6=a

Σab ≥
(1− δ)(1− ρ)pn

LV (κ)
−C2

ρkp+ log n

L
≥ c1

pn

L
. (S61)

To apply Lemma B.2, we shall choose ρ that satisfies both log(ρk) = (1 + o(1)) log k and

ρ = o(1). The existence of such ρ is guaranteed by k → ∞. With the bounds (S58)-(S61),

we can apply Lemma B.2, and obtain

P
(

max
(1−ρ)k<a≤k

Sa >
√

2(1− ε/2)

√
np

LV (κ)

√
log k

)
≥ 0.98−O(n−1).

We then obtain the desired lower bound for (S56). A similar argument also leads to

Qz∗

− min
k<b≤k+ρ(n−k)

∑
i∈[n]\{b}

Aib(ȳib − Eyib) >
√

2(1− ε/2)

√
np

LV (κ)

√
log(n− k)


≥ 0.99−O

(
1

(log n)c

)
.

Therefore, Qz∗(ẑ 6= z∗) ≥ 0.95 and we obtain the desired conclusion.

The above proof assumes that k →∞ and κ = Ω(1). When these two conditions do not

hold, we need to slightly modify the argument. Let us briefly discuss two cases. In the first

case, k = O(1) and κ = Ω(1). In this case, we can construct θ∗ by θ∗i = 0 for 1 ≤ i ≤ k,

θ∗i = −∆ for k < i ≤ k+ ρ(n− k) and θ∗i = −κ for k+ ρ(n− k) < i ≤ n. In the second case,

κ = o(1), and then we can take θ∗ with θ∗i = 0 for 1 ≤ i ≤ k and θ∗i = −∆ for k < i ≤ n.

The remaining part of the proof will go through with similar arguments, and we will omit

the details.

B.2 Proof of Theorem 6.1

We first establish a lemma that lower bounds the error of a critical testing problem.

Lemma B.3. Assume np
logn → ∞, κ = O(1), ρ = o(1), k → ∞ and (16) holds for some

arbitrarily small constant ε > 0. Choose κ1, κ2 ≥ 0 such that we have both κ1 + κ2 ≤ κ and

n

kψ′(κ1) + (n− k)ψ′(κ2)
= V (κ).

Define θi = κ1 for 1 ≤ i ≤ k−ρk, θi = 0 for k−ρk < i ≤ k, θi = −∆ for k+2 ≤ i ≤ k+ρ(n−k)

and θi = −κ2 for k + ρ(n− k) < i ≤ n. Suppose we have independent Ai ∼ Bernoulli(p) and
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zil ∼ Bernoulli(ψ(θi)) for all i ∈ [n]\{k + 1} and l ∈ [L]. Then, there exists some δ = o(1)

such that

P

 L∑
l=1

∑
i∈[n]\{k+1}

Ai

[
zil log

ψ(θi + ∆)

ψ(θi)
+ (1− zil) log

1− ψ(θi + ∆)

1− ψ(θi)

]
≥ log

k

n− k − 1


≥ C exp

−1

2

(√
(1 + δ)SNR

2
− 1√

(1 + δ)SNR
log

n− k
k

)2

+

 ,

for some constant C > 0.

Proof. We first consider the case√
(1 + δ)SNR

2
− 1√

(1 + δ)SNR
log

n− k
k
→∞, (S62)

for some δ = o(1) to be specified later. Throughout the proof, we use PA for the conditional

distribution P(·|A). We use the notation

Zl =
∑

i∈[n]\{k+1}

Ai

[
zil log

ψ(θi + ∆)

ψ(θi)
+ (1− zil) log

1− ψ(θi + ∆)

1− ψ(θi)

]
.

Its conditional cumulant generating function is

K(u) =
∑

i∈[n]\{k+1}

Ai log
(
ψ(θi)

1−uψ(θi + ∆)u + (1− ψ(θi))
1−u(1− ψ(θi + ∆))u

)
.

Define

u∗ = argmin
u≥0

(
LK(u)− u log

k

n− k − 1

)
.

By direct calculation, we have

K ′(0) = −
∑

i∈[n]\{k+1}

AiD(ψ(θi)‖ψ(θi + ∆)).

K ′(1) =
∑

i∈[n]\{k+1}

AiD(ψ(θi + ∆)‖ψ(θi)).

By Bernstein’s inequality,

K ′(0) ≤ −(1− δ1)p
∑

i∈[n]\{k+1}

D(ψ(θi)‖ψ(θi + ∆)), (S63)

K ′(1) ≥ (1− δ1)p
∑

i∈[n]\{k+1}

D(ψ(θi + ∆)‖ψ(θi)), (S64)

with some δ1 = o(1) for probability at least 1 − O(n−1). Given that ∆ = o(1), which is

implied by (16), and ρ = o(1), we have
∑

i∈[n]\{k+1}D(ψ(θi)‖ψ(θi + ∆)) = (1 + o(1)) n∆2

2V (κ)
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and
∑

i∈[n]\{k+1}D(ψ(θi + ∆)‖ψ(θi)) = (1 + o(1)) n∆2

2V (κ) . With the condition (S62), we know

that LK ′(0)− log k
n−k−1 < 0 and LK ′(1)− log k

n−k−1 > 0. Thus, we must have u∗ ∈ (0, 1). In

fact, the range of u∗ can be further narrowed down. We apply a Taylor expansion of K ′(u)

as a function of ∆ near 0, and we obtain

K ′(u) =
∑

i∈[n]\{k+1}

Ai

[
−1

2
ψ′(θi)∆

2 + ψ′(θi)u∆2 +O(|∆|3)

]
.

Note that the remainder term O(|∆|3) can be bounded by |∆|3 up to some constant uniformly

for all u ∈ (0, 1). By Bernstein’s inequality, we have

K ′(u) ≥ −(1 + δ1)

(
1

2
− u
)
np∆2

V (κ)
, (S65)

for all u ∈ (0, 1/2) with probability at least 1−O(n−1). By (S65), there exists δ′ = o(1) such

that

K ′
(

1

2
− 1

(1 + δ′)SNR
log

n− k
k

)
> 0,

and therefore, we must have

u∗ ∈
(

0,
1

2
− 1

(1 + δ′)SNR
log

n− k
k

)
. (S66)

We also introduce a quadratic approximation for K(u), which is

K(u) =
np∆2

2V (κ)
(u2 − u).

It can be shown that

1− δ2 ≤
K(u)

K(u)
≤ 1 + δ2, (S67)

uniformly over all u ∈ (0, 1) for some δ2 = o(1) with probability at least 1 − O(n−1). The

inequality (S67) can be obtained by a Taylor expansion argument followed by Bernstein’s

inequality, similar to the approximation obtained in (S65).

Define a probability distribution QA, under which Z1, · · · , ZL are i.i.d. given A and follow

QA(Zl = s) = PA(Zl = s)eu
∗s−K(u∗),

for any s. It fact, each Zl, under the measure QA can be written as the sum of several

independent random variables, i.e. Zl =
∑

i∈[n]\{k+1} Zil where

QA(Zil = s) = eAiu
∗s−AiKi(u∗)PA

(
Ai

[
zil log

ψ(θi + ∆)

ψ(θi)
+ (1− zil) log

1− ψ(θi + ∆)

1− ψ(θi)

]
= s

)
,

and Ki(u) = log
(
ψ(θi)

1−uψ(θi + ∆)u + (1− ψ(θi))
1−u(1− ψ(θi + ∆))u

)
. Then for each Zil

such that Ai = 1, we can compute its second and 4th moment as

QA((Zil−QA(Zil))
2) = K ′′i (u∗) = ψ′(θi)∆

2 eu
∗∆

(1− ψ(θi) + eu∗∆ψ(θi))2
∈ (C ′1∆2, C ′2∆2), (S68)
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QA((Zil −QA(Zil))
4) = K ′′′′i (u∗) + 3K ′′i (u∗)2 ≤ ∆2K ′′i (u∗) + 3K ′′i (u∗)2, (S69)

where C ′1, C
′
2 > 0 in (S68) are some constants and we have used

K ′′′′i (u∗) = ψ′(θi)∆
4eu

∗∆ψ(θi)
3e3u∗∆ − 3ψ(θi)ψ

′(θi)e
2u∗∆ − 3ψ′(θi)(1− ψ(θ∗))eu

∗∆ + (1− ψ(θi))
3

(1− ψ(θi) + ψ(θi)eu
∗∆)5

≤ ψ′(θi)∆4eu
∗∆ 1

(1− ψ(θi) + ψ(θi)eu
∗∆)2

= ∆2K ′′i (u∗)

in (S69).

Define A to be the event of A that (S63), (S64), (S65), (S67) and

1

2
np ≤

∑
i∈[n]\{k+1}

Ai ≤ 2np, (S70)

all hold. We know that P(A ∈ A) ≥ 1−O(n−1).

With the above preparations, we can lower bound P
(∑L

l=1 Zl ≥ log k
n−k−1

)
by

inf
A∈A

PA

(
L∑
l=1

Zl ≥ log
k

n− k − 1

)
P(A ∈ A) ≥ 1

2
inf
A∈A

PA

(
L∑
l=1

Zl ≥ log
k

n− k − 1

)
.

For any A ∈ A, a change-of-measure argument leads to the lower bound

PA

(
L∑
l=1

Zl ≥ log
k

n− k − 1

)

= exp

(
LK(u∗)− u∗ k

n− k − 1

)
×QA

[
I

{
L∑
l=1

Zl − log
k

n− k − 1
≥ 0

}
exp

(
−u∗(

L∑
l=1

Zl − log
k

n− k − 1
)

)]

≥ exp

(
−u∗T + LK(u∗)− u∗ log

k

n− k − 1

)
QA

(
0 ≤

L∑
l=1

Zl − log
k

n− k − 1
≤ T

)
,

for any T > 0 to be specified. We first lower bound the exponent LK(u∗)− u∗ log k
n−k−1 by

LK(u∗)− u∗ log
k

n− k − 1
= min

u∈(0,1)

(
LK(u)− u log

k

n− k − 1

)
≥ min

u∈(0,1)

(
L(1 + δ2)K(u)− u log

k

n− k − 1

)

≥ −1

2

(√
(1 + δ3)SNR

2
− 1√

(1 + δ3)SNR
log

n− k
k

)2

,

for some δ3 = o(1). We then need to choose an appropriate T so that the probability

QA

(
0 ≤

∑L
l=1 Zl − log k

n−k−1 ≤ T
)

can be bounded below by some constant. To achieve
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this purpose, we note that

VarQA

(
L∑
l=1

Zl

)
= L

∑
i∈[n]\{k+1}

AiK
′′
i (u∗) ≤ C1∆2L

∑
i∈[n]\{k+1}

Ai ≤ 2C1∆2Lnp,

for some constant C1 > 0 due to (S68), where VarQA is the variance operator under the

measure QA. Thus, we set T =
√

2C1∆2Lnp. With this choice, and by (S66), we have

u∗T ≤
√

2C1∆2Lnp

(
1

2
− 1

(1 + δ′)SNR
log

n− k
k

)
.

Therefore, u∗T is at most the order of the square-root of the desired exponent, and thus it is

negligible.

Finally, we need to show QA

(
0 ≤

∑L
l=1 Zl − log k

n−k−1 ≤ T
)

is lower bounded by some

constant. Note that the definition of u∗ implies that
∑L

l=1 Zl − log k
n−k−1 has mean zero

under QA. By the definition of T , we have

QA

(
0 ≤

L∑
l=1

Zl − log
k

n− k − 1
≤ T

)

≥ QA

0 ≤
L∑
l=1

Zl − log
k

n− k − 1
≤

√√√√Var

(
L∑
l=1

Zl

∣∣∣∣∣A
)

= QA

0 ≤
L∑
l=1

∑
i∈[n]\{k+1}

Zil − log
k

n− k − 1
≤

√√√√√Var

 L∑
l=1

∑
i∈[n]\{k+1}

Zil

∣∣∣∣∣A

 .

We apply the central limit theorem in Lemma E.3 to bound the above probability. The 4th

moment approximation bound in Lemma E.3 is√√√√√L
∑

i∈[n]\{k+1}

Ai

(
K ′′′′i (u∗) + 3K ′′i (u∗)2

(L
∑

i∈[n]\{k+1}AiK
′′
i (u∗))2

)3/4

≤

√√√√√L
∑

i∈[n]\{k+1}

Ai

(
∆2K ′′i (u∗) + 3K ′′i (u∗)2

(L
∑

i∈[n]\{k+1}AiK
′′
i (u∗))2

)3/4

(S71)

≤

√√√√√L
∑

i∈[n]\{k+1}

Ai

(
C ′2 + 3C ′22

(L
∑

i∈[n]\{k+1}AiC
′
1)2

)3/4

(S72)

≤ C2

L ∑
i∈[n]\{k+1}

Ai

−1/4

(S73)
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which tends to zero by (S70). We have used (S69) in (S71), (S68) in (S72). We thus have

QA

(
0 ≤

L∑
l=1

Zl − log
k

n− k − 1
≤ T

)
≥ P (0 ≤ N(0, 1) ≤ 1)− o(1),

which is bounded below by a constant. To summarize, we have shown that

P

(
L∑
l=1

Zl ≥ log
k

n− k − 1

)
≥ C3 exp

−1

2

(√
(1 + δ4)SNR

2
− 1√

(1 + δ4)SNR
log

n− k
k

)2
 ,

for some δ4 = o(1) and some constant C3 > 0 when (S62) holds with δ = δ4.

To close the proof, we need a different argument when√
(1 + δ4)SNR

2
− 1√

(1 + δ4)SNR
log

n− k
k
≤ C4,

for some constant C4 > 0. This condition, together with Bernstein’s inequality, implies that

L∑
l=1

E(Zl|A)− log
k

n− k − 1
≥ −C5

√
Lnp∆2, (S74)

with probability at least 1−O(n−1). Define A to be an event of A such that both (S70) and

(S74) hold. It is clear that P(A) ≥ 1−O(n−1). We then have

P

(
L∑
l=1

Zl ≥ log
k

n− k − 1

)
≥ 1

2
inf
A∈A

PA

(
L∑
l=1

Zl ≥ log
k

n− k − 1

)

≥ 1

2
inf
A∈A

PA

(
L∑
l=1

(Zl − E(Zl|A)) ≥ C5

√
Lnp∆2

)
(S75)

≥ c1 − o(1), (S76)

for some constant c1 > 0. The inequality (S75) is by (S74). For (S76), we use the Gaus-

sian approximation in Lemma E.3, and the 4th moment approximation bound is of order(
L
∑

i∈[n]\{k+1}Ai

)−1/4
by similar calculation as in (S73) under measure PA, which tends to

zero by (S70). The proof is complete.

Proof of Theorem 6.1. We first note that the condition (16) implies that ∆ = o(1). Choose

κ1, κ2 ≥ 0 such that we have both κ1 + κ2 ≤ κ and

n

kψ′(κ1) + (n− k)ψ′(κ2)
= V (κ).

We first consider the case k → ∞ and κ = Ω(1). In this case, one can easily check that

κ2 = Ω(1). Our least favorable θ′, θ′′ ∈ Θ′(k,∆, κ) is constructed as follows. Let ρ = o(1) be

a vanishing number that will be specified later. Define θ′i = κ1 for all 1 ≤ i ≤ k − ρk, θ′i = 0
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for k − ρk < i ≤ k, θ′i = −∆ for k < i ≤ k + ρ(n− k) and θ′i = −κ2 for k + ρ(n− k) < i ≤ n.

For the simplicity of proof, we choose ρ so that both ρk and ρ(n−k) are integers. For θ′′, we

set θ′′i = θ′i for all i ∈ [n]\{k+ 1} and θ′′k+1 = 0. Recall the definition of the subset Rk,ρ ⊂ Sn

in (S49). We then have

inf
r̂

sup
r∗∈Sn

θ∗∈Θ′(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗) ≥ inf

r̂
sup

r∗∈Rk,ρ
θ∗∈{θ′,θ′′}

E(θ∗,r∗)Hk(r̂, r
∗)

≥ inf
r̂

1

2

∑
θ∗∈{θ′,θ′′}

1

|Rk,ρ|
∑

r∗∈Rk,ρ

E(θ∗,r∗)Hk(r̂, r
∗).

That is, we first lower bound the minimax risk by the Bayes risk. Since

Hk(r̂, r
∗) ≥ 1

2k

∑
k−ρk<i≤k+ρ(n−k)

(I {r̂i > k, r∗i ≤ k}+ I {r̂i ≤ k, r∗i > k}) ,

we have

inf
r̂

sup
r∗∈Sn

θ∗∈Θ′(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗)

≥ inf
r̂

1

2

∑
θ∗∈{θ′,θ′′}

1

|Rk,ρ|
∑

r∗∈Rk,ρ

E(θ∗,r∗)
1

2k

∑
k−ρk<i≤k+ρ(n−k)

(I {r̂i > k, r∗i ≤ k}+ I {r̂i ≤ k, r∗i > k})

≥ 1

4k |Rk,ρ|
∑

k−ρk<i≤k+ρ(n−k)

inf
r̂

∑
θ∗∈{θ′,θ′′}

 ∑
r∗∈Rk,ρ
r∗i≤k

P(θ∗,r∗)(r̂i > k) +
∑

r∗∈Rk,ρ
r∗i≥k+2

P(θ∗,r∗)(r̂i ≤ k)



≥ 1

4k |Rk,ρ|
∑

k−ρk<i≤k+ρ(n−k)

inf
r̂

 ∑
r∗∈Rk,ρ
r∗i≤k

P(θ′′,r∗)(r̂i > k) +
∑

r∗∈Rk,ρ
r∗i≥k+2

P(θ′,r∗)(r̂i ≤ k)

 .

At this point, we need to introduce some extra notation. For any r, r′ ∈ Sn, we define the

Hamming distance without normalization as H(r, r′) =
∑n

i=1 I {ri 6= r′i}. For each k − ρk <
i ≤ k + ρ(n− k), we can partition the set Rk,ρ into three disjoint subsets. Define

R(1)
k,ρ = {r ∈ Rk,ρ : ri ≤ k} ,

R(2)
k,ρ = {r ∈ Rk,ρ : ri = k + 1} ,

R(3)
k,ρ = {r ∈ Rk,ρ : ri ≥ k + 2} .

It is easy to see that Rk,ρ = ∪3
j=1R

(j)
k,ρ. We note that the three subsets all depend on the

index i, but we shall suppress this dependence to avoid notational clutter. For any r ∈ R(2)
k,ρ,

define

N2→1(r) =
{
r′′ ∈ R(1)

k,ρ : H(r, r′′) = 2
}
,

N2→3(r) =
{
r′ ∈ R(3)

k,ρ : H(r, r′) = 2
}
.
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Since for any different permutations, the smallest Hamming distance between them is 2,

N2→1(r) and N2→3(r) can be understood as neighborhoods r within R(1)
k,ρ and R(3)

k,ρ, respec-

tively. It is easy to check that {N2→1(r)}
r∈R(2)

k,ρ

are disjoint subsets, and they form a partition

of R(1)
k,ρ. Similarly, {N2→3(r)}

r∈R(2)
k,ρ

are disjoint subsets, and form a partition of R(3)
k,ρ. With

these notation, we have

inf
r̂

sup
r∗∈Sn

θ∗∈Θ′(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗)

≥ 1

4k |Rk,ρ|
∑

k−ρk<i≤k+ρ(n−k)

inf
r̂

∑
r∈R(2)

k,ρ

 ∑
r′′∈N2→1(r)

P(θ′′,r′′)(r̂i > k) +
∑

r′∈N2→3(r)

P(θ′,r′)(r̂i ≤ k)


=

1

4k |Rk,ρ|
∑

k−ρk<i≤k+ρ(n−k)

inf
r̂

∑
r∈R(2)

k,ρ

∑
r′′∈N2→1(r)
r′∈N2→3(r)

(
1

n− k − 1
P(θ′′,r′′)(r̂i > k) +

1

k
P(θ′,r′)(r̂i ≤ k)

)

≥ 1

4k(n− k − 1) |Rk,ρ|
∑

k−ρk<i≤k+ρ(n−k)

∑
r∈R(2)

k,ρ

∑
r′′∈N2→1(r)
r′∈N2→3(r)

inf
0≤φ≤1

[
E(θ′′,r′′)φ+

n− k − 1

k
E(θ′,r′)(1− φ)

]
,

where we have used the fact |N2→1(r)| = k and |N2→3(r)| = n− k− 1 to obtain the equality

in the above display. To this end, it suffices to give a lower bound for the testing problem

inf
0≤φ≤1

[
E(θ′′,r′′)φ+

n− k − 1

k
E(θ′,r′)(1− φ)

]
, (S77)

for any r′′ ∈ N2→1(r) and any r′ ∈ N2→3(r) with any r ∈ R(2)
k,ρ and any k − ρk < i ≤

k + ρ(n− k).

For the two probability distributions in (S77), the probability P(θ′′,r′′) is the BTL model

with parameter {θ′′r′′i }i∈[n] and the probability P(θ′,r′) is the BTL model with parameter

{θ′r′i}i∈[n]. It turns out the two vectors {θ′′r′′i }i∈[n] and {θ′r′i}i∈[n] only differ by one entry.

To see this, let i and j′ be the two coordinates that r and r′ differ and let i and j′′ be the

two coordinates that r and r′′ differ. Then, r′ and r′′ differ at the ith, the j′th and the j′′th

coordinates. This immediately implies θ′r′l
= θ′′r′′l

for all l ∈ [n]\{i, j′, j′′}. By the definitions

of N2→1 and N2→3, we have r′i = rj′ , r
′
j′ = k+ 1, r′j′′ = rj′′ and r′′i = rj′′ , r

′′
j′ = rj′ , r

′′
j′′ = k+ 1.

Moreover, we also have rj′ ≥ k + 2 and rj′′ ≤ k. We remind the readers that all the three

coordinates are in the interval [k−ρk+1, k+ρ(n−k)]. According to the definitions of θ′ and

θ′′, we then have θ′r′
j′′

= θ′′r′′
j′′

= 0 and θ′r′
j′

= θ′′r′′
j′

= −∆. For the only different coordinate, we

have θ′r′i
= −∆ and θ′′r′′i

= 0.

Since {θ′′r′′i }i∈[n] and {θ′r′i}i∈[n] only differ by a single coordinate, the testing problem (S77)

is equivalent to

inf
0≤φ≤1

[
E(θ′′,r̄)φ+

n− k − 1

k
E(θ′,r̄)(1− φ)

]
, (S78)

where r̄i = i for all i ∈ [n]. The equivalence between (S77) and (S78) can be obtained by the

existence of a simultaneous permutation that maps the two vectors {θ′′r′′i }i∈[n] and {θ′r′i}i∈[n]
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to θ′′ and θ′. By Neyman-Pearson lemma, we can lower bound (S78) by

P(θ′′,r̄)

(
dP(θ′,r̄)

dP(θ′′,r̄)
≥ k

n− k − 1

)
. (S79)

This probability can be lower bounded by

C exp

−1

2

(√
(1 + δ)SNR

2
− 1√

(1 + δ)SNR
log

n− k
k

)2

+

 ,

with some constant C > 0 and some δ = o(1) according to Lemma B.3. Since |R(2)
k,ρ|/|R(k,ρ)| =

(1− ρ)n, we have

inf
r̂

sup
r∗∈Sn

θ∗∈Θ′(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗)

≥ C1ρ exp

−1

2

(√
(1 + δ)SNR

2
− 1√

(1 + δ)SNR
log

n− k
k

)2

+

 ,

for some constant C1 > 0. When the exponent diverges, we can choose ρ that tends to zero

sufficiently slow so that it can be absorbed into the exponent. Otherwise, we can simply

set ρ to be a sufficiently small constant, and the above proof will still go through. One can

use a similar argument as Lemma B.3 to show (S79) is bounded below by some constant.

In this case, we have inf r̂ sup r∗∈Sn
θ∗∈Θ′(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗) bounded below by some constant as

desired.

Finally, we briefly discuss how to modify the proof when either k →∞ or κ = Ω(1) does

not hold. When k → ∞ and κ = o(1), we can take θ′i = 0 for 1 ≤ i ≤ k and θ′i = −∆ for

k < i ≤ n. The vector θ′′ is still defined according to θ′′i = θ′i for all i ∈ [n]\{k + 1} and

θ′′k+1 = 0. The proof will go through with some slight modifcation. When k = O(1), the

condition (16) is equivalent to SNR < (1 − ε)2 log n for some constant ε > 0, and we only

need to prove a constant minimax lower bound. This is obviously true becasue

inf
r̂

sup
r∗∈Sn

θ∗∈Θ′(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗) ≥ inf

r̂
sup
r∗∈Sn

θ∗∈Θ(k,∆,κ)

E(θ∗,r∗)Hk(r̂, r
∗)

≥ inf
r̂

sup
r∗∈Sn

θ∗∈Θ(k,∆,κ)

1

2k
P(θ∗,r∗) (Hk(r̂, r

∗) > 0) ,

which is lower bounded by a constant by Theorem 3.4 and the condition that k = O(1).

C Proofs of Local Error Rates

In this section, we prove Theorem 7.1 and Theorem 7.2.
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C.1 Proof of Theorem 7.1

We first give Lemma C.1 to characterize entrywise tail behaviors of the MLE (6) which is

crucial to the upper bound in Theorem 7.1.

Lemma C.1. Assume np
logn →∞ and κ = O(1). Then, for the rank vector r̂ that is induced

by the MLE (6), for any small constant 0.1 > δ > 0, there exists some constant C > 0, such

that for any t ∈ R, any θ∗ ∈ Θ(k, 0, κ), r∗ ∈ Sn, we have

P(θ∗,r∗)

(
θ̂i ≤ t

)
≤ C exp

(
−

(1− δ)(θ∗r∗i − t)
2
+npL

2Vr∗i (θ∗)

)
+ Cn−7, r∗i ≤ k; (S80)

P(θ∗,r∗)

(
θ̂i ≥ t

)
≤ C exp

(
−

(1− δ)(t− θ∗r∗i )2
+npL

2Vr∗i (θ∗)

)
+ Cn−7, r∗i ≥ k + 1 (S81)

Proof. The proof follows the proof of Theorem 3.2 with slight modifications. Without loss of

generality, we can assume r∗i = i for all ∈ [n]. Let

∆̄i =


min

(
(θ∗i − t)+,

(
logn
np

)1/4
)
, 1 ≤ i ≤ k,

min

(
(t− θ∗i )+,

(
logn
np

)1/4
)
, k + 1 ≤ i ≤ n.

(S82)

We only need to prove (S80) since (S81) can be proved similarly.

Consider any m ∈ [k]. When (θ∗m − t)2
+npL ≤ c′ for some large enough constant to be

specified later, we can directly bound the probability using the trivial bound 1. Thus, we

only need to consider the regime when (θ∗m − t)2
+npL > c′.

Following the proof of Theorem 3.2, we have (57)-(63) and (65) hold. Note that we now

have ∆̄2
mLnp > c′ instead of ∆̄2

mLnp→∞ which is needed in the proof of Theorem 3.2. As

a consequence, we now have (64) and (66) hold with δ = 4C4e
κ/
√
c′ instead of some o(1) as

in the proof of Theorem 3.2. To sum up, with this δ, we have

|θ̂m − θ̄m| ≤ δ∆̄m, (S83)

|f (m)(θ∗m|θ̂−m)− f (m)(θ∗m|θ∗−m)|
g(m)(θ∗m|θ∗−m)

≤ δ∆̄m, (S84)∣∣∣g(m)(θ∗m|θ̂−m)− g(m)(θ∗m|θ∗−m)
∣∣∣

g(m)(θ∗m|θ∗−m)
≤ δ, (S85)

hold with probability at least 1−O(n−7)− exp(−∆̄
3/2
m Lnp)− exp

(
−∆̄2

mnpL
np

logn

)
. We can

make δ to be an arbitrarily small constant by setting c′ large as κ = O(1).
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Then for any i ≤ k, by the same argument as in the proof of Theorem 3.2, we have

P
(
θ̂i ≤ t

)
≤ P

(
θ̂i − θ∗i ≤ −(θ∗i − t)

)
≤ P

(
θ̄i − θ∗i ≤ −(1− δ)∆̄i

)
+ P

(
|θ̄i − θ̂i| > δ∆̄i

)
≤ P

(
−
f (i)(θ∗i |θ∗−i)
g(i)(θ∗i |θ∗−i)

≤ −(1− 3δ)∆̄i

)
+O(n−7) (S86)

+ exp(−∆̄
3/2
i Lnp) + exp

(
−∆̄2

inpL
np

log n

)
,

which has the same upper bound as in (67). We then have the same (68) and the event Ai
as in the proof of Theorem 3.2. As a result,

P

(
−
f (i)(θ∗i |θ∗−i)
g(i)(θ∗i |θ∗−i)

≤ −(1− 3δ)∆̄i

)

≤ sup
A∈Ai

exp

− 1
2(1− 3δ)2∆̄2

i

(
L
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j )

)2

L
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j ) + 1−3δ

3 ∆̄iL
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j )


+O(n−7)

= exp

−1− δ′

2
∆̄2
iLp

∑
j∈[n]\{i}

ψ′(θ∗i − θ∗j )

+O(n−7) (S87)

≤ exp

−1− δ′

2
(θ∗i − t)2Lp

∑
j∈[n]\{i}

ψ′(θ∗i − θ∗j )

+O(n−7) (S88)

= exp

(
− 1− δ′′

2Vi(θ∗)
(θ∗i − t)2npL

)
+O(n−7) (S89)

where δ′, δ′′ are able to be any small constant (by adjusting c′). We use the definition of Ai to

obtain the expression (S87). To see why (S88) is true, note that when ∆̄2
i =

√
logn
np , the first

term of (S87) can be absorbed into O(n−7). (S89) comes from
∑
j∈[n]\{i} ψ

′(θ∗i−θ∗j )∑
j∈[n] ψ

′(θ∗i−θ∗j ) = 1 + o(1).

Since exp(−∆̄
3/2
i Lnp) + exp

(
−∆̄2

inpL
np

logn

)
≤ exp

(
− 1+o(1)

2Vi(θ∗)
(θ∗i − t)2npL

)
+O(n−7), we

have for any small constant δ > 0, there exists some constant C > 0, such that

P
(
θ̂i ≤ t

)
≤ C exp

(
− 1− δ

2Vi(θ∗)
(θ∗i − t)2npL

)
+ Cn−7, (S90)

for all i ≤ k which completes the proof.

Proof of (29) of Theorem 7.1. The upper bound (29) is a straightforward consequence of
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Lemma 3.1 and Lemma C.1. We have

E(θ∗,r∗)Hk(r̂, r
∗)

≤ C 1

k

[
k∑
i=1

exp

(
−

(1− δ)(θ∗i − t)2
+npL

2Vi(θ∗)

)
+

n∑
i=k+1

exp

(
−

(1− δ)(t− θ∗i )2
+npL

2Vi(θ∗)

)]
+ Cn−6.

The rest of the section focuses on the lower bound (30). The proof follows the proof of

Theorem 3.4 with some modification. We include it below for completeness.

Proof of (30) of Theorem 7.1. We are going to prove

E(θ∗,r∗)Hk(r̂, r
∗) &

R1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

(S91)

where t∗ is the unique solution such that R1([k], θ∗, t∗,−δ) = R2([n]\[k], θ∗, t∗,−δ). We

first show the existence and uniqueness of t∗. Note that R1([k], θ∗, t,−δ) increases with

t while R2([n]\[k], θ∗, t,−δ) decreases with t. Moreover, since limt→−∞R1([k], θ∗, t,−δ) =

limt→+∞R2([n]\[k], θ∗, t,−δ) = 0, such t∗ must exist due to continuity. The uniqueness comes

fromR1([k], θ∗, t,−δ), as a function of t, is strictly increasing on (−∞, θ∗1] andR2([n]\[k], θ∗, t,−δ),
as a function of t, is strictly decreasing on [θ∗n,+∞) and θ∗1 ≥ θ∗n.

Define

S1(t) =
{
i ∈ [n] : i ≤ k, (θ∗i − t)+ ≤ (log n/np)1/4

}
, (S92)

S2(t) =
{
i ∈ [n] : i ≥ k + 1, (t− θ∗i )+ ≤ (log n/np)1/4

}
.

Since we assume inft(R1([k], θ∗, t,−δ) +R2([n]\[k], θ∗, t,−δ))→∞, we must have

R1([k], θ∗, t∗,−δ)→∞ (S93)

and hence,
R1(S1(t∗), θ∗, t∗,−δ)
R1([k], θ∗, t∗,−δ)

≥ 1

2
,
R1(S2(t∗), θ∗, t∗,−δ)
R1([n]\[k], θ∗, t∗,−δ)

≥ 1

2
. (S94)

This is because R1([k], θ∗, t∗,−δ) − R1(S1(t∗), θ∗, t∗,−δ) ≤ n−6 and R2([n]\[k], θ∗, t∗,−δ) −
R2(S2(t∗), θ∗, t∗,−δ) ≤ n−6 by the definition of S1(t∗), S2(t∗) and np/ log n→∞.

Now by Lemma A.3, we have

Hk(r̂, r
∗) ≥ 1

k
min

(
k∑
i=1

I
{
θ̂i < t∗

}
,

n∑
i=k+1

I
{
θ̂i > t∗

})

≥ 1

k
min

 ∑
i∈S1(t∗)

I
{
θ̂i < t∗

}
,
∑

i∈S2(t∗)

I
{
θ̂i > t∗

} . (S95)
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It suffices to show there exists some constant C > 0 such that

P(θ∗,r∗)

1

k

∑
i∈S1(t∗)

I
{
θ̂i < t∗

}
≥ 4C

k
R1(S1(t∗), θ∗, t∗,−δ)

 ≥ 3/4 (S96)

and P(θ∗,r∗)

1

k

∑
i∈S2(t∗)

I
{
θ̂i > t

}
≥ 4C

k
R2(S2(t∗), θ∗, t∗,−δ)

 ≥ 3/4. (S97)

This is because

E(θ∗,r∗)Hk(r̂, r
∗)

≥ CR1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

× P(θ∗,r∗)

(
Hk(r̂, r

∗) ≥ CR1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

)
(S98)

≥ CR1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

P(θ∗,r∗)

(∑
i∈S1(t∗) I{θ̂i<t∗}

k
≥ 2C

k
R1([k],θ∗,t∗,−δ) and∑

i∈S2(t∗) I{θ̂i>t}
k

≥ 2C
k
R2([n]\[k],θ∗,t∗,−δ)

)
(S99)

≥ CR1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

P(θ∗,r∗)

(∑
i∈S1(t∗) I{θ̂i<t∗}

k
≥ 4C

k
R1(S1(t∗),θ∗,t∗,−δ) and∑

i∈S2(t∗) I{θ̂i>t}
k

≥ 4C
k
R2(S2(t∗),θ∗,t∗,−δ)

)
(S100)

≥ C

2

R1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

. (S101)

Therefore, we obtain the desired conclusion. (S98) is a consequence of Markov inequality;

(S99) comes from (S95) and the choice of t∗; (S100) is due to (S94); (S96) and (S97) lead to

(S101).

In the rest of the proof, we are going to establish (S96) and then (S97) can be proved

similarly. Define

S′1(ρ, t∗) =

{
i ∈ S1(t∗) : ρ |S1(t∗)| indices in S1(t∗) with the smallest

(θ∗i − t∗)2
+

Vi(θ∗)

}
(S102)

for some small enough constant ρ > 0 to be specified later. That is, S′1(ρ, t∗) is a subset of

S1(t∗) of size ρ |S1(t∗)| with the smallest
(θ∗i−t∗)2

+

Vi(θ∗)
values. We remark that condition (S93)

and (S94) necessarily imply |S′1(ρ, t∗)| → ∞ when ρ is a constant. We shall also assume

ρ |S′1(ρ, t∗)| is an integer. Furthermore, note that the definition of S′1(ρ, t∗) implies:

R1(S1(t∗), θ∗, t∗,−δ) ≥ R1(S′1(ρ, t∗), θ∗, t∗,−δ) ≥ ρR1(S1(t∗), θ∗, t∗,−δ). (S103)

Therefore, to establish (S96), we only need to show

P(θ∗,r∗)

 ∑
i∈S′1(ρ,t∗)

I
{
θ̂i < t∗

}
≥ C ′R1(S′1(ρ, t∗), θ∗, t∗,−δ)

 ≥ 3/4. (S104)
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for some constant C ′ > 0. The remaining proof is then devoted to proving (S104).

Recall the definition of θ̄ in (62). Define ∆̃i = (θ∗i − t∗)+ ∨ α
√

1
npL where α is some large

enough constant to be determined later. Define the event Fi as

Fi =

|θ̂i − θ̄i| ≤ δ0

3
∆̃i,
|f (i)(θ∗i |θ̂−i)− f (i)(θ∗i |θ∗−i)|

g(i)(θ∗i |θ∗−i)
≤ δ0

3
∆̃i,

∣∣∣g(i)(θ∗i |θ̂−i)− g(i)(θ∗i |θ∗−i)
∣∣∣

g(i)(θ∗i |θ∗−i)
≤ δ0

3

 .

When (θ∗i − t∗)2
+npL > α, using a similar argument that leads to (S83)-(S85), we can show

that there exists some constant δ0 > 0, such that

P(θ∗,r∗)(Fi) ≥ 1−
(
O(n−7) + exp

(
−∆̃2

inpL
np

log n

)
+ exp

(
−∆̃

3/2
i npL

))
. (S105)

When (θ∗i − t∗)2
+npL ≤ α, we can show

P(θ∗,r∗)(Fi) ≥ 1−
(
O(n−7) + e−(npL)1/4

+ e−
√

logn
)
. (S106)

instead. To establish it, we can choose x = (npL)1/4 in (56) and x =
√

log n in (61) and then

follow the same proof of (63), (64), and (66) as in the proof of Theorem 3.2. In both cases,

this δ0 can be made arbitrarily small by setting α large.

Assuming Fi is true, we can use arguments similar to the establishment of (67) to have

I
{
θ̂i < t∗

}
≥ I

{∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))∑

j∈[n]\{i}Ajiψ
′(θ∗j − θ∗i )

≤ −(1 + δ0)(θ∗i − t∗)+

}
.

Define the RHS of the above display as Li. Then we have shown that∑
i∈S′1(ρ,t∗)

I
{
θ̂i < t∗

}
≥

∑
i∈S′1(ρ,t∗)

LiIFi ≥
∑

i∈S′1(ρ,t∗)

Li −
∑

i∈S′1(ρ,t∗)

IFci . (S107)

By (S105) and (S106), we have

E

 ∑
i∈S′1(ρ,t∗)

IFci


≤ O(n−6) +

∑
i:i∈S′1(ρ,t∗),(θ∗i−t∗)2

+npL>α

(
exp

(
−∆̃2npL

np

log n

)
+ exp

(
−∆̃3/2npL

))
+

∑
i:i∈S′1(ρ,t∗),(θ∗i−t∗)2

+npL≤α

(
exp

(
−(npL)1/4

)
+ exp

(
−
√

log n
))

.

Using θ∗i − t∗ ≤ (log n/np)1/4 for i ∈ S1(t∗) and np/ log n→∞, we see that the above bound

is of smaller order than

n−5.9 +
∑

i∈S′1(ρ,t∗)

exp

[
− ∆̃2

inpL

2V i(θ∗)

((
np

log n

)1/9

∧ (log n)1/5

)]
,

38



and we can use Markov’s inequality and obtain

P(θ∗,r∗)

 ∑
i∈S′i(t∗)

IFci ≤ n
−5.9 +

∑
i∈S′1(ρ,t∗)

exp

[
− ∆̃2

inpL

2Vi(θ∗)

((
np

log n

)1/9

∧ (log n)1/5

)] ≥ 1−o(1).

(S108)

Now to lower bound
∑

i∈S′1(ρ,t∗) Li, we define

A =

{
A : ∀i ∈ S1(t∗),

∣∣∣∣∣
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j )

p
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

− 1

∣∣∣∣∣ ≤ δ0, (S109)∣∣∣∣∣∣
∑

j∈S′1(ρ,t∗)

Ajiψ
′(θ∗i − θ∗j )

∣∣∣∣∣∣ ≤ 2ρkp+ 10 log n

}
. (S110)

By Bernstein’s inequality and union bound, we have P(A ∈ A) ≥ 1 − O(n−10). From

now on, we use the notation PA for the conditional probability P(θ∗,r∗)(·|A) given A. For any

s > 0,

P(θ∗,r∗)

 ∑
i∈S′1(ρ,t∗)

Li ≥ s

 ≥ P(A ∈ A) inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li ≥ s

 . (S111)

Now we study PA
(∑

i∈S′1(ρ,t∗) Li ≥ s
)

. Define S = [n]\S′1(ρ, t∗). Note that for each i ∈
S′1(ρ, t∗), we have Li ≥ Li,1 − Li,2 − Li,3, where

Li,1 = I

{∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))∑
j∈[n]\{i}Ajiψ

′(θ∗j − θ∗i )
≤ −(1 + 2δ′)(1 + δ0)∆̃i

}
,

Li,2 = I

{∑
j∈S′1(ρ,t∗):j<iAji(ȳij − ψ(θ∗i − θ∗j ))∑

j∈[n]\{i}Ajiψ
′(θ∗j − θ∗i )

≥ δ′(1 + δ0)∆̃i

}
,

Li,3 = I

{∑
j∈S′1(ρ,t∗):i<j Aji(ȳij − ψ(θ∗i − θ∗j ))∑

j∈[n]\{i}Ajiψ
′(θ∗j − θ∗i )

≥ δ′(1 + δ0)∆̃i

}

for some small constant δ′ > 0 whose value will be determined later. We are going to control

each term separately.

(1). Analysis of Li,1. Note that conditional on A, {Li,1}i∈S′1(ρ,t∗) are all independent

Bernoulli random variables. We have Li,1 ∼ Bernoulli(pi), where pi = E(θ∗,r∗)(Li,1|A). By

Chebyshev’s inequality, we have

PA

 ∑
i∈S′1(ρ,t∗)

Li,1 ≥
1

2

∑
i∈S′1(ρ,t∗)

pi

 ≥ 1− 4∑
i∈S′1(ρ,t∗) pi

.
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By Lemma C.2, we can lower bound each pi by

pi = PA

(∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + 2δ′)(1 + δ0)2∆̃i

)

≥ C1 exp

−1 + δ2

2

∆̃2
inpL

Vi(θ∗)
− C ′1

√
∆̃2
inpL

Vi(θ∗)

 ,

for some constants C1, C
′
1 > 0 and some small constant δ2 > 0. Note that δ2 can be an

arbitrarily small constant by making δ′ and ρ small as well as making α large. Thus we can

choose δ′, ρ small enough and α large enough to let δ2 < δ/2. Then we have

∑
i∈S′1(ρ,t∗)

pi ≥ C1

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

Vi(θ∗)
− C ′1

√
∆̃2
inpL

Vi(θ∗)


≥ C1R1(S′1(ρ, t∗), θ∗, t∗,−δ) (S112)

≥ C1ρR1(S1(t∗), θ∗, t∗,−δ). (S113)

where (S112) can be achieved by setting α large and (S113) comes from (S103). As a result,

under the condition (S93), we have
∑

i∈S′1(ρ,t∗) pi →∞.

Hence, we have proved

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li,1 ≥
1

2
C1

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

Vi(θ∗)
− C ′1

√
∆̃2
inpL

Vi(θ∗)

 ≥ 1− o(1).

(2). Analysis of Li,2. By (S109)-(S110) and Bernstein’s inequality, we can bound

E(Li,2|A) by

exp

−
(
δ′(1 + δ0)2∆̃iL

∑
j∈[n]\{i}Ajiψ

′(θ∗j − θ∗i )
)2

2
(
L
∑

j∈S′1(ρ,t∗):j<iAjiψ
′(θ∗i − θ∗j ) + 1

3δ
′(1 + δ0)2∆̃iL

∑
j∈[n]\{i}Ajiψ

′(θ∗j − θ∗i )
)


≤ exp

−
(
δ′(1 + δ0)2∆̃iL

∑
j∈[n]\{i} pψ

′(θ∗j − θ∗i )
)2

4
(

2Lρkp+ 10 log n+ 1
3δ
′(1 + δ0)2∆̃iL

∑
j∈[n]\{i} pψ

′(θ∗j − θ∗i )
)
 .

Now we set δ′ = ρ1/8, and make ρ small enough to ensure (S113). Then, there exists some

constants C2, C3 > 0 such that

E(Li,2|A) ≤ exp
(
−C2ρ

− 1
2npL∆̃2

i

)
≤ exp

(
−C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

)
.

due to ∆̃i = o(1) and np/ log n→∞. Then,

E

 ∑
i∈S′1(ρ,t∗)

Li,2

∣∣∣∣∣A
 ≤ ∑

i∈S′1(ρ,t∗)

exp

(
−C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

)
.
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By Markov inequality, we have

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li,2 ≥
∑

i∈S′1(ρ,t∗)

exp

(
−1

2
C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

) ≤ ∑
i∈S′1(ρ,t∗) exp

(
−C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

)
∑

i∈S′1(ρ,t∗) exp
(
−1

2C3ρ−1/2 ∆̃2
inpL

2Vi(θ∗)

) .
(S114)

(3). Analysis of Li,3. By a similar argument, we also have

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li,3 ≥
∑

i∈S′1(ρ,t∗)

exp

(
−1

2
C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

) ≤ ∑
i∈S′1(ρ,t∗) exp

(
−C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

)
∑

i∈S′1(ρ,t∗) exp
(
−1

2C3ρ−1/2 ∆̃2
inpL

2Vi(θ∗)

) .
(S115)

Now we can combine the above analyses of Li,1, Li,2 and Li,3. Since we are allowed to

choose ρ to be an arbitrarily small constant, we shall make

∑
i∈S′1(ρ,t∗)

exp

(
−1

2
C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

)
≤ 1

8
C1

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

Vi(θ∗)
− C ′1

√
∆̃2
inpL

Vi(θ∗)


and ∑

i∈S′1(ρ,t∗) exp
(
−C3ρ

−1/2 ∆̃2
inpL

2Vi(θ∗)

)
∑

i∈S′1(ρ,t∗) exp
(
−1

2C3ρ−1/2 ∆̃2
inpL

2Vi(θ∗)

) ≤ 1

16
.

Thus, we have

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li ≥ C4

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

Vi(θ∗)
− C ′1

√
∆̃2
inpL

Vi(θ∗)

 ≥ 7

8
− o(1),

(S116)

for some constant C4 > 0. Then (S107), (S108), (S111) together with (S93) lead to

P(θ∗,r∗)

 ∑
i∈S′1(ρ,t∗)

I
{
θ̂i < t∗

}
≥ C4

2

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

Vi(θ∗)
− C ′1

√
∆̃2
inpL

Vi(θ∗)

 ≥ 7

8
− o(1).

(S117)

Finally, (S104) follows from (S113) which completes the proof.

We state Lemma C.2 to close this section. Its proof is essentially the same as the proof

of Lemma A.4 and hence is omitted here.

Lemma C.2. Assume np
logn → ∞, κ = O(1). Recall the definition of S′1(ρ, t∗) in (S102),

S = [n]\S′1(ρ, t∗) and ∆̃i = (θ∗i − t∗)+ ∨ α
√

1
npL . There exists some constants C1, C2 > 0

such that for any small constant 0.1 > δ̃ > 0, there exists constant δ1 > 0 such that for
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any constant α > 0, i ∈ S′1(ρ, t∗), any A ∈ A where A is defined in (S109)-(S110), any

θ∗ ∈ Θ(k, 0, κ) and any r∗ ∈ Sn, we have

P(θ∗,r∗)

(∑
j∈S Aji(ȳij − ψ(θ∗r∗i

− θ∗r∗j ))∑
j∈[n]\{i}Ajiψ

′(θ∗r∗j
− θ∗r∗i )

≤ −(1 + δ̃)∆̃i

∣∣∣∣∣A
)

≥ C1 exp

(
−1 + δ1

2

∆̃2
inpL

Vr∗i (θ∗)
− C2

√
∆̃2
inpL

Vr∗i (θ∗)

)
. (S118)

Moreover, δ1 is able to be arbitrarily small if δ̃ and ρ are small enough.

C.2 Proof of Theorem 7.2

We first give Lemma C.3 to characterize entrywise tail behaviors of the spectral method (7)

which is crucial to the upper bound in Theorem 7.2.

Lemma C.3. Assume np
logn →∞ and κ = O(1). Then, for the rank vector r̂ that is induced

by the stationary distribution of the Markov chain (7), for any small constant 0.1 > δ > 0,

there exists some constant C > 0, such that for any t ∈ R, any θ∗ ∈ Θ(k, 0, κ), r∗ ∈ Sn, we

have

P(θ∗,r∗)

(
π̂i ≤

et∑
j∈[n] e

θ∗j

)
≤ C exp

(
−

(1− δ)(θ∗r∗i − t)
2
+npL

2V r∗i
(θ∗)

)
+ Cn−4, r∗i ≤ k; (S119)

P(θ∗,r∗)

(
π̂i ≥

et∑
j∈[n] e

θ∗j

)
≤ C exp

(
−

(1− δ)(t− θ∗r∗i )2
+npL

2V r∗i
(θ∗)

)
+ Cn−4, r∗i ≥ k + 1 (S120)

Proof. The proof follows the proof of Theorem 4.1 with slight modifications. Without loss of

generality, we can assume r∗i = i for all ∈ [n]. Define ∆̄i as in (S82). We only need to prove

(S119) since (S120) can be proved similarly.

Consider any m ∈ [k]. When (θ∗m − t)2
+npL ≤ c′ for some large enough constant to be

specified later, we can directly bound the probability using the trivial bound 1. Thus, we

only need to consider the regime when (θ∗m − t)2
+npL > c′.

Following the proof of Theorem 4.1, we have (S3)-(S14) and (S12) hold. Note that we

now have ∆̄2
mLnp > c′ instead of ∆̄2

mLnp→∞ which is needed in the proof of Theorem 4.1.

As a consequence, we now have (S10) hold with δ = 4C4e
κ/
√
c′ instead of some o(1) as in

the proof of Theorem 4.1. To sum up, with this δ, we have

|π̂m − π̄m|
π∗m

≤ δ(1− e−∆̄m), (S121)∣∣∣∣∣
∑

j∈[n]\{m}Ajmȳjm∑
j∈[n]\{m}Ajmψ(θ∗j − θ∗m)

− 1

∣∣∣∣∣ ≤ δ, (S122)

hold with probability at least 1 − O(n−4) − exp
(
−∆̄2

mnpL
np

logn

)
− exp

(
−∆̄2

mnpL
√

npL
logn

)
.

We can make δ to be an arbitrarily small constant by setting c′ large as κ = O(1).

42



Then for any i ≤ k, by the same argument as in the proof of Theorem 4.1, we have

P

(
π̂i ≤

et∑n
j=1 e

θ∗j

)

= P
(
π̂i − π∗i
π∗i

≤ e−(θ∗i−t) − 1

)
≤ P

(
π̂i − π∗i
π∗i

≤ e−∆̄i − 1

)
≤ P

(∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1− δ)2(1− e−∆̄i)

)

+O(n−4) + exp

(
−∆̄2

inpL
np

log n

)
+ exp

(
−∆̄2

inpL

√
npL

log n

)
,

which has the same upper bound as in (S14). We then have the same (S16) as in the proof

of Theorem 4.1 which leads to

P

(∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1− δ)2(1− e−∆̄i)

)

≤ exp

−(1− o(1))Lp∆̄2
i

(∑
j∈[n]\{i} ψ(θ∗j − θ∗i )

)2

2
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

+O(n−4)

= exp

(
−(1− δ2)npL∆̄2

i

2V i(θ∗)

)
+O(n−4)

≤ exp

(
−

(1− δ2)npL(θ∗i − t)2
+

2V i(θ∗)

)
+O(n−4)

with δ1, δ2 > 0 being some constant that can be arbitrarily small. The last inequality holds be-

cause when min
(

(θ∗i − t)2
+,
√

logn
np

)
=
√

logn
np , the first term becomes exp

(
− (1−δ2)L

√
np logn

2V i(θ∗)

)
,

which can be absorbed by O(n−4). Since exp
(
−∆̄2

inpL
np

logn

)
+ exp

(
−∆̄2

inpL
√

npL
logn

)
≤

exp
(
− (1−δ2)(θ∗i−t)2

+npL

2V i(θ∗)

)
+O(n−4), we have

P

(
π̂i ≤

et∑n
j=1 e

θ∗j

)
≤ 2 exp

(
−

(1− δ2)(θ∗i − t)2
+npL

2V i(θ∗)

)
+O(n−4), (S123)

for all i ≤ k. The proof is complete.

Proof of (32) of Theorem 7.2. The upper bound (32) is a straightforward consequence of

Lemma C.3 in the same way as the proof of (29) of Theorem 7.1, and hence is omitted

here.

The rest of the section focuses on the lower bound (30). The proof follows the proof of

Theorem 3.4 with some modification and is also very similar to the proof of (30) of Theorem

7.1. We include it below for completeness.
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Proof of (33) of Theorem 7.2. To prove the lower bound (33), we are going to show

E(θ∗,r∗)Hk(r̂, r
∗) &

R1([k], θ∗, t∗,−δ) +R2([n]\[k], θ∗, t∗,−δ)
k

(S124)

where t∗ is the unique solution such that R1([k], θ∗, t∗,−δ) = R2([n]\[k], θ∗, t∗,−δ). The

existence and uniqueness of t∗ follow the same argument as in the proof of (30) of Theo-

rem 7.1. Recall the definition of S1(t) in (S92). Since we assume inft(R1([k], θ∗, t,−δ) +

R2([n]\[k], θ∗, t,−δ))→∞, we have

R1([k], θ∗, t∗,−δ)→∞. (S125)

The proof of (S124) follows the proof of Theorem 4.3. We will omit repeated details and

only present the differences. Define

S
′
1(ρ, t∗) =

{
i ∈ S1(t∗) : ρ |S1(t∗)| indices in S1(t∗) with the smallest

(θ∗i − t∗)2
+

V i(θ∗)

}
(S126)

for some small enough constant ρ > 0 to be specified later. Following the same argument as

in the proof of (30) of Theorem 7.1, we only need to show

P(θ∗,r∗)

 ∑
i∈S′1(ρ,t∗)

I {π̂i < t} ≥ C ′R1(S
′
1(ρ, t∗), θ∗, t∗,−δ)

 ≥ 3/4. (S127)

for some constant C ′ > 0. The remaining proof is then devoted to proving (S127).

Recall the definition of π̄ in (S3). Define ∆̃i = (θ∗i − t∗)+ ∨α
√

1
npL where α is some large

enough constant to be determined later. Define the event F i as

F i =

{
|π̂i − π̄i|
π∗i

≤ δ0(1− e−∆̃i) and

∣∣∣∣∣
∑

j∈[n]\{i}Ajiȳji∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

− 1

∣∣∣∣∣ ≤ δ0

}
.

When (θ∗i − t∗)2
+npL > α, using a similar argument that leads to (S121)-(S122), we can show

that there exists some constant δ0 > 0, such that

P(θ∗,r∗)(F i) ≥ 1−

(
O(n−4) + exp

(
−∆̃2

inpL
np

log n

)
+ exp

(
−∆̃2

inpL

√
npL

log n

))
. (S128)

When (θ∗i − t∗)2
+npL ≤ α, we can show

P(θ∗,r∗)(F i) ≥ 1−
(
O(n−4) + e−(np/ logn)1/2

+ e−
√

logn
)
. (S129)

instead. To establish it, we can choose x = (np/ log n)1/2 in (S7) and x =
√

log n in (S8) and

then follow the same proof of (S10) and (S12) as in the proof of Theorem 3.2. In both cases,

this δ0 can be made arbitrarily small by setting α large.
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Assuming F i is true, we can use arguments similar to the establishment of (S28) to have

I {π̂i < t} ≥ I

{∑
j∈[n]\{i}Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + δ0)2α

√
1

npL

}
.

(S130)

Define the RHS of the above display as Li.∑
i∈S′1(ρ,t∗)

I {π̂i < t} ≥
∑

i∈S′1(ρ,t∗)

LiIFi ≥
∑

i∈S′1(ρ,t∗)

Li −
∑

i∈S′1(ρ,t∗)

IFci . (S131)

By (S128) and (S129), we have

E

 ∑
i∈S′1(ρ,t∗)

IFci


≤ O(n−3) +

∑
i:i∈S′1(ρ,t∗),(θ∗i−t∗)2

+npL>α

exp

(
−∆̃2

inpL
np

log n

)
+ exp

(
−∆̃2

inpL

√
npL

log n

)

+
∑

i:i∈S′1(ρ,t∗),(θ∗i−t∗)2
+npL≤α

exp
(
−(np/ log n)1/2

)
+ exp

(
−
√

log n
)
.

Since the above bound is of smaller order than

n−2.9 +
∑

i∈S′1(ρ,t∗)

exp

[
− ∆̃2

inpL

2V i(θ∗)

((
np

log n

)1/4

∧ (log n)1/4

)]
,

we can use Markov’s inequality and obtain

P(θ∗,r∗)

 ∑
i∈S′i(t∗)

IFci ≤ n
−2.9 +

∑
i∈S′1(ρ,t∗)

exp

[
− ∆̃2

inpL

2V i(θ∗)

((
np

log n

)1/4

∧ (log n)1/4

)] ≥ 1−o(1).

(S132)

Now to lower bound
∑

i∈S′1(ρ,t∗)
Li, we define

A =

{
A : ∀i ∈ S1(t∗),

∣∣∣∣∣∣∣
∑

j∈[n]\{i}Aijψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2

p
∑

j∈[n]\{i} ψ
′(θ∗i − θ∗j )

(
1 + eθ

∗
j−θ∗i

)2 − 1

∣∣∣∣∣∣∣ ≤ δ0, (S133)

∣∣∣∣∣
∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
p
∑

j∈[n]\{i} ψ(θ∗j − θ∗i )
− 1

∣∣∣∣∣ ≤ δ0, (S134)∣∣∣∣∣∣
∑

j∈S′1(ρ,t∗)

Ajiψ
′(θ∗i − θ∗j )(1 + eθ

∗
j−θ∗i )2

∣∣∣∣∣∣ ≤ 2ρkp+ 10 log n

}
. (S135)
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By Bernstein’s inequality and union bound, we have P(A ∈ A) ≥ 1−O(n−3). From now

on, we use the notation PA for the conditional probability P(θ∗,r∗)(·|A) given A. For any

s > 0,

P(θ∗,r∗)

 ∑
i∈S′1(ρ,t∗)

Li ≥ s

 ≥ P(A ∈ A) inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li ≥ s

 . (S136)

Now we study PA
(∑

i∈S′1(ρ,t∗)
Li ≥ s

)
. Define S = [n]\S′1(ρ, t∗). Note that for each i ∈

S
′
1(ρ, t∗), we have Li ≥ Li,1 − Li,2 − Li,3, where

Li,1 = I

{∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + 2δ′)(1 + δ0)2∆̃i

}
,

Li,2 = I


∑

j∈S′1(ρ,t∗):j<i
Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≥ δ′(1 + δ0)2∆̃i

,
Li,3 = I


∑

j∈S′1(ρ,t∗):i<j
Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≥ δ′(1 + δ0)2∆̃i


for some small constant δ′ > 0 whose value will be determined later. We are going to control

each term separately.

(1). Analysis of Li,1. Note that conditional on A, {Li,1}i∈S′1(ρ,t∗)
are all independent

Bernoulli random variables. We have Li,1 ∼ Bernoulli(pi), where pi = E(θ∗,r∗)(Li,1|A). By

Chebyshev’s inequality, we have

PA

 ∑
i∈S′1(ρ,t∗)

Li,1 ≥
1

2

∑
i∈S′1(ρ,t∗)

pi

 ≥ 1− 4∑
i∈S′1(ρ,t∗)

pi
.

By Lemma C.4, we can lower bound each pi by

pi = PA

(∑
j∈S Aji(ȳij − ψ(θ∗i − θ∗j ))(1 + eθ

∗
j−θ∗i )∑

j∈[n]\{i}Ajiψ(θ∗j − θ∗i )
≤ −(1 + 2δ′)(1 + δ0)2∆̃i

)

≥ C1 exp

−1 + δ2

2

∆̃2
inpL

V i(θ∗)
− C ′1

√
∆̃2
inpL

V i(θ∗)

 ,

for some constants C1, C
′
1 > 0 and some small constant δ2 > 0. Note that δ2 can be an

arbitrarily small constant by making δ′ and ρ small as well as making α large. Thus we can

choose δ′, ρ small enough and α large enough to let δ2 < δ/2. Then we have

∑
i∈S′1(ρ,t∗)

pi ≥ C1

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

V i(θ∗)
− C ′1

√
∆̃2
inpL

V i(θ∗)


≥ C1R1(S

′
1(ρ, t∗), θ∗, t∗,−δ) (S137)

≥ C1ρR1(S1(t∗), θ∗, t∗,−δ). (S138)
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by the same argument as in the proof of (30) of Theorem 7.1. As a result, under the condition

(S125), we have
∑

i∈S′1(ρ,t∗)
pi →∞.

Hence, we have proved

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li,1 ≥
1

2
C1

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

V i(θ∗)
− C ′1

√
∆̃2
inpL

V i(θ∗)

 ≥ 1− o(1).

(2). Analysis of Li,2. By (S133)-(S135) and Bernstein’s inequality, we can bound

E(Li,2|A) by

exp

−
(
δ′(1 + δ0)2∆̃iL

∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

)2

2
(
L
∑

j∈S′1(ρ,t∗):j<i
Ajiψ′(θ∗i − θ∗j )(1 + eθ

∗
j−θ∗i )2 + 1

3δ
′(1 + δ0)2∆̃iL

∑
j∈[n]\{i}Ajiψ(θ∗j − θ∗i )

)


≤ exp

−
(
δ′(1 + δ0)2∆̃iL

∑
j∈[n]\{i} pψ(θ∗j − θ∗i )

)2

4
(

2Lρkp+ 10 log n+ 1
3δ
′(1 + δ0)2∆̃iL

∑
j∈[n]\{i} pψ(θ∗j − θ∗i )

)
 .

Now we set δ′ = ρ1/8, and make ρ small enough to ensure (S138). Then, there exists some

constants C2, C3 > 0 such that

E(Li,2|A) ≤ exp
(
−C2ρ

− 1
2npL∆̃2

i

)
≤ exp

(
−C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

)
.

Then,

E

 ∑
i∈S′1(ρ,t∗)

Li,2

∣∣∣∣∣A
 ≤ ∑

i∈S′1(ρ,t∗)

exp

(
−C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

)
.

By Markov inequality, we have

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li,2 ≥
∑

i∈S′1(ρ,t∗)

exp

(
−1

2
C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

) ≤ ∑
i∈S′1(ρ,t∗)

exp
(
−C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

)
∑

i∈S′1(ρ,t∗)
exp

(
−1

2C3ρ−1/2 ∆̃2
inpL

2V i(θ∗)

) .
(S139)

(3). Analysis of Li,3. By a similar argument, we also have

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li,3 ≥
∑

i∈S′1(ρ,t∗)

exp

(
−1

2
C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

) ≤ ∑
i∈S′1(ρ,t∗)

exp
(
−C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

)
∑

i∈S′1(ρ,t∗)
exp

(
−1

2C3ρ−1/2 ∆̃2
inpL

2V i(θ∗)

) .
(S140)

Now we can combine the above analyses of Li,1, Li,2 and Li,3. Since we are allowed to

choose ρ to be an arbitrarily small constant, we shall make

∑
i∈S′1(ρ,t∗)

exp

(
−1

2
C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

)
≤ 1

8
C1

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

V i(θ∗)
− C ′1

√
∆̃2
inpL

V i(θ∗)
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and ∑
i∈S′1(ρ,t∗)

exp
(
−C3ρ

−1/2 ∆̃2
inpL

2V i(θ∗)

)
∑

i∈S′1(ρ,t∗)
exp

(
−1

2C3ρ−1/2 ∆̃2
inpL

2V i(θ∗)

) ≤ 1

16
.

Thus, we have

inf
A∈A

PA

 ∑
i∈S′1(ρ,t∗)

Li ≥ C4

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

V i(θ∗)
− C ′1

√
∆̃2
inpL

V i(θ∗)

 ≥ 7

8
− o(1),

(S141)

for some constant C4 > 0. Then (S131), (S132), (S136) together with (S125) lead to

P(θ∗,r∗)

 ∑
i∈S′1(ρ,t∗)

I {π̂i < t} ≥ C4

2

∑
i∈S′1(ρ,t∗)

exp

−1 + δ2

2

∆̃2
inpL

V i(θ∗)
− C ′1

√
∆̃2
inpL

V i(θ∗)

 ≥ 7

8
− o(1).

(S142)

Finally, (S127) follows from (S138) which completes the proof.

We state Lemma C.4 to close this section. Its proof is essentially the same as the proof

of Lemma A.4 and hence is omitted here.

Lemma C.4. Assume np
logn → ∞, κ = O(1). Recall the definition of S

′
1(ρ, t∗) in (S126),

S = [n]\S′1(ρ, t∗) and ∆̃i = (θ∗i − t∗)+∨α
√

1
npL . There exists some constants C1, C2 > 0 such

that for any small constant 0.1 > δ̃ > 0, there exists constant δ1 > 0 such that for any constant

α > 0, i ∈ S′1(t∗), any A ∈ A where A is defined in (S133)-(S135), any θ∗ ∈ Θ(k, 0, κ) and

any r∗ ∈ Sn, we have

P(θ∗,r∗)


∑

j∈S Aji(ȳij − ψ(θ∗r∗i
− θ∗r∗j ))(1 + e

θ∗
r∗
j
−θ∗

r∗
i )∑

j∈[n]\{i}Ajiψ(θ∗r∗j
− θ∗r∗i )

≤ −(1 + δ̃)∆̃i

∣∣∣∣∣A


≥ C1 exp

(
−1 + δ1

2

∆̃2
inpL

V r∗i
(θ∗)

− C2

√
∆̃2
inpL

V r∗i
(θ∗)

)
. (S143)

Moreover, δ1 is able to be arbitrarily small if δ̃ and ρ are small enough.

D Proof of Lemma 8.5

Define a gradient descent sequence

θ(t+1) = θ(t) − η
(
∇`n(θ(t)) + λθ(t)

)
. (S144)
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We also need to introduce a leave-one-out gradient descent sequence. Define

`(m)
n (θ) =

∑
1≤i<j≤n:i,j 6=m

Aij

[
ȳij log

1

ψ(θi − θj)
+ (1− ȳij) log

1

1− ψ(θi − θj)

]

+
∑

i∈[n]\{m}

p

[
ψ(θ∗i − θ∗m) log

1

ψ(θi − θm)
+ ψ(θ∗m − θ∗i ) log

1

ψ(θm − θi)

]
.

With the objective `
(m)
n (θ), we define

θ(t+1,m) = θ(t,m) − η
(
∇`(m)

n (θ(t,m)) + λθ(t,m)
)
. (S145)

We initialize both (S144) and (S145) by θ(0) = θ(0,m) = θ∗ and use the same step size

η = 1
λ+np . Note that 1Tnθ

∗ = 0 implies 1Tnθ
(t) = 1Tnθ

(t,m) = 0 for all t. See Section 4.3 of [2].

We will establish the following bounds,

max
m∈[n]

‖θ(t,m) − θ(t)‖ ≤ 1, (S146)

‖θ(t) − θ∗‖ ≤
√

n

log n
, (S147)

max
m∈[n]

|θ(t,m)
m − θ∗m| ≤ 1. (S148)

It is obvious that (S146), (S147) and (S148) hold for t = 0. We use a mathematical induction

argument to show (S146), (S147) and (S148) for a general t. Let us suppose (S146), (S147)

and (S148) are true, and we need to show the same conclusions continue to hold for t+ 1.

First, we have

θ(t+1) − θ(t+1,m) = (1− ηλ)(θ(t) − θ(t,m))− η(∇`n(θ(t))−∇`(m)
n (θ(t,m)))

= ((1− ηλ)In − ηH(ξ)) (θ(t) − θ(t,m))− η
(
∇`n(θ(t,m))−∇`(m)

n (θ(t,m))
)
,

where ξ is a convex combination of θ(t) and θ(t,m). By (S146) and (S148), we have

‖θ(t) − θ∗‖∞ ≤ max
m∈[n]

‖θ(t,m) − θ(t)‖+ max
m∈[n]

|θ(t,m)
m − θ∗m| ≤ 2, (S149)

and

‖θ(t,m) − θ∗‖∞ ≤ ‖θ(t) − θ∗‖∞ + ‖θ(t,m) − θ(t)‖ ≤ 3. (S150)

We thus have ‖ξ − θ∗‖∞ ≤ 3, and we can apply Lemma 8.3 to obtain the bound

‖ ((1− ηλ)In − ηH(ξ)) (θ(t) − θ(t,m))‖ ≤ (1− ηλ− c1ηnp)‖θ(t) − θ(t,m)‖, (S151)
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for some constant c1 > 0. We also note that

‖∇`n(θ(t,m))−∇`(m)
n (θ(t,m))‖2

=

 ∑
j∈[n]\{m}

Ajm(ȳjm − ψ(θ∗j − θ∗m))−
∑

j∈[n]\{m}

(Ajm − p)(ψ(θ
(t,m)
j − θ(t,m)

m )− ψ(θ∗j − θ∗m))

2

+
∑

j∈[n]\{m}

(
Ajm(ȳjm − ψ(θ∗j − θ∗m))− (Ajm − p)(ψ(θ

(t,m)
j − θ(t,m)

m )− ψ(θ∗j − θ∗m))
)2

≤ C1
np log n

L
+ C1np log n‖θ(t,m) − θ∗‖2∞, (S152)

for some constant C1 > 0 by Lemma 8.2 and Lemma 8.4. We combine the two bounds (S151)

and (S152), and obtain

‖θ(t+1) − θ(t+1,m)‖ ≤ (1− ηλ− c1ηnp)‖θ(t) − θ(t,m)‖+ η
√
C1np log n

(
L−1 + ‖θ(t,m) − θ∗‖2∞

)
≤ (1− c1ηnp) + η

√
C1np log n (L−1 + 9) (S153)

≤ 1 (S154)

where the inequality (S153) is by (S146) and (S150). The inequality (S154) requires that√
C1np log n (L−1 + 9) ≤ c1np, which is implied by the condition that p ≥ c0 logn

n for some

sufficiently large c0 > 0. We thus have proved (S146) for t+ 1.

Next, we have

θ(t+1) − θ∗ = θ(t) − θ∗ − η
(
∇`n(θ(t)) + λθ(t)

)
= (1− ηλ)(θ(t) − θ∗)− η

(
∇`n(θ(t))−∇`n(θ∗)

)
− ηλθ∗ − η∇`n(θ∗)

= ((1− ηλ)In − ηH(ξ)) (θ(t) − θ∗)− ηλθ∗ − η∇`n(θ∗),

where ξ is abused for a vector that is a convex combination of θ(t) and θ∗. Since by (S149)

we get ‖ξ − θ∗‖∞ ≤ ‖θ(t) − θ∗‖∞ ≤ 2, we can use Lemma 8.3 to obtain the bound

((1− ηλ)In − ηH(ξ)) (θ(t) − θ∗) ≤ (1− ηλ− c2ηnp)‖θ(t) − θ∗‖, (S155)

for some constant c2 > 0. We also note that

‖∇`n(θ∗)‖2 =

n∑
i=1

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))

2

≤ C2
n2p

L
, (S156)

for some constant C2 > 0 with high probability by Lemma 8.4. Combine the bounds (S155)

and (S156), and we obtain

‖θ(t+1) − θ∗‖ ≤ (1− ηλ− c2ηnp)‖θ(t) − θ∗‖+ η

√
C2
n2p

L
+ ηλ‖θ∗‖

≤ (1− c2ηnp)

√
n

log n
+ η

√
C2
n2p

L
+ ηλ‖θ∗‖

≤
√

n

log n
,
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where the last inequality is due to η
√
C2

n2p
L +ηλ‖θ∗‖ . 1√

Lp
+ 1

n3/2p
= o

(
ηnp

√
n

logn

)
by the

choice of η and λ. Hence, (S147) holds for t+ 1.

Finally, we have

θ(t+1,m)
m − θ∗m = θ(t,m)

m − θ∗m + ηp
∑

j∈[n]\{m}

(
ψ(θ∗m − θ∗j )− ψ(θ(t,m)

m − θ(t,m)
j )

)
− ληθ(t,m)

m

= θ(t,m)
m − θ∗m + ηp

∑
j∈[n]\{m}

ψ′(ξj)(θ
∗
m − θ∗j − θ(t,m)

m + θ
(t,m)
j )− ληθ(t,m)

m

=

1− ηλ− ηp
∑

j∈[n]\{m}

ψ′(ξj)

 (θ(t,m)
m − θ∗m)− ληθ∗m

+ηp
∑

j∈[n]\{m}

ψ′(ξj)(θ
(t,m)
j − θ∗j ),

where ξj is a scalar between θ∗m−θ∗j and θ
(t,m)
m −θ(t,m)

j . By (S150), we have |ξj−θ∗m+θ∗j | ≤ |θ∗m−
θ∗j−θ

(t,m)
m +θ

(t,m)
j | ≤ 6, which implies ‖ξ‖∞ is bounded. We then have

∑
j∈[n]\{m} ψ

′(ξj) ≥ c3n

for some constant c3 > 0, and thus∣∣∣∣∣∣
1− ηλ− ηp

∑
j∈[n]\{m}

ψ′(ξj)

 (θ(t,m)
m − θ∗m)

∣∣∣∣∣∣ ≤ (1− ηλ− c3ηnp)|θ(t,m)
m − θ∗m|. (S157)

We also have∣∣∣∣∣∣
∑

j∈[n]\{m}

ψ′(ξj)(θ
(t,m)
j − θ∗j )

∣∣∣∣∣∣ ≤ ‖θ(t,m) − θ∗‖1 ≤
√
n‖θ(t,m) − θ∗‖ ≤

√
n

(
1 +

√
n

log n

)
,

(S158)

where the last inequality is by (S146) and (S147). Combine the bounds (S157) and (S158),

and we get

|θ(t+1,m)
m − θ∗m| ≤ (1− ηλ− c3ηnp)|θ(t,m)

m − θ∗m|+ ηp
√
n

(
1 +

√
n

log n

)
+ λη|θ∗m|

≤ (1− c3ηnp) + ηp
√
n+ ηp

n√
log n

+ λη|θ∗m|

≤ 1,

where the last inequality is because of ηp
√
n + ηp n√

logn
+ λη|θ∗m| = o (ηnp) by the choice of

η and λ. Hence, (S148) holds for t+ 1.

To summarize, we have shown that (S146), (S147) and (S148) hold for all t ≤ t∗ with

probability at least 1−O(t∗n−10). The reason why we have the probability 1−O(t∗n−10) is

because we need to apply Lemma 8.2 with a different weight at each iteration to show (S152).

Note that the bound (S149) holds for all t ≤ t∗ as well and we thus have ‖θ(t∗) − θ∗‖∞ ≤ 2.

With a standard optimization result for a strongly convex objective function, we have

‖θ(t∗) − θ̂λ‖ ≤
(

1− λ

λ+ np

)t∗
‖θ̂λ − θ∗‖.
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See Lemma 6.7 of [3]. By triangle inequality, we have

‖θ̂λ − θ∗‖∞ ≤ ‖θ(t∗) − θ̂λ‖+ ‖θ(t∗) − θ∗‖∞ ≤
(

1− λ

λ+ np

)t∗ √
n‖θ̂λ − θ∗‖∞ + 2.

Since
(

1− λ
λ+np

)
≤ 1− 1

1+n2 , we can take t∗ = n3 in order that
(

1− λ
λ+np

)t∗ √
n ≤ 1

2 . This

implies ‖θ̂λ − θ∗‖∞ ≤ 4 with probability at least 1−O(n−7) as desired.

E Proofs of Technical Lemmas

In this section, we prove Lemma 3.1, Lemma 8.1, Lemma 8.2, Lemma 8.3 and Lemma 8.4.

We first list some additional technical results that will be needed in the proofs.

Lemma E.1 (Hoeffding’s inequality). For independent random variables X1, · · · , Xn that

satisfy ai ≤ Xi ≤ bi, we have

P

(
n∑
i=1

(Xi − EXi) ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
,

for any t > 0.

Lemma E.2 (Bernstein’s inequality). For independent random variables X1, · · · , Xn that

satisfy |Xi| ≤M and EXi = 0, we have

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2∑n
i=1 EX2

i + 1
3Mt

)
,

for any t > 0.

Lemma E.3 (Central limit theorem, Theorem 2.20 of [7]). If Z ∼ N(0, 1) and W =
∑n

i=1Xi

where Xi are independent mean 0 and Var(W ) = 1, then

sup
t
|P(W ≤ t)− P(Z ≤ t)| ≤ 2

√√√√3

n∑
i=1

(
EX4

i

)3/4
.

Proof of Lemma 3.1. Without loss of generality, we consider r∗i = i so that θ∗1 ≥ · · · ≥ θ∗n.

Then, we can write the loss as 2kHk(r̂, r
∗) =

∑k
i=1 I {r̂i > k} +

∑n
i=k+1 I {r̂i ≤ k}. Since
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r̂ ∈ Sn, we must have
∑k

i=1 I {r̂i > k} =
∑n

i=k+1 I {r̂i ≤ k}. This implies

2kHk(r̂, r
∗) = 2 min

(
k∑
i=1

I {r̂i > k},
n∑

i=k+1

I {r̂i ≤ k}

)

≤ 2 min

(
k∑
i=1

I
{
θ̂i ≤ θ̂(k+1)

}
,

n∑
i=k+1

I
{
θ̂i ≥ θ̂(k)

})

≤ 2 max
t

min

(
k∑
i=1

I
{
θ̂i ≤ t

}
,

n∑
i=k+1

I
{
θ̂i ≥ t

})
(S159)

= 2 min
t

max

(
k∑
i=1

I
{
θ̂i ≤ t

}
,

n∑
i=k+1

I
{
θ̂i ≥ t

})
(S160)

≤ 2 min
t

(
k∑
i=1

I
{
θ̂i ≤ t

}
+

n∑
i=k+1

I
{
θ̂i ≥ t

})
.

The inequality (S159) uses the fact that θ̂(k) ≥ θ̂(k+1) where {θ(i)}ni=1 are the order statistics

with θ̂(1) being the largest and θ̂(n) being the smallest. The equality (S160) holds since∑k
i=1 I

{
θ̂i ≤ t

}
is a nondecreasing function of t and

∑n
i=k+1 I

{
θ̂i ≥ t

}
is a nonincreasing

function of t.

Proof of Lemma 8.1. The first conclusion is a direct consequence of Bernstein’s inequality

and a union bound argument. The second and third conclusion is a standard property of

random graph Laplacian [8].

Proof of Lemma 8.2. To see the first conclusion, we note that E(Aij−p)2 ≤ p and Var((Aij−
p)2) . p, and thus we can apply Bernstein’s inequality followed by a union bound argument

to obtain the desired result. The second conclusion is a direct consequence of Bernstein’s

inequality and a union bound argument.

Proof of Lemma 8.3. For any u ∈ Rn such that 1Tnu = 0,

uTH(θ)u =
∑

1≤i<j≤n
Aijψ(θi − θj)ψ(θj − θi)(ui − uj)2.

Since ψ(θi − θj)ψ(θj − θi) ≥ 1
4e
−M , we have λmin,⊥(H(θ)) ≥ 1

4e
−Mλmin,⊥(LA). By Lemma

8.1, we obtain the desired result.

Proof of Lemma 8.4. Let U =
{
u ∈ Rn :

∑
i∈[n] u

2
i ≤ 1

}
be the unit ball in Rn. Then there

exists a subset of V ⊂ U such that for any u ∈ U , there is a v ∈ V satisfying ‖u− v‖ ≤ 1/2.

Moreover, we also have log |V| ≤ C ′n for some constant C ′. See Lemma 5.2 of [9]. Then for
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any u ∈ U , with the corresponding v ∈ V, we have

n∑
i=1

ui

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))


=

n∑
i=1

vi

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))

+
n∑
i=1

(ui − vi)

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))



≤
n∑
i=1

vi

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))

+
1

2

√√√√√ n∑
i=1

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))

2

.

Maximize u and v on both sides of the inequality, after rearrangement, we have√√√√√ n∑
i=1

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))

2

≤ 2 max
v∈V

n∑
i=1

vi

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))


= 2 max

v∈V

∑
i<j

Aij(vi − vj)(ȳij − ψ(θ∗i − θ∗j )).

Conditional on A, applying Hoeffding’s inequality and union bound on the last line, we have

n∑
i=1

 ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))

2

≤ C ′′
(log n+ n) maxv∈V

∑
i<j Aij(vi − vj)2

L

≤ C ′′ (log n+ n)λmax(LA)

L

with probability at least 1 − O(n−10). By Lemma 8.1, we obtain the desired bound for the

first conclusion.

The second conclusion is a direct application of Hoeffding’s inequality and a union bound

argument.

The proof of the third conclusion is similar to that of the first one. Define Ui ={
u ∈ Rn−1 :

∑
j∈[n]\{i}Aiju

2
j ≤ 1

}
. Conditioning on A, one can think of Ui as a unit ball with

dimension
∑

j∈[n]\{i}Aij − 1. Then, there exists a subset Vi ⊂ Ui such that for any u ∈ Ui,
there is a v ∈ Vi that satisfies ‖u− v‖ ≤ 1

2 . Moreover, we also have log |Vi| ≤ 2
∑

j∈[n]\{i}Aij
by Lemma 5.2 of [9]. For any u ∈ Ui, with the corresponding v ∈ Vi, following a similar

argument of the proof of the first conclusion, we have√ ∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))2 ≤ 2 max
v∈Vi

∑
j∈[n]\{i}

Aijvij(ȳij − ψ(θ∗i − θ∗j )),
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which implies√
max
i∈[n]

∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))2 ≤ 2 max
i∈[n]

max
v∈Vi

∑
j∈[n]\{i}

Aijvij(ȳij − ψ(θ∗i − θ∗j )).

Applying Hoeffding’s inequality and union bound, we have

max
i∈[n]

∑
j∈[n]\{i}

Aij(ȳij − ψ(θ∗i − θ∗j ))2 ≤ C1

log n+ maxi∈[n]

∑
j∈[n]\{i}Aij

L
,

with probability at least 1 − O(n−10). Finally, applying Lemma 8.1, we obtain the desired

bound for the third conclusion, which concludes the proof.

F Some Discussion on the Count Method

One of the simplest ranking methods is a count-based algorithm, often referred to as the

Borda count [1] or the Copeland count [5] method. In this method, the players are ranked

according to the number of games won. We will argue that this method is in general not

optimal under the BTL model. Define

Si =
∑

j∈[n]\{i}

Aij ȳij ,

and then LSi is the number of games won by the ith player. The top-k set is determined by

the players with the largest values of Si’s. To understand the condition of exact recovery, let

us assume r∗i = i without loss of generality. We first compute the signal gap

ESk − ESk+1 = p
∑

j∈[n]\{k,k+1}

(
ψ(θ∗k − θ∗j )− ψ(θ∗k+1 − θ∗j )

)
+ pψ(θ∗k − θ∗k+1)− pψ(θ∗k+1 − θ∗k).

Under the condition that θ∗1 − θ∗n ≤ κ = O(1) and θ∗k − θ∗k+1 = ∆, we have

C1∆ ≤ ψ(θ∗k − θ∗j )− ψ(θ∗k+1 − θ∗j ) ≤ C2∆,

for some constants C1, C2 > 0 for all j. Therefore,

ESk − ESk+1 � np∆,

which is the order of the signal gap. Next, we compute the variance,

Var(Si) =
∑

j∈[n]\{i}

Var(Aij ȳij)

=
∑

j∈[n]\{i}

[EVar(Aij ȳij |Aij) + Var(E(Aij ȳij |Aij))]

=
∑

j∈[n]\{i}

(
pψ′(θ∗i − θ∗j )

L
+ ψ(θ∗i − θ∗j )p(1− p)

)
� np(1− p).
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In order that exact recovery is possible, it is necessary that the signal gap exceeds the stan-

dard deviation, which leads to the condition np∆ &
√
np(1− p) (we have ignored the possible

logarithmic factor due to a potential union bound argument). Suppose p is bounded away

from 1, this condition becomes ∆ & 1√
np . In comparison, both the MLE and the spectral

method achieve exact recovery under the condition ∆ & 1√
npL

(again, we ignore the logarith-

mic factor here). It is very clear that compared with the MLE or the spectral method, top-k

ranking based on sums of wins {Si} does not even achieve the optimal rate. The condition

∆ & 1√
np does not depend on L, which means increasing the number of games does not

improve the accuracy of ranking.

To better illustrate the role of L, let us consider the extreme case L =∞, which implies

that ȳij = ψ(θ∗i − θ∗j ) almost surely. In this situation, it is clear that both the MLE and

the spectral method exactly recovers the top-k set without any error (the exact recovery

condition becomes ∆ > 0). However, since

Si =
∑

j∈[n]\{i}

Aijψ(θ∗i − θ∗j ),

it is still possible that Sk < Sk+1 due to the randomness of {Aij}, which leads to error. In

fact, by Lindeberg’s central limit theorem, the probability of Sk < Sk+1 is of constant order

as long as ∆ . 1√
np .

In addition to the number of games won, ranking based on the statistic of win ratio∑
j∈[n]\{i} Aij ȳij∑
j∈[n]\{i} Aij

suffers from a similar issue. Even when L =∞, the average statistic becomes∑
j∈[n]\{i} Aijψ(θ∗i−θ∗j )∑

j∈[n]\{i} Aij
almost surely, which is still noisy. One can similarly show via the central

limit theorem that∑
j∈[n]\{k}Akjψ(θ∗k − θ∗j )∑

j∈[n]\{k}Akj
<

∑
j∈[n]\{k+1}Ak+1jψ(θ∗k+1 − θ∗j )∑

j∈[n]\{k+1}Ak+1j
,

with a constant probability as long as ∆ . 1√
np .
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