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This supplement includes all the technical proofs. In Appendix A, we first give proofs for
all the results established in Section 4: Theorem 4.1, Theorem 4.2 and Theorem 4.3. After
that, we prove Theorem 3.4 and Theorem 6.1 in Appendix B. We then include the proofs
of Theorem 7.1 and Theorem 7.2 in Appendix C, the the proof of Lemma 8.5 in Appendix
D, and the proofs of all the other technical lemmas in Appendix E. The count method is
discussed in Appendix F.

A Analysis of the Spectral Method

We prove results for the spectral method in this section. This includes Theorem 4.1, Theorem
4.2 and Theorem 4.3. The proofs of Theorem 4.1 and Theorem 4.2 are given in Section A.1,
and then we prove Theorem 4.3 in Section A.2.

A.1 Proofs of Theorem 4.1 and Theorem 4.2

The proof of Theorem 4.1 relies on a leave-one-out argument introduced by [3]. Without
loss of generality, we consider 7 = i so that 6. = 6. Following [3], we define a transition
matrix P(™ for each m € [n]. For any i # 7, Pi(]m) = P;; if i # m and j # m and otherwise
Py = (6; — ). For any i € [nl, P = Yjep gy Py Let 7™ be the stationary

distribution of P(™). The following ¢ norm bound has essentially been proved in [3].

Lemma A.1. Under the setting of Theorem 4.1, there exists a constant C > 0 such that
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with probability at least 1 — O(n~%).

Proof. By Lemma 5.6 and Lemma 5.7 of [3], one can obtain ||7(™) —7|| < C} 13%2][7r*]]00 +

|7 — || for some constant C; > 0 with probability at least 1 — O(n~°). Theorem 2.6 of

[3] gives the bound |7 — 7*[|oc < C24/ ls]%gHTr*Hoo with probability at least 1 — O(n=>). A

union bound argument together with the fact that ||7*||oc < n~! leads to the first conclusion.
The second conclusion is a consequence of triangle inequality. By Theorem 5.2 of [3], we

have |7 — m*|| < Cs1, /p% with probability at least 1 — O(n~1). Thus, we obtain the last
conclusion by applying triangle inequality again. O

We also need a lemma that relates the asymptotic variance of 7; to the function V (k).

Lemma A.2. For any positive k1, k2 = O(1), we have
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for n that is sufficiently large.
Proof. The problem is equivalent to the solution of the following: the optimum of the problem
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is obtained at 1 = ... = 2y = M1, 2541 = ... = T, = M. We will show that for any given
Tht1y s Ty € [1, Ma], the function is minimized at x1 = ... = xp = M;. Moreover, for any
given zy, ..., ¢, the function is minimized at xxy1 = ... = 2, = M>. We only need to prove

the former claim and the latter one can be proved similarly. Define
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where o = 371", %@,B = > e x% We first analyze the behavior of g(x1,---,zk) at
each coordinate. By direct calculation, we have
810gg($1,"' 7xk) _ 4 1
- k ; Tk
91 (1 +21)2 (3 12+m:;¢ tao) YTt B

AT 2+ B) — L+ 2)2(Th, 2 +a)
L+2)2(T, 22 +a)(T 2+ 8)




The sign of the partial derivative is determined by its numerator
k
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which is a quadratic decreasing function of z; € [1, M;]. Therefore, g(x1,- - ,x) is either

monotone of x1 € [1, M), or it is first increasing then decreasing. This implies that the
optimum is achieved either at 21 = 1 or 1 = M;. Since g(x1,--- ,xp) is symmetric, we
therefore know that the optimizer must satisfy (zy,---,z;) € {1, M;}*. Using symmetry
again, we can conclude that the value of ming,, ..+ c[1,01] g(z1,- -+ ,xk) is determined by the
number of coordinates that take M. For i € [k], we define g; to be the value of g(z1,--- ,zk)
with x1 =---=x; = M; and z;411 = --- = 2 = 1. We now need to show g; is nonincreasing
in ¢ € [k]. Note that
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where the last display is trivially true. We have used a > [ for the step (S1). Therefore,
ming, . .. e(1.m,) 9(T1, -+, Tk) = gk, and the proof is complete. O



Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. When the error exponent is of constant order, the bound is also a

constant, and the result already holds since Hy (7, 7*) < 1. Therefore, we only need to consider

the case when the error exponent tends to infinity. We first introduce some notation. Define
1 V(k) n—k
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where § = o(1) is chosen so that 7 > 0 is satisfied. The specific choice of § will be determined
later in the proof. We will continue to use the notation A; that is defined in (55). Since the
diverging exponent implies SNR — oo, we have min;cp, A?an — 00 and max;cy A; — 0.

Since 7 is the stationary distribution of P, we have #7 P = #T. This implies that for any
m € [n], we have Z?Zl Pjy,7j = . We can equivalently write this identity as
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The approximation error can be bounded by
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The two terms (S4) and (S5) share a common denominator, which can be lower bounded by
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with probability at least 1 — O(n~1%). With this lower bound, we then bound (S4) as
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with probability at least 1 — O(n™*). In the last inequality, we have used Lemma 8.1 and
Lemma A.1. For (S5), we can bound it as
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We bound the three terms above separately. For the first term, we use Hoeffding’s inequality
(Lemma E.1), and get
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with probability at least 1 —e™. By Lemma 8.1 and Lemma A.1, we have
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with probability at least 1 — O(n~%). Taking = = A2 npL/ 2% we have
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apply Lemma A.1 and get
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with probability at least 1 — O(n~%). For the third term, we use Bernstein’s inequality
(Lemma E.2), and get
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with probability at least 1 —e~*. We choose x = min <A,2nan ny

logn?’

4log n) Then, with the
help of Lemma A.1, we have
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To summarize, we have proved that
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for some § = o(1) with probability at least 1—O(n~*)—exp ( A? anlogn> —exp (—Afnan 12’;%)
under the assumption that A,, = o(1), npLA2, — oo and

logn — 00.

Next, we note that by the definition of 7,,, we have
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By Lemma 8.4 and the inequality (S6), the denominator of (S11) satisfies
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for some § = o(1) with probability at least 1 — O(n~'%). Note that we can choose the same
d to accommodate both bounds (S10) and (S12).
We will apply Lemma 3.1 with
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to finish the proof. Recall the definition of 1 in (S2). For i < k, we have
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where the last inequality is by (S10) and (S12). Define the event
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Then, by Bernstein’s inequality, we have
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The inequality (S17) is by the same argument that leads to (70) and (71). We use the notation
_ 1/4
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Though h;(t) is a complicated function, by the fact that A = o(1) and max; |9;" - 6] <
k = O(1), one can directly analyze the derivative of h;(t) to conclude that there exists some

small constant ca > 0 such that h;(t) is increasing on [0, c2]. Moreover, there also exists a
small constant c3 > 0 such that min,ee, . hi(t) > cgn. This implies
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where the last inequality is due to the fact that A = o(1). We further bound the above
exponent by
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The equality (S18) is due to Lemma A.2. With the above analysis of the error exponent, we



can further bound (S17) as
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with some d; = o(1) for all i < k. With a similar argument, we also have
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for all all i > k + 1. It can be checked that the §; above can be set independent of the § in
the definition of . Now we choose 7 as in (S2) with § = d;. By Lemma 3.1, we have
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By Markov’s inequality, the above bound implies
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When O(n~3) dominates the bound, we have Hy (7, 7*) = O(n~3), which implies Hy (7, r*) = 0
since Hy (7, r*) € {0, (2k)~1,2(2k)~1,3(2k)~L,--- | 1}. Therefore, we always have
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with high probability with some ¢ = o(1). The proof is complete.

Proof of Theorem 4.2. The proof is the same as that of Theorem 3.3.



A.2 Proof of Theorem 4.3

To prove Theorem 4.3, we need two additional lemmas. The first lemma can be viewed as a
reverse version of the inequality in Lemma 3.1.

Lemma A.3. Suppose T is a rank vector induced by 5, we then have
N 1 . ~ ~
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The inequality holds for any r* € G,,.

Proof. Following the proof of Lemma 3.1, we have
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Proof of Theorem 4.3. We first note that condition (20) necessarily implies A = o(1). Through-
out the proof, we assume x = (1) and there exists some §; = o(1) such that

(1 —|—51)SNR 1 _
> - log "= o, (S23)

(1 + 51)SNR

The case with k = o(1) or SNR not satisfying (S23) will be addressed at the end of the proof.
Choose k1, ko > 0 such that we have both k1 + k2 < k and
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Let p = o(1) be a vanishing number that will be specified later. Since k — oo and k = (1),
one can easily check that ko = Q(1). Define 7 = k; for all 1 < i < k — pk, 67 = 0 for
kE—pk <i<k 6 =—-Afork<i<k+pn—k)and 0 =—ry for k+p(n—k) <i<n.
For the simplicity of proof, we choose p so that both pk and p(n — k) are integers. Define 7*
to be 77 =14,Vi € [n]. Then we have
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We will utilize several results established in the proof of Theorem 4.1. Define
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for § = o(1). The specific choice of § will be specified later in the proof. Also define
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In the rest of the proof, we are going to establish (S25). Recall the definition of 7 in (S3).
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Suppose F; holds, we then have
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We use the notation L; for the indicator function on the right hand side of (528). In other
words, we have shown that
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Markov’s inequality and obtain
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To lower bound ;. ;< Li, we define
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By Bernstein’s inequality and union bound, we have P(4 € A) > 1 — O(n~3). From now on,
we use the notation P4 for the conditional probability P« ,.«)(-|4) given A. For any s > 0,
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To study Py (Zk—pk<i§kz L; > s), we define the set S ={i € [n] : i <k — pk or i > k}. Note
that for each k — pk < i < k, we have L; > L;; — L; 2 — L; 3, where
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for some ¢’ = o(1) whose value will be determined later. We are going to control each term
separately.
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(1). Analysis of L;;. Note that conditional on A, {L;1}r—pk<i<k are all independent
Bernoulli random variables. We have L;1 ~ Bernoulli(p;), where p; = E(g- ,«)(Li1]|A). By
Chebyshev’s inequality, we have

Py Z Li,lZ% Z pi | =1 1

k—pk<i<k k—pk<i<k Zk—ﬁk<i§’f pi

By Lemma A .4 stated and proved at the end of the section, we can lower bound each p; by

*__

pi— P (Zjes Aji(i — (0, — 07))(1 + %507
2 jem\ iy A (65 — 07)
(1 + do)*APnpL . A2npl
2V (k) 1 Vik) )’

< —(1+28)(1+ 50)277A>

> Cl exXp (—

13



for some constants C1,C] > 0 and some d2 = o(1) that are not dependent on 7. By (S23),
there exists some d3 = o(1) such that

2 A2
Z pi > Crkexp <— Chs 63X7 A an) . (S34)
k—pk<i<k 2V (%)

To obtain (S138), we need to set p that tends to zero sufficiently slow so that it can be ab-

. .- . . 14€)SNR —k
sorbed into the exponent. Note that condition (20) is equivalent to ( 62) (% — 7 1+$SN—R log ”T) <

log k. Since € is a constant, it implies

NR (1 1 n—k
— | == — log

2 2 (14+94)SNR k
for some constant ¢ > 0. As a result, under the condition that k — oo, we have

Z pi > Z Crexp (—(1+d3)(1 — ') log k) > k7T — 0.
k—pk<i<k k—pk<i<k

2
> <(1—-€)logk,

Hence, we have proved

1
inf PA Z Li71 > 501]{3 exXp

2 /A2 2
(_(1 + d2)n°A*npL c Aan) > 1 - o1).
AeA )
k—pk<i<k

2V (k) V(k)

(2). Analysis of L;5. By (S133)-(S135) and Bernstein’s inequality, we can bound
E(Liz2|A) by

2
(51 + 80/nAL X jepp iy 450 = 07))
2 (L Sk phejei Ajit! (07 — 05)(1+ €% 7)2 4+ 16/ (14 60)2nAL S je i ay Ajito (05 — 9?)>

2
(91 + 602nAL X gy PG5 = 05))
4 <2ka:p +10logn + §6'(1+60)21AL Y je o g1y P8 - 9;))

exp

sexp | —

1
Now we set §' = max{p%,A%, (log”> 2}. Then, there exists some constant Ca, C3 > 0 such

np
that 1 9 2 1 2,’,’2A2an
Then,
2 A2
E Z L;2|A | < pkexp (—Cgp—l/QW) .
k ' 7 2V (k)
—pk<i<lk

By Markov inequality, we have

. 1 1P AnpL 1 1P A2 npL

inf P L;o > pke _oCgp 2L = <e _SCgp 2L )

AnLFa . E . 22 P Xp( 9 3P 2V (x) > exp 9 3P 2V ()
—pk<i<k

(S35)

14



(3). Analysis of L; 3. By a similar argument, we also have

. 1 _ 772A2an 1 _ 772A2an
inf P Lis > pkexp | —=Cyp /P12 <exp|—=Cyp VP12
At k_[;m 3 =P p( 2% oV (k) = SPATT T a)

(S36)

Now we can combine the above analyses of L; 1, L; 2 and L; 3. Since p = o(1), the bounds
(S139) and (S140) are of smaller order than (S138). We have

inf P L; > Cuk — < —
tea A Z = exp( 2V (k) 1 V(k)

1+ 62)n?A2npL A2npL
nf, ( + 2)77 np _ Cl np ) Z 1 _ 0(1)’
k—pk<i<lk

(937)

for some constant Cy > 0. Then (S132) and (S136) lead to

2 A2 2
(_(1+5g)nAan_C, Aan) > 1- o(1).
k—pk<i<k

2V () NV (k)

(S38)

We are going to show it leads to (S25) by selecting an appropriate § as follows. We write
1 V()

=171 =3~ (1+6)A2npL -

are independent of the J in the definition of n;. First we can let 6 > d1, then we have

1
(1+ 52)77(%A2”PL A2npL A2ppL\ "2\ n2A%npL
S + Oy | =— < [1+6 +2C’< ) o
5V (k) Y\ Viky = 2\ () 5V (k)
1
A2ppL\ "2\ n2A%npL
< |1+ 65 +2C — 0
> ( + 2 1 (7751 ) > QV(/@')

log ”Tfk to make the dependence on ¢ explicit. Recall that d; and C}

V(k)
n(%AanL

§(1+54)W

for some 84 = o(1) not dependent on . Here the second inequality is due to the fact that ns
is in increasing function of §, and the last inequality is due to (S23). Then we can let § > &,

. m2A2
to have the above expression to be upper bounded by (1 + 5) nSQV(ZI;L. Hence, (S142) leads

to

k—pk<i<lk

( (1+ 5)n§A2an

0 ) >1-0(1),  (S39)

witch establishes (525).
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Similar to (S142), we can establish

(1+02)(1 — 75)*A’npL

P(@*,r*) Z ]I{%l > t} > C’4(n — k) exp <— ZV(K,)

k<i<k+p(n—k)
>1—o0(1).

Due to (S23), we have (1 —n5) € [0, 1], then

1+ 82)(1 —n;5)2A%npL A2npL (14 82)(1 —n5)2A%npL A2npL
(Lt 0) (1= me) A%npLe oy [AZPL (14 02)(1 = ) ATnwL oy [APnD
2V (k) V (k) 2V (k) V(k)

(1-— ng)zAanL
2V (k) ’

< (1+05)

for some 05 = o(1) not dependent on d. Since (1—n5)2A%npL/(2V (k)) = n(%AanL/(2V(/<))+
2log %% /(1 + &), we have

WO T
ey G Sl

§—65 n—k nzA*npL
= k = l —_— 1 5 E——— .

> kexp <log

By letting 6 > 65 and using the same argument as in obtaining (S39), we have

(1+ 5)n§A2an
2V (k)

k<i<k+p(n—Fk)

) >1-o0(1), (S40)

which establishes (S26). To sum up, we can choose § = max{d1,d4,J5} to establish (S25) and
(S26).

The above proof assumes that x = (1) and SNR satisfies (523). When these two con-
ditions do not hold, we need to slightly modify the argument. When (S23) is not satisfied,

\/(1+2€)SNR _ 1,—10gnT_k _ O(l).
(1+€)SNR
We can then take p to be a sufficiently small constant, and the proof will go through with

there must exist some small constant € > 0 such that

some slight modification. When x = o(1), we can simply construct §* by 7 =0for 1 <i <k
and 0f = —Afor k+1<i<n. O

Finally, we state and prove Lemma A.4 to close this section.

Lemma A.4. Assume £ — oo, kK = O(1), p = o(1), k — oo and (20) holds for some

logn
arbitrarily small constant € > 0. Choose k1, ks > 0 such that we have both k1 + ke < Kk and

k' (k1) (1 +€") 4 (n = k)Y (ko) (1 4 e772)?
(kp(k1) + (n — k)(—r2))?/n

=V (k).
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Define 07 = k1 for all1 <i <k —pk, 07 =0 fork—pk <i<k, 0 =—-Afork+1<1¢<
k+p(n—k) and 07 = —ky fork+pn—k)<i<nand S={iecn]:i<k—pkori>k}.
There exists some constants C7 > 0 such that for any 5 = o(1), there exists Cy > 0 and
91 = o(1) such that for anyn < 1/2 and any A € A where A is defined in (S133)-(5135), we
P(ZﬁﬁAﬁ@m—ww*—93ﬂ1+Jfﬂ)<

have
A
> jem(iy At (0] — 67) )
> Cexp <— —;61 n3SNR — Cany V SNR) . (541)

for any k — pk <1 < k.

—(1+0)nA

Proof. We suggest readers to go through the proof of Lemma B.3 in Section B.2 first. The
proof of Lemma A.4 basically follows that of Lemma B.3. We will omit repeated details in
the proof of Lemma B.3 and only present key steps and calculations specific to this Lemma
A4

We denote g; = 9(6; — ;). Then 1+ el = 1/q; and ¥(0; — 6;) = 1 — ¢;. Then what
we need to lower bound can be written as

(T sass )

Ce[L] jeS

where t' = (14 6)nA Y e iy P(1 — ;) for some 6" = o(1) due to (S133)-(S135), and P4 is
the conditional probability given A. Note that ¢’ can be chosen independent of 7. We remark
that

LAY, o1 — )2
SNR = (1 +4") (Zﬂe[n]\{z} p(1 = g5))

l—qj
ZjES P=g

due to p = o(1) for some ¢” = o(1) independent of 7. We still first consider the regime when

SNR — oo, (S42)

This implies n € (0,1/2).

The conditional cumulant of ) ; Ljy'ﬂ for each [ € [L] is

JGS

u(g;—1)
u) = ZAjilog <qje G+ (1—gj)e ) ZA]Z [—

JjES jES

U 1og((1 - g5)e"/® + q5)] -
J

The function v(u) acts as the same role as K (u) in the proof of Lemma B.3. Define

= in (L —ulLt).
u arg%lzlgl( v(u) — uLt')

Its first derivative is

(A-g;) u/qj

1 —qj
ZAJZ v u/q ’
jES o 7+ G 4
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Following the same argument in the proof of Lemma B.3, we need to pin down a range for u*.
First due to (S42) and v/(0) = 0, we have ¢ > 0 and thus /(0) — ¢ < 0. Now for u = o(1),
we can approximate /(u) by Taylor expansion and obtain

(w)

(u

<

1 -6z < <1+ 09, (543)

<

~—

for some 0 < 8 = o(1), where v/(u) = Zjespl;qiu. Note that we can replace Aj; by

/ . . .
——2——, which is o(1) since
Zjesp %

p because of the condition A € A. Then we consider u =

A =o(1) and p = o(1). Therefore,

Va)—t' > (1= 8)V(a) -t =(1-8)t >0.

This implies that u* € (0, Qt/1q> Thus u* = o(1).
ZJESP qil

When u = o(1), v(u) also follows a second order Taylor expansion such that:

v(u)
v (u)

where 7(u) = 1 3" g p =2 u? and 85 = o(1) due to (S133)-(S135).

4aj
Following the change-of-measure argument in the proof of Lemma B.3, the probability of

1—-4d3<

<1+ 93,

<

interest can be lower bounded by

L
exp (—u*T + Lv(u*) — Lu*t’) Qal0< ZZ Zy— Lt <T]|,
=1 jes

where Q4 is a measure under which Zj; are all independent given A and follow

Qa(Zj = 5) = e A (Ip, (Aji & ;yiﬂ = 3)
J

and vj(u) = —u% +1log((1— g;j)e*/% + g;). Then for each Zj; such that A;; = 1, its second
J
and 4th moment under Q4 can be analyzed:

Qul(Z = @alZu)) = ') = = qjj:uf‘j; TR GHC D
Qa(Zji — Qa(Zn)*) = v (u*) + 30} (") < (3+ Ch)vj (u*) < C, (S45)
where (S45) comes from
() = 1 ~ i (1 —gy)%e®/a —3(1 - qa‘)zqa‘e%(qj —3(1 — gj)q;e*/9 + ¢
7 [(1 = gj)e"/9 + q;]°
< I;leagi 1/qj2-yl/(u) < O (u).
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Now, to lower bound Lv(u*) — Lu*t":

Lv(u*) — Lu*t' > L(1 — §3)= Zp — G2 Lt

]ES 9
>L min [(1- (53)1 z:pﬂu)k2 —ut (S46)
u€(0,1) 2 e q;
1 Lt
_Z —
2 (1—d3) ZjeSijq]
I Y —
> —QnQSNR,
2
where (S46) is achieved at u = v - and 64 = o(1) since p = o(1). This gives us

(1-03) > jes Plgjj
the desired exponent. We remark that J4 is independent of 7.
To choose T', observe that

Varg, Z Z < CynpL,

le[L] jeS

for some constant C; > 0 using (S133) - (S135) , (S44) and p = o(1). Thus we choose

T = \/C’lan, which leads to a term an\/SN:R in the exponent for some Cy > 0 independent
of n.

Finally, to lower bound the Q4 measure, we only need to verify the vanishing property
of the 4th moment approximation bound in Lemma E.3:

3/4
Qa((Zj — Qa(Z)Y)
LZAﬂ(LZES 4:04(Z1 - Qa7 >>>)

JES

< Cy(npL)~1/4 (S47)

where (547) is by (S44), (S45) and p = o(1). To summarize, we have proved

N DIPIP - y”l > It | > Cyexp <—1J;55’7725NR -~ 0277\/5NR)

le[L] jeS

for some constant C7,Cy > 0 and d5 = o(1), when (S42) holds. This d5 can be used as the ¢;
n (S41). We remark that Cy, Cs, d5 are all independent of 7.
Finally, when
SNR < Cs

for some constant C3 > 0. This condition, together with (S133)-(S135) and p = o(1), implies
that

Lt < Cy ZA]Z

JeS di
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Therefore,

P4 ZZAﬁWth’ > Py ZZM%Z% LY At

le[L] jeS 7 le[L] j€S J jes i
>c1 —o(1) (S48)

where (S48) comes from Lemma E.3. The 4th moment approximation can be checked to be
of order (npL)~'/* similarly as in (S47) using (S133)-(S135) and p = o(1) since the second
and fourth moment of %%ijl are at the constant order under measure P4, which completes
the proof.

O

B Proofs of Lower Bounds

This section collects the proofs of lower bound results of the paper. The lower bound for
exact recovery is proved in Section B.1, and the partial recovery lower bound is proved in
Section B.2.

B.1 Proof of Theorem 3.4

The key mathematical argument in the proof of Theorem 3.4 is to characterize the maximum
of dependent binomial random variables. For this purpose, we need a high-dimensional central
limit theorem result by [4]. The following lemma is adapted from [4] for our purpose.

Lemma B.1. Consider independent random vectors X1, -+, X, € R with mean zero. As-
sume there exist constants cy, ¢z, C1,Co > 0 such that min; EX% > c1, max; j Eexp(|X;;|/Ch)
2 and (log(nd))” < Con=(+2) . Then, there exist independent Gaussian vectors Zy,--- , Zy,
satisfying EZ; = 0 and Cov(Z;) = Cov(X;), such that

n n
P | max X <t|—P|max Zij <t
jeld] — jeld] —

for some constants ¢, C' > 0 only depending on c1,ca,C1, Co.

sup < Cn™°,

teR

With the above Gaussian approximation, we only need to analyze the maximum of de-
pendent Gaussian random variables. The following lemma can be found in [6].

Lemma B.2. Consider Z = (Z1,-++ ,Zn)T ~ N(0,%). Then, for any o € (0,1), there exists
some constant Co > 0 such that for all n > \/2me3log1/a,

P <maXZi > )\1/2\/210gn —loglogn — C, — A1/2<I>_1(1 — a)> >1-2aq,

1€[n]

maXie(n) Ljeln]\fi} Zij

where A = min;ep,) Xi; — Amin (2)

and A = maxie[n} Z“

20
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Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. We first note that the condition (16) implies that A = o(1). Choose
K1, ko > 0 such that we have both k1 4+ k9 < k and

n

k' (k1) + (n — k)Y (k2)

We first consider the case k& — oo and k = 2(1). In this case, one can easily check that
ko = Q(1). Our least favorable 8* € O(k, A, k) is constructed as follows. Let p = o(1) be a
vanishing number that will be specified later. Define 07 = k1 for all 1 <i < k — pk, 07 =0
fork—pk <i<k,0f=—-Afork<i<k+pn—=k)and 0 =—ryfork+pn—=k)<i<n.
For the simplicity of proof, we choose p so that both pk and p(n — k) are integers. Consider
a subset Ry , C &, that is defined by

=V (k).

Rip={reG,:rm=iforalli<k—pkori>k+pn—~k)}. (S49)
We then have the lower bound

lgf sup P(g*m*) (Hk(?, 7‘*) > 0) > II/I\f sup ]P)(g*m*) (Hk(?, 7’*) > 0) .
T orreB, T r*eRy,
0*cO(k,A k)

For each z = {2i}r_ph<i<ktpm—k) € 10,1}", we define Q, as a joint probability of the
observations {A;;} and {y;;;}. To sample data from Q,, we first sample A ~ G(n,p), and
then for any (4, j) such that A;; = 1, sample y;;; ~ Bernoulli(+(p;(2) — p15(2))) independently
for I € [L]. The vector u(z) is defined by p;(z) = 0} for all ¢ < k — pk or ¢ > p(n — k) and
wi(z) = Al{z; =1} for all k — pk < i < k + p(n — k). Then, we have

inf sup P(g« ) (Hi(7,7") > 0) > inf sup Q. (2 # 2%)
r T*Eth ’ Z z*eZy

Vv
5
=,

ing

)
N*
B
e
I
o

where

7

2= {Z = {2ibh—phcizhipnk) € {0, 13" 1>z = Pk‘} -
The Bayes risk ‘Z—lkl > ez, Qe (2 # 2%) is minimized by

z = argmin 4, (u(2)), (S50)
ZEZy

where

! (1= !
D(pa(z) — 1(2)) ) OB T i (2) — 5(2))

ba(p(z) = Y Ay [ﬂz‘jlog

1<i<j<n
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It suffices to lower bound the probability Q,«(z # z*) for the estimator (S50) and for each
z* € Zi. By symmetry, the value of Q.«(Z # z*) is the same for any z* € Z;. We therefore
can set 27 = [{i < k} without loss of generality. Define

N(z") = {zEZk:ZH{zi#zf}:2}.
Then, we have

@z*@#z*»@z*( min 6, (u(z >><en<u<z*>>>.

z€N(2*)

By direct calculation, we have

n(p(2)) = bn(pa(27))
= > Ay — (=) = (N (i) = g (27) = i) + pi(2)

1<i<j<n

+ 3 AgD ((pa(2") — () (a(2) — 15(2))) -

1<i<j<n

For any z € N (z*), there exists some k — pk < a < k and some k < b < k + p(n — k) such
that z, =0, 2, = 1 and 2; = 2] for all other 4’s. Then,

Y AuD Wui(=*) = (2D (pilz) — p(2)))

1<i<j<n
k—pk n
< Z AaDW (R + A+ Y AwD@(—k2) | (—rg + A))
i=k+p(n—k)+1
k—pk n
+ ) ApD(m + A)[d(s) + D ApD((—ra + A)[[(—r2))
i=1 i=k+p(n—k)+1
k k+p(n k)
-+ Z AmD Hlﬁ Z AmD W( ))
i=k—pk+1 i=k+1
k+pn k)
+ Z ApD((A)[$(0) + Y AD@(0)[lp(=A)) + A D(W(A)|p(—A))
i=k—pk+1 i=k+1
< (1 +0)(1=pp kD (k1) (r1 + A)) + (n = k) D((=r2)[[¢(—r2 + A))] (S51)
+(1+0)(1 = p)p [kD( (k1 + A)[[¢(k1)) + (n — k) D(p(—r2 + A)|[1(—kK2))]
+(1+0)pp [kD((0)[[¥(A)) + (n — k) D((=A)[[4(0))]
+(140)pp [ED((A)[[4(0)) + (n — k) D(¥(0)[[(=A))] + (1 + 6)pD (Y (A)||[v(—A))
< (14821 = p)pA? [k (1) + (n — k)Y (2)] + (14 6)20pA> (852)
< (1+6)%pA2—. (S53)

V(k)

51) holds with probability at least 1 — O(n~'?) by Bernstein’s inequality.
52) is a Taylor expansion argument with the help of A = o(1). We obtain

The inequality (S
The inequality (S
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(S53) by the choice that p = o(1). Note that we can choose some § = o(1) to make all of
(S51), (S52) and (S53) hold. We also have

S A — i) — g (2))) (i () — g (2%) = pa(2) + pj(2))

1<i<j<n
= A > Alia —Bfia) + A D Ap(Gin — Eyan)-
i€n]\{a} i€[n]\{b}
Therefore,
by — L (2"
i (1(2)) = ln(p(z7))
< — max A Z Aia(Gia — EJia) + A min Z Ap(Tip — Eyip)
(1-p)k<a<k ic[n\fa} k<b<k+p(n—k) il b}
3 AQ n
+(1+6)°p Vi)’
with probability at least 1 — O(n~!?). This leads to the bound
2% l, <Aty *
Qe (_amin, ) < ()
> QZ*< max Z Aia(Yia — E¥ia)
(1—p)k<a<k ic(n\{a}
n
— min Z Aip(gip — Eygp) > (1 + (5)3pA> —O(n™19
k<b<htp(n—k), £ V(r)
> Qz* ( max Z Aia (gia - Egia) - min Z Aib(gib - Eyzb) (S54)
(1—p)k<a<k il {a) k<b<k+p(n—k) il b}
np _
>/2(1—€/2),/ V() (\/logk + /log(n — k)) ) —0(n19
_ _ np
> Q- max Aia(Yia — Efia) > V2(1 —€/2 log k S55
((1 —p)k<a<k e[z]\:{a} ( ) ( /2) LV (k) (855)

np
40, | - (G — Eyi) > /21 — /2 Viog(n — &
Q ( k<b<k+p(n . E[n]z\:{b} b(Uib — Eyip (1—¢/2) V() og(n ))
—1—O(n_10),

where we have used the condition of the theorem to derive (S54). The last inequality (S55)
is by union bound P(A N B) > P(A) + P(B) — 1. To lower bound (S55), we introduce the
notation
Z Aia(ﬂia — Egm), (1 - p)]{? <a<k.
i€[n]\{a}
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The covariance structure of {7, }1_pk<a<i can be quantified by the matrix ¥ € R(PK)x (pk)
which is defined by ¥4 = Cov(Ta,Tb\A). We then construct a vector S = {Sa}(1—p)k<a<k
that is jointly Gaussian conditioning on A. The conditional covariance of S is also . By
Lemma B.1, we have

Q.+ max Z Aza yza Eyza > /2 1 - 6/2 LV \/10? (856)

(1—p)k<a§k

[n]\{a}
P<u_glsfagk5a>m V) <0 (o)

To see how Lemma B.1 implies (S57), we can take X;, = \/% Zie[n]\{a} Aia(Yiat — Eyiar)-
Conditioning on A, we observe that {Xj,} is independent across | € [L]. The conditional
variance of Xj, given A is bounded away from zero with high probability by Lemma 8.1.
Moreover, one can find a constant C' > 0, such that E [exp(|X;|/C)|A] < 2 by Hoeffding’s
inequality. Then, we can apply Lemma B.1 for a given A and obtain (S57) under the condition
L > (logn)®. We need Lemma B.2 to lower bound the probability in (S57). For each a,

Yaa = Var(Ta‘A)
= % > At () — pal=)

i€[n]\{a}
k ok k+p(n—k) ’ n

_ f<a1 Y’ ( 2) ¥'(A)

o Z Aia + = 4L Z Ai Z Ajq + I A
1=k—pk+1 i=k+1 i=k+p(n—Fk)+1
By Lemma 8.1, we have
1 np

Ea,a S o T Aia S gt S58
(k%li?fagk 4L ie[;\{a} 2L (858)

with probability at least 1 — O(n~10). Similar to the proof of Lemma 8.1, we can use Bern-
stein’s inequality and a union bound argument to obtain that

. : P(k1) ~~ , |, V(k2) ,
(k,ﬁlgagkzaa 2 (k,fﬁlgagk L ;Am—i_ L Z:;rl Aia
1-6)(1—-
> GO0 (gt 1) 4 () ()

_ (1=6)(1—=p)pn
= e (859)

for some § = o(1) with probability at least 1 — O(n~19). For each a # b,

Sap = Cov(T,, Tp|A) = Aabz//(/‘a(z*)L— (7))
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Then, Bernstein’s inequality and a union bound argument, we have

1 pkp + logn
2 < < _
max Y T5 < 167 (—p)hza<h D Aw < O (S60)
b:b#a b:b#a

with probability at least 1—O(n~'%). We can also obtain a similar bound for max, Y ;. ta Sab-
This allows us to give a lower bound on Apin(X):

— 5)(1 — p)pn p/{:p + logn pn
— > —.
LV(/{) C L = L (861)

1
Amin(X) > min  X,,—max g Sap > (
(1=p)k<ask * bbta

To apply Lemma B.2, we shall choose p that satisfies both log(pk) = (1 + o(1)) log k and
p = o(1). The existence of such p is guaranteed by k — co. With the bounds (S58)-(S61),
we can apply Lemma B.2, and obtain

np 1
P (( max S, > /2(1—¢€/2) V(n) \/logk> >0.98—0(n"").

1-p)k<a<k

We then obtain the desired lower bound for (S56). A similar argument also leads to

Qe =, min DT Aa( — Bya) > V20— /), [ e iogln — F)

k<b<k+p(n—k) el

> 099-0 ((logn)c> .

Therefore, Q.+ (z # z*) > 0.95 and we obtain the desired conclusion.

The above proof assumes that £ — oo and k = ©(1). When these two conditions do not
hold, we need to slightly modify the argument. Let us briefly discuss two cases. In the first
case, k = O(1) and x = Q(1). In this case, we can construct 8* by §f =0 for 1 < i < k,
0 = —Afork <i<k+pn—k)and 0 = —x for k+ p(n — k) < i < n. In the second case,
k = o(1), and then we can take 0* with 6 =0 for 1 < i < k and 0 = —A for k < i < n.
The remaining part of the proof will go through with similar arguments, and we will omit
the details. O

B.2 Proof of Theorem 6.1

We first establish a lemma that lower bounds the error of a critical testing problem.

Lemma B.3. Assume £ — oo, k = O(1), p = o(1), k — oo and (16) holds for some

logn
arbitrarily small constant € > 0. Choose k1, ks > 0 such that we have both k1 + ke < Kk and

=V (k).

n

k' (k1) + (n — k)Y (k2)

Define 0; = k1 for1 <i < k—pk, 0; =0 fork—pk <i <k, 0; = —A fork+2 <i < k+p(n—Fk)
and 0; = —kg for k+ p(n — k) < i < n. Suppose we have independent A; ~ Bernoulli(p) and
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zii ~ Bernoulli(y(6;)) for all i € [n]\{k + 1} and | € [L]. Then, there exists some 6 = o(1)
such that

L 0; 1—9(0; + A k
P (Z Y4 [zil Ing(w(;)) + (1 — 2;) log %] > log nk‘l)

I=1 ic[n]\{k+1} !

e [ 1 (VTEDSNR 1 ok ’
> Cexp | —3 5 SR R :

1+0 N

for some constant C > 0.
Proof. We first consider the case

(1+0)SNR 1 n—k

- 1
2 JOA+0)SNR °k

for some § = o(1) to be specified later. Throughout the proof, we use P4 for the conditional
distribution P(-|A). We use the notation

— 00, (S62)

Y0+ 4) 1— (0 + A)
2 = Z A; [Zz‘l log ——~—+ (1 —zy)log ———~—

Its conditional cumulant generating function is

K= Y Ailog ((0:)' (0 + A)" + (1= 9(6:)' (1 — (6 + A))").

i€[n)\{k+1}

k
’LL* = arggéin <LK(U) — UlOg nk:l) .

By direct calculation, we have

K'(0) = - Z AiD(4(0:)[|4(0; + A)).
i€[n)\{k+1}

K1) = Y ADEO; + A)lp(6:)).
ien]\{k+1}

By Bernstein’s inequality,

K'(0) < —(1—-é1)p Z D((0:)[]1(0; + A)), (563)
i€[n]\{k+1}

K'(1) = (1=6)p > D0+ A)|v(6y)), (S64)
i€n]\{k+1}

with some §; = o(1) for probability at least 1 — O(n™!). Given that A = o(1), which is
. . n 2
implied by (16), and p = o(1), we have Zie[n]\{kﬂ} D((0:)||v(0; + A)) = (1 + 0(1))TA(H)
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and 3 sty D@0 + A)[(6:) = (14 0(1)) 3455 With the condition (S62), we know
that LK'(0) —log ﬁ < 0and LK'(1)—log ﬁ > 0. Thus, we must have v* € (0,1). In
fact, the range of u* can be further narrowed down. We apply a Taylor expansion of K'(u)

as a function of A near 0, and we obtain

1
Ku= > 4 {—2@//(91-)A2 + 1 (0:)uA? + O(|APP)] .
i€[n)\{k+1}
Note that the remainder term O(|A|3) can be bounded by |A|? up to some constant uniformly
for all u € (0,1). By Bernstein’s inequality, we have
1 > npA?

K’(u) > —(1+01) <2 —u Vi)

(S65)

for all u € (0,1/2) with probability at least 1 —O(n~1). By (S65), there exists ' = o(1) such

that . ) L
K (- log ——
(2 (T1&)5SNR & & ) >0,

and therefore, we must have

. 1 1 n—k
u* e <0,2— (1+5’)SNR10g k: > (S66)

We also introduce a quadratic approximation for K (u), which is

— npA?

K(u) = V() (u® — u).

It can be shown that K(u)
U

1— 0 < ——= <1+ 09, S67

T K~ 7 (S67)

uniformly over all u € (0,1) for some d2 = o(1) with probability at least 1 — O(n~'). The
inequality (S67) can be obtained by a Taylor expansion argument followed by Bernstein’s

inequality, similar to the approximation obtained in (S65).
Define a probability distribution Q4, under which Zy,--- , Z arei.i.d. given A and follow

QA(ZZ = 8) = IP)A(ZZ = S)eu*S_K(u*),

for any s. It fact, each Z;, under the measure Q4 can be written as the sum of several
independent random variables, i.e. Z; = Zig[n]\{kJrl} Z;; where

oy At A K (u*) o 0+ A) L—90; +A)]
Qaln =) = & (A‘ [z’”og 0 (6) =@ 7))

and K;(u) = log (¢(0;)' "1 (6; + A)* + (1 —(6;)) (1 — ¢ (6; + A))*). Then for each Z;
such that A; = 1, we can compute its second and 4th moment as

+ (1 — zy) log

euA

(1 —1(0;) + e Bep(6;))? € (C1A%,CyA%), (S68)

Qal((Zu—Qa(Zn))?) = K!'(u*) = ¢/ (6;) A
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Qa((Za — Qa(Zu))*) = K" (u") + 3K} (u")? < A’K(w") + 3K} (u")?,  (S69)

where C1,C45 > 0 in (S68) are some constants and we have used

mre, s\ __ 1 lin. 4 u*A w(ei)?’eBu*A — 31#(91)1#'(01')62““ — 3¢/(9i)<1 - w(e*)>eu*A + (1 _ ¢(91))3
K" (u*) = ¢/(6;)Ae (1—(0;) + ¥ (0;)ew )5
1 = A?K!(u*)

(1= (0s) + (0:)e 2)?

< w’(&i)A‘le“*A
in (S69).
Define A to be the event of A that (S63), (S64), (S65), (S67) and
1
P S > A< 2np, (S70)
i€n]\{k+1}

all hold. We know that P(A € A) > 1—0O(n™!).
With the above preparations, we can lower bound P (Zle Z; > log ﬁ) by

L L
k 1 k
inf P Zy > log—— | P(A > —inf P Z; > log —— | .
i (Z l—ogn_k_l) (ed)=3 il (Z l—ogn_k_1>

For any A € A, a change-of-measure argument leads to the lower bound

- k
P (Z %2 log n—k—l)

=1

k

- k - k
XQA [H {Z Zl — logm > 0} exp <—U*(Z Zl — lOg ’n,—k’—l)>]
=1

=1

L
k
=1

for any T > 0 to be specified. We first lower bound the exponent LK (u*) — u* log n_’,‘;_l by

- Ko k
— k
> i — A —
> ug%gll) (L(l + 92) K (u) — ulog —— 1>
2
> 1 \/(1+53)SNR_ 1 logn—k ,
2 2 (1+ 65)SNR k

for some d3 = o(1l). We then need to choose an appropriate 7' so that the probability
Qa (O < Zlel Z; — log nf’,‘éil < T) can be bounded below by some constant. To achieve
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this purpose, we note that

L
Varg, <Z Zl) =L Z AK] (u*) < C1AL Z A; < 2C1A2Lnp,

=1 i€n)\{k-+1} i€n]\{k+1}

for some constant C; > 0 due to (S68), where Varg, is the variance operator under the
measure Q4. Thus, we set T = /2C1A%2Lnp. With this choice, and by (S66), we have

1 1 n—k
*p 2 - )
u'T < /2C1A%Lnp <2 a —|—5’)SNR10g ? )

Therefore, u*T is at most the order of the square-root of the desired exponent, and thus it is

negligible.
Finally, we need to show Qa (O < Elel Z; —log ﬁ < T) is lower bounded by some

constant. Note that the definition of «* implies that ZZL: 12 — log # has mean zero
under Q4. By the definition of T, we have

L
k
Qa (OSZZl—logn_k_l §T>

=1

v

k
Qa 0<ZZZ log — 1< Var<ZZl

g

= Qqu 0<Z Z le—log l; 1< Var Z Z Zi

=1 ie[n]\{k+1} =1 ie[n]\{k+1}

A

We apply the central limit theorem in Lemma E.3 to bound the above probability. The 4th

moment approximation bound in Lemma E.3 is

. Z " sz/(u*) + BKl{/(u*)Q 3/4
(L icm ey Ak (u))?

ie[n]\{k+1}
A2KY(ut) + 3K (w2 \
=\" Z As L A K" ()2 (S71)
i€\ {k+1} (L2 iem fery Ak (u))
S o4 < Cy+3C¢ )3/4 s
=\t S72
i€n]\{k+1} (L X iemp ety AiC1)?
~1/4
SC{L D A (S73)
i€[n]\{k+1}
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which tends to zero by (S70). We have used (S69) in (S71), (S68) in (S72). We thus have

L
k
< — — < > < < —
Qu (0_ Zl:zl log —— _T) >P(0< N(0,1) < 1) — o(1),

which is bounded below by a constant. To summarize, we have shown that

2
k 1 (/(1+34)SNR 1 n—k
Z > 1 > —= —~ 1
(Zl 08 1>_Cze><p 2( 5 Tro0oNR 2 & ) ;

for some d4 = o(1) and some constant C3 > 0 when (S62) holds with § = d4.
To close the proof, we need a different argument when

1+ 64)SNR —
(14 04)S B 1 logn k <,
2 (1+ 04)SNR k

for some constant C4 > 0. This condition, together with Bernstein’s inequality, implies that

> —C5+/LnpAZ2, (S74)

L k
E(Z;|A) — log ——
; (Z1]4) —log ———

with probability at least 1 —O(n~!). Define A to be an event of A such that both (S70) and

(S74) hold. It is clear that P(A) > 1 — O(n~!). We then have
L
Z k0 1. Z k
1 L
> 5 iniIP’A < E (Zl - E(ZZ‘A)) > C5\/ anA2> (875)

> ¢ —o(l), (S76)

v

for some constant ¢; > 0. The inequality (S75) is by (S74). For (S76), we use the Gaus-

sian approximation in Lemma E.3, and the 4th moment approximation bound is of order
—1/4

(L Dicln]\{k+1} Al-) by similar calculation as in (S73) under measure P4, which tends to

zero by (S70). The proof is complete. O

Proof of Theorem 6.1. We first note that the condition (16) implies that A = o(1). Choose
K1, ko > 0 such that we have both k1 4+ k9 < k and

n

k! (k1) + (n — k)¢ (k2)

We first consider the case k& — oo and « = €2(1). In this case, one can easily check that
ko = Q(1). Our least favorable 0',0"” € ©'(k, A, k) is constructed as follows. Let p = o(1) be
a vanishing number that will be specified later. Define ¢ = x1 for all 1 < i < k — pk, 0, =0

=V (k).
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for k—pk <i <k, 0, =—-Afork<i<k+pn—=k)and @, =—ky for k+p(n—k) <i <n.
For the simplicity of proof, we choose p so that both pk and p(n — k) are integers. For 6", we
set 0] = 0; for all i € [n]\{k+1} and ;| = 0. Recall the definition of the subset Ry, C &,
in (S49). We then have

inf  sup  Eggepo)He(7,r") > inf  sup  Ege oy He (7, 77)

r r €6, T r*€Rg,p
o*egl(k,A,,‘i) 9*6{0/,9”}
! 1 ~
anfi Z Rl Z E g+ peyHi (7, 77).
" S gee(ory TR ey,

That is, we first lower bound the minimax risk by the Bayes risk. Since

_ 1 ~ ~
) > ; * < . < *
M2 5 Y Ak SB TR S k> k),
k—pk<i<k-+p(n—Fk)

inf sup E g+ r«)Hg (r,r)

r r*e6,
0*€0’(k,A,k)
el 1 1 ~ x N «
0*e{6’,0"} r*ERE,p k—pk<i<k+p(n—k)

1 . R R
= 4k |Rk,p Z Hlf Z Z ]P)(e*vr*)(ri > k) + Z ]P)(H*,r*)(ri < k)

k—ph<i<ktp(n—k)  6+€{6",0"} | r"ERy, r*€Ry,
ri<k T >k+2
1 . ~ ~
> 1k |R E II/l\f E P(g//}r*)(n’ > k) + E ]P)(G’,r*)(ri < k:)
kbl ph<ickap(n—k) | | meRp, *€Rpp
ri<k TF>k+2

At this point, we need to introduce some extra notation. For any r,r’ € &,,, we define the
Hamming distance without normalization as H(r,r") = > 1 I{r; # r;}. For each k — pk <
i <k + p(n — k), we can partition the set Ry, , into three disjoint subsets. Define
1
Ry = {reRp,:ri <k},
R,(f; = {reRy,:ri=k+1},
jo; = {TGRk,p:TZ’ Zk—FQ}.

It is easy to see that Ry, = U?:1R;(€jz)- We note that the three subsets all depend on the

index ¢, but we shall suppress this dependence to avoid notational clutter. For any r € R,(f;,
define

Noq(r) = {r" € R,(;; cH(r,r") = } ,
Nooys(r) = {7“' e R . H(r,r') = 2} :

k,p
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Since for any different permutations, the smallest Hamming distance between them is 2,
No_1(r) and Na_,3(r) can be understood as neighborhoods r within R,(:/)) and R,(:’;, respec-

tively. It is easy to check that { N 2-1(7)}, are disjoint subsets, and they form a partition

er®
of RSZ). Similarly, {Na—3(r)} rer® are disjoint subsets, and form a partition of R( ) With
these notation, we have

inf  sup  Ege o) Hg (7, 77)

r r e,
9%’ (k,A k)

1 ' ) i
> m Z lllf Z Z ]P)(gn’r//)(ri > k) + Z P(@’,r’)(ri < k;)

k—pk<i<k+p(n—k) rer® \reNsi(r) 1 E€Na—y3(r)
P

1 . 1 R 1 R
= m Z mf Z Z (Tl—k—lp(eu’r“) (7“1' > k‘) + %P(9/7T/) (T‘i < k‘))

k—pk<i<k+p(n—k) ng}f) ' eNa ;1 (r)
P r'eNaa(r)

1 n—k—1
> i f E s 7E ! ! 1 -
~ dk(n —k — 1) Ry, > > 2 0ge [ 0"+ (0 ( ¢)] ,

k—pk<i<k+p(n—Fk) TER(Z) 7‘”6/\/2%1(7’)
' eN23(r)

where we have used the fact [Na—,1(r)| = k and |[Na—s3(r)| = n — k — 1 to obtain the equality
in the above display. To this end, it suffices to give a lower bound for the testing problem

n—k—1

Ogigfgl |:E(9”,7“”)¢ =+ TE(QI’W)(l — ¢):| , (877)

for any r” € Ny_1(r) and any v € Nj3(r) with any r € Rl(f;

kE+p(n—k).
For the two probability distributions in (S77), the probability P .y is the BTL model
with parameter {6’ ,,}le[n] and the probability P,y is the BTL model with parameter

and any k — pk < i <

{9’ Viepn)- It turns ‘out the two vectors {6 ,,}Ze[n] and {0/, }ze[n only differ by one entry.
To ‘see thls let 2 and 7' be the two coordinates that r and 7' differ and let i and j"” be the
two coordinates that r and r” differ. Then, ' and r” differ at the ith, the j'th and the j”th
coordinates. This immediately implies ¢/, ;= 9” foralll € [n ]\{z 4',7"}. By the definitions
of Mo,y and N3, we have 1} =1, r = k:+1 7" =1 and r = r]n,rj, =71y, r ', =k+1.
Moreover, we also have r;; > k + 2 and rjn < k. We remind the readers that all the three
coordinates are in the interval [k — pk+ 1, k+ p(n—k)]. According to the definitions of §' and
6", we then have 6/, = 9;’,{,” =0 and ¢/ = 9;/,_,, = —A. For the only different coordinate, we
have 9;; =-A andjﬂ;’g/ —( ’ ’

Since {9;’2,}1-6[74 and {0/, ;}ie[n] only differ by a single coordinate, the testing problem (S77)

is equivalent to
. — k-
Oglgil E 0" 7 QZS + L E(g/ —)(]. - ¢) 5 (878)
where 7; = ¢ for all ¢ € [n]. The equivalence between (S77) and (S78) can be obtained by the

existence of a simultaneous permutation that maps the two vectors {67, };ci,) and {6, }icpn)
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to 0" and #'. By Neyman-Pearson lemma, we can lower bound (S78) by

dIP(g/ 7) k
a2 ’ > .
Por ) ( Py 1) (S79)

This probability can be lower bounded by

1 (w/(1+5)SNR_ | nkz>2

Ce —= lo
R 2 AT+ 0SNR ° K

with some constant C' > 0 and some 6 = 0o(1) according to Lemma B.3. Since |R,(€2;]/|R(k,p)| =
(1 — p)n, we have

iI/l\f sup E(g*,r*)Hk(ﬁ T*)

T r*eG,
9+’ (k,A k)
2
- 1 ( /(T +0)SNR 1 o,k
o |1 B
U B 2 (T10)SNR ° & A

for some constant C7 > 0. When the exponent diverges, we can choose p that tends to zero
sufficiently slow so that it can be absorbed into the exponent. Otherwise, we can simply
set p to be a sufficiently small constant, and the above proof will still go through. One can
use a similar argument as Lemma B.3 to show (S79) is bounded below by some constant.

In this case, we have infzsup ,+cs,  Eg« »«)Hi(7,7*) bounded below by some constant as
0O’ (k,Ax)
desired.

Finally, we briefly discuss how to modify the proof when either k — oo or k = Q(1) does
not hold. When k£ — oo and k = o(1), we can take 0, = 0 for 1 < i < k and 0, = —A for
k < i < n. The vector §” is still defined according to 6 = 6, for all i € [n]\{k + 1} and
041 = 0. The proof will go through with some slight modifcation. When k = O(1), the
condition (16) is equivalent to SNR < (1 — ¢)2logn for some constant ¢ > 0, and we only
need to prove a constant minimax lower bound. This is obviously true becasue

inf  sup  Ege ) He(7,7") > inf  sup  Egge o) Hp(7,77)
T r*e6y, r r* €6y,
0" €0’ (k,A ) 0*cO(k,A,x)

: 1 B
11%f rfélgn ﬁP(g*yr*) (Hg(7,7*) > 0),
0*cO(k,A,k)

v

which is lower bounded by a constant by Theorem 3.4 and the condition that k = O(1). O

C Proofs of Local Error Rates

In this section, we prove Theorem 7.1 and Theorem 7.2.
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C.1 Proof of Theorem 7.1

We first give Lemma C.1 to characterize entrywise tail behaviors of the MLE (6) which is
crucial to the upper bound in Theorem 7.1.

Lemma C.1. Assume 1"— — 00 and k = O(1). Then, for the rank vector T that is induced
by the MLE (6), for any small constant 0.1 > 6 > 0, there exists some constant C' > 0, such
that for any t € R, any 0* € O(k,0,k), " € &,,, we have

A (1—96)(07 —t)2npL
ey (0; <) < — : T L e
) (0Z < t) < Cexp ( 2V, (%) +Cn™"rf <k; (S80)
~ (1—6)(t—6~)3npL
* gk ;> < — [ -7 *
s ) _Cexp< V) +On T > k1 (S81)

Proof. The proof follows the proof of Theorem 3.2 with slight modifications. Without loss of
generality, we can assume 7 = i for all € [n]. Let

1/4

) min ( (0 — 1), (kfpn) L 1<i<k,

A; = | 1/4 . (S82)
min (t—eg)+,(%) L k+l<i<n.

We only need to prove (S80) since (S81) can be proved similarly.

Consider any m € [k]. When (6}, — ¢)2npL < ¢ for some large enough constant to be
specified later, we can directly bound the probability using the trivial bound 1. Thus, we
only need to consider the regime when (67, — t)2npL > ¢’

Following the proof of Theorem 3.2, we have (57)-(63) and (65) hold. Note that we now
have A2 Lnp > ¢ instead of A2 Lnp — oo which is needed in the proof of Theorem 3.2. As
a consequence, we now have (64) and (66) hold with § = 4Cye*/+/¢ instead of some o(1) as

in the proof of Theorem 3.2. To sum up, with this J, we have

O — Orn| < 6A, (S83)
(m) (g* 9 (m) (g 19% _
LA f* AL s
™ (03,107 )
m)(9* ’0_ ) =9 BhI6" )‘ < (S85)
™(05,10% ) o
hold with probability at least 1 — O(n™7) — exp(—A%Qan) exp (—Az npLi logn . We can

make § to be an arbitrarily small constant by setting ¢’ large as k = O(1).
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Then for any ¢ < k, by the same argument as in the proof of Theorem 3.2, we have

o[

< IP’(@—G;* < —(0;"—75))
< P(Bi-0; < —(1-0)A) +P (16 - 6] > 0A,)
FO;10%,) . _
< P <_£/(”@"!9"i) < —(1-30)A; | +0(n™") (S86)

—&—exp(—A?/Zan) + exp ( A?npL np )
logn

which has the same upper bound as in (67). We then have the same (68) and the event A;
as in the proof of Theorem 3.2. As a result,

1O;16,) \

B 2
L1 = 30)2A2 (L X e gy Aut (0 = 0)))

S sup exp - — A * *
AcA; L3 e oy Aig®' (07 = 07) + 152 AL 5 e iy Aig?! (0 — 05)
+0(n™")
= exp <1A2 > o - 67) ) +0(n™") (S87)
jem)\{i}
B 5/ * 2 * * -7
< exp | == (O —Lp Y, w6 0)) | +O(n) (S88)
jem\{i}
= exp —1_76”(0?k —t)?npL | + O(n™") (S89)
2V;(6%) "

where ¢, §” are able to be any small constant (by adjusting ¢’). We use the definition of A; to
obtain the expression (S87). To see why (S88) is true, note that when A2 = /1987 ‘the first

np ’

term of (S87) can be absorbed into O(n~7). (S89) comes from DRE \{’},w ( D +o(1).
z]e[n]w (07065 y

Since exp(—A?anp) + exp <—A?an%> < exp ( 21:;%1)) (07 — 1) an> +0(n™7), we

have for any small constant § > 0, there exists some constant C' > 0, such that

1-5
2V (6%)

P (@ < t) < Cexp < 0F —t) an) +Cn77, (S90)

for all # < k which completes the proof. ]

Proof of (29) of Theorem 7.1. The upper bound (29) is a straightforward consequence of
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Lemma 3.1 and Lemma C.1. We have

k n
(1= 8)(6; — tfimpL (1= 8)(t =07 2npL
Zex‘”( ) 3 e ()

i=1 i=k+1

C' +Cn~S.

O]

The rest of the section focuses on the lower bound (30). The proof follows the proof of
Theorem 3.4 with some modification. We include it below for completeness.

Proof of (30) of Theorem 7.1. We are going to prove

Ry ([k], 0%,t", —0) + Ro([n]\[K], 0%, t*, —0)
k

where ¢* is the unique solution such that R;([k], 0% t*,—0) = Ra([n]\[k], 0%, t*,—0). We
first show the existence and uniqueness of t*. Note that R;([k], 0% t, —d) increases with
t while Ro([n]\[k],0%,t,—0) decreases with ¢. Moreover, since lim;_,_o Ry ([k],0%,t,—0) =
limy—y 400 Ro([n]\[K], 6%,t,—0) = 0, such t* must exist due to continuity. The uniqueness comes
from R ([k], 0%,t, —6), as a function of ¢, is strictly increasing on (—o0, 7] and Ra([n]\[k], 6%, ,
as a function of ¢, is strictly decreasing on [0}, +o0) and 67 > 05.

Define

Si(t) = {z cln] i<k (0 —1t), (1ogn/np)1/4} (S92)
Salt) = {i €] 1i = k+1,(t = 0)1 < (logn/np)'/*}.
Since we assume inf,(Ry ([k], 0%, ¢, —5) + Ra([n]\[k], 68%,t,—3)) — o0, we must have
Ry([k], 0%, £, —8) — oo (593)

and hence,

Bi(S1(17), 07", =6) _ 1 Ri(Sa(tY), 07, 1", =) >}
Ry([k],0%,t*,—0) = 2" Ra([n]\[K], 0%, 1, —0) — 2°
This is because Ry([k], 0*,t*, =) — R1(S1(t*),0*,t*, =) < n=% and Ra([n]\[k], 0%, t*, —6) —
Ra(Sa(t*), 0%, t*, =) < n~° by the definition of Sy (t*), S2(t*) and np/logn — oo.
Now by Lemma A.3, we have

H(F, ) > 1 mi (ZH{@ <t'}, S {@>t*})

(S94)

=1 i=k+1
Z%min Z ]I{§,;<t*},lz }I{@->t*} : (S95)
1€51(t*) 1€S2(t*)
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It suffices to show there exists some constant C' > 0 such that

1 o * 40 * * g%k
Py [z D2 H{0i<t}27R1(Sl(t ), 051, —8) | >3/4  (S96)

1 . e, o
and Pge oy [~ 3 I[{@i > t} > = Ry(Sa(t),0%, 1%, —0) | = 3/4. (S97)

This is because

E(e*,r*)sz(ﬁ ’I"*)
Ry ([k], 6%, t*,—0) + Ra([n]\[k], 0%, t*, —9)
k

X P(&*,r*) <Hk(?, ’I“*) > C

>C

k (S98)
(k)02 20) + Balln\ WL 07,7, =8) (Wﬂfm(m,a*,tn—a) and )

k Tiesy(t*) H0i>t} _ o0
k k

Rl([k]v 0*>t*7 _6) + R2([n]\[k]v 9*7t*v _5)>

>C

RQ([”]\[kLe*vt*vfé)
(S99)

Ry ([k], 6%, t*, —0) +Rg([n]\[kz],Q*,t*,—é)P(g* ! (Wﬁmsﬂmﬁ*,tw) and

>C

& Zeesa M0 5 sc 5, 0,00,0%,-5)
(S100)
> gRl([k]>9 it 7_6)+R2([n]\[k]>9 o ’_5). (S101)

-2 k
Therefore, we obtain the desired conclusion. (S98) is a consequence of Markov inequality;
(S99) comes from (S95) and the choice of ¢*; (S100) is due to (S94); (S96) and (S97) lead to
(S101).

In the rest of the proof, we are going to establish (S96) and then (S97) can be proved
similarly. Define

0r — 1)
Si(p, t*) = {’L € S1(t") : p|S1(t*)| indices in Sy (t*) with the smallest (ZV(G*))JF} (5102)

for some small enough constant p > 0 to be specified later. That is, Si(p,t*) is a subset of

*_ g%)2
S1(t*) of size p|S1(t*)| with the smallest (6{}_(;*;+ values. We remark that condition (S93)
and (S94) necessarily imply |S](p,t*)] — oo when p is a constant. We shall also assume

p|Si(p,t*)| is an integer. Furthermore, note that the definition of Sj(p,t*) implies:

Ri(S1(t%), 0%, t*,—8) > Ri(SL(p, t), 0%, t*,—3) > pRy(S1(t*), 0%, t*, —5). (S103)

Therefore, to establish (S96), we only need to show

P (g ) ( Z I {02- < t*} > C'R1(S1(p, t"), 0", t*, 5)) > 3/4. (S104)

€51 (p,t*)
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for some constant C’ > 0. The remaining proof is then devoted to proving (S104).

Recall the definition of 6 in (62). Define A; = (0 —t*), V a, /W%L where « is some large
enough constant to be determined later. Define the event F; as

B Loy | FOO10_3) — FD@O210%)] 60 « ]9“)(9?\9_0 —g“(0516%,)
32 g (0710%,) 3 g(0;10%;)

%
3

When (0 — t*)2npL > «, using a similar argument that leads to (S83)-(S85), we can show
that there exists some constant dg > 0, such that

* * y > — _7 —_ ~2 ﬂ _ A 3/2 .
P« oy (Fi) 2 1 (O(n ) + exp < A’anlogn —i—exp( A; an) (5105)

When (6 — t*)2npL < a, we can show
( o *)(]:i) >1— (O(n77) + e—(an)1/4 i efx/log"> ] (8106)

instead. To establish it, we can choose z = (npL)Y/* in (56) and = = v/Iogn in (61) and then
follow the same proof of (63), (64), and (66) as in the proof of Theorem 3.2. In both cases,
this dp can be made arbitrarily small by setting « large.

Assuming F; is true, we can use arguments similar to the establishment of (67) to have

0 Sjetmns AsiGi — ¥ — 65))
[0, <t¥s:>1 JEMJ\\? *l*] S_(1+50 e;k_t* '

{ } { > jemp gy At (05 — 07) ) )+
Define the RHS of the above display as L;. Then we have shown that

S H{§i<t*}2 S oLz Y Li- Y I (S107)

€S (p,t*) 1€S5 (p,t*) i€S (p,t*) i€S] (p,t*)

y (S105) and (S106), we have

E Zﬂfic

i€S] (pst*)

<O0(n %+ Z <exp < A2anl gp ) + exp ( 53/2an>>

i:1€8] (p,t*), (07 —t*)inpL>a

CS (o) e (Vo))

i:i€S] (p,t*), (07 —t*)2 npL<a

Using 0} —t* < (logn/np)'/* for i € S1(t*) and np/logn — oo, we see that the above bound

is of smaller order than
A2an np L/9
n—5:9 1/5
1
+ g exp 760 <<logn> A (logn) ,
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and we can use Markov’s inequality and obtain

A2npL np 1/9
- c < —-5.9 1 1/5 > _ .
) E [re <n™>7 + E exp AR <<logn> A (logn) > 1-o0(1)

ieSL(t*) 1€8] (p,t*)
(S108)
Now to lower bound Eiesi(p’t*) L;, we define
> iy A (05 = 65)
A= A:Vie S (th),| =1 2201 < b, (S109)
{ P 2jetmniay V' (05 = 65)
Z A (07 — 07)| < 2pkp + 101og n} (S110)
J€S1(pit*)

By Bernstein’s inequality and union bound, we have P(4 € A) > 1 — O(n~'°). From
now on, we use the notation P4 for the conditional probability P« .«)(-|4) given A. For any
s> 0,

Po-py | D, Li>s > P(A € A) inf Py Y Lizs|. (S111)
i€5] (p,t*) i€5] (p,t*)

Now we study P4 (ZiESi(p,t*) L; > s). Define S = [n]\S](p,t*). Note that for each i €
Si(p,t*), we have L; > L; 1y — L; 2 — L; 3, where

D=1 { > jes Aji(¥ij — @5(9* —07))
’ 2jern iy Asi¥' (05 — 07)
Lip—T { D jest (ptr)i<i Agi(Uig — 0(07 — 07))

2 jetm\fiy A" (05 = 07)
Lig—I { D jest (piaryics Agi(Uig — V(0] — 07))
2 jetmn\fiy A" (05 = 07)

< -(1+20)(1+ 50)Ai},

> 5/(1 + 60)A1}7

> 61+ 50)Ai}

for some small constant ¢’ > 0 whose value will be determined later. We are going to control
each term separately.

(1). Analysis of L;1. Note that conditional on A, {L;1}ics;(p, -
Bernoulli random variables. We have L;; ~ Bernoulli(p;), where p; = E(G*’r*)(LLﬂA). By

y are all independent

Chebyshev’s inequality, we have

Pa Z Li,lZé Z Di 21—234-

i€S] (p,t*) €8] (p,t*) iESi(p,t*)pz
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By Lemma C.2, we can lower bound each p; by

Yies Ajilij — (07 — .9%))(1 + %0
i =P J <
e ( e fiy Ao (05 = 607)

14 6y A2npL , | AZnpL
> — L — (
> Chexp ( > Vo) C Vi67) |

—(1428)(1 + 50)2&-)

for some constants C1,C] > 0 and some small constant o > 0. Note that Jy can be an
arbitrarily small constant by making ¢’ and p small as well as making « large. Thus we can
choose ¢, p small enough and « large enough to let dy < §/2. Then we have

14 69 A2npL , A?an

> — _ A atend
Z pi > Cy Z exp 9 Vz<9*> Cl Vz(a*)
1€8] (p,t*) 1€8 (p,t*)
> ClRl(Sl(p7 )70*7t*7_5) (8112)
> CipRy(S1(t), 0, 1, ). (S113)

where (S112) can be achieved by setting « large and (S113) comes from (S103). As a result,
under the condition (S93), we have ZiES{(p,t*) pi — Q.
Hence, we have proved

1+ 6y A2npL . | A2npL
_ i _ i >1_ .
/11251]?14 ( § L’L 12> E eXp ( 2 %(9*) Cl ‘/1(0*) >1 0(1)

1€S (p,t*) zESi(p,t*)

(2). Analysis of L;5. By (S109)-(S110) and Bernstein’s inequality, we can bound
E(L;2|A) by

(5704 80)2A0L Y jep sy At (8 — 6))
2 (L S8t (o yji A (07 = 07) + 56" (14 00)2 AL X s iy Aji?' (05 — 9?))
(601 + 60)° AL 5 pup gy V(0 9;))2
4 <2kap +10logn + 261+ 00)2A0L Y e iy U0 — 9;))

exp | —

<exp |-

Now we set & = p!/®, and make p small enough to ensure (S113). Then, there exists some
constants Ca, C's > 0 such that

- A2npL
E(Liz2|A) < exp (-CzpféanA?) < exp <—03ﬂ1/2 2‘}(5*)> '

due to A; = o(1) and np/logn — oo. Then,

A2npL
E: . < E —Cap V22 )
E ( L;s A) < )exp ( Csp 5 1(9*))

ieS} (p.t7) ieS; (pit*
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By Markov inequality, we have

—1/2 A?an
2 ies) (pt) OXP (—CBP / zvi(e*>>

1 0 A2npL
AE&PA Z Lig > Z exp <—2C3P 1/22{/(5*)> = 1, —1/2 A%mpLY
€S (p,t*) i€S} (p,t*) ! Zies;(p,t*)exp (_503'0 212(9*))

(S114)

(3). Analysis of L; 3. By a similar argument, we also have

1 A2npL D ies! (pt+) €XP <_C3p71/2 QA\}Q?g*L)>
inf Py Z Liz> Z exp _703/)71/217 < L = )
AcA 2 2‘/;(9*) —7C —1/2 AsnpL
i€5] (pst*) i€5] (pst*) ZieSi(p,t*) €xp 3P 2V;(67)
(Sll5)

Now we can combine the above analyses of L;1, L;> and L;3. Since we are allowed to
choose p to be an arbitrarily small constant, we shall make

1 A2npL 1 1+ 8y A2npL A2npL
> —Cyp P <20 D — i — Oy =L
e eXp( 2 % 2%(9*)> S8 P 2 Vi(6%) RACE
1€S1(p,t*) 1€S51(p,t*)

and

1 QA%an
2iesi (o) 5P (‘CS” /2vz~<e*>> <!
L. 1/ AmpLY ~ 16
ZiGSi(p,t*) eXp (_§C3p 1/22‘/2(0*)>

Thus, we have

1+ 6y A2npL , A2npL 7
f P E L;>C E — ! -C : > — — (1
Aot Fa 4 P > e W\ Wiy | 25 oW
1€S5 (p,t¥) 1€S] (p,t*)

for some constant Cy > 0. Then (S107), (S108), (S111) together with (S93) lead to

~ Cy 146, A2npL. | A2npL 7
]]E]> * gk H 92 t* > —_— - ! - C g > - — 1 .
(6*,7%) ‘ Z { < } - 2 Z exp 9 Vi(6%) 1 Vi(6%) =8 0< )
1€S] (p,t*) 1€S5] (p,t*)
Finally, (S104) follows from (S113) which completes the proof. O

We state Lemma C.2 to close this section. Its proof is essentially the same as the proof
of Lemma A.4 and hence is omitted here.

Lemma C.2. Assume . — 0o, £ = O(1). Recall the definition of Si(p,t*) in (5102),

S = [n]\S|(p,t*) and A; = (0F — "), V «

such that for any small constant 0.1 > § > 0, there exists constant 81 > 0 such that for

np%L' There exists some constants Cp,Cy > 0
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any constant a > 0, i € Si(p,t*), any A € A where A is defined in (S109)-(5110), any
0* € ©(k,0,k) and any r* € &,,, we have
A)

2 jes Agiiy — (07 — 05)) -
]P)(G*,T*) < —(1 + 5)Az
Moreover, 61 is able to be arbitrarily small zfg and p are small enough.

> e\ i} Ajz’w'(e:; —0r)

(S118)

1+ 6, A2npL A2npL
ZC’lexp<— TSPl i"D >

2 Ve (0) T\ Vi (97)

C.2 Proof of Theorem 7.2

We first give Lemma C.3 to characterize entrywise tail behaviors of the spectral method (7)
which is crucial to the upper bound in Theorem 7.2.

Lemma C.3. Assume % — 00 and k = O(1). Then, for the rank vector T that is induced
by the stationary distribution of the Markov chain (7), for any small constant 0.1 > 6 > 0,
there exists some constant C > 0, such that for any t € R, any 6* € O(k,0,k), r* € &, we
have

t 1—6)(0r —t)2npL
]P)(G'*,T*) <%l < e@*) < Cexp <( >2(sz (0*) u ) + CTL_4,’I“;< < k; (8119)

et (1—0)(t — 6%.)%npL
Py | 7> ———~ | <C — . Cn~ 4,7 >k+1 (S120
(6% 1) <7T 2 ]eej> s L exp < 2V, (6%) +Cn % > k+1 ( )

Jj€ln
Proof. The proof follows the proof of Theorem 4.1 with slight modifications. Without loss of
generality, we can assume r; = i for all € [n]. Define A; as in (S82). We only need to prove
(S119) since (S120) can be proved similarly.

Consider any m € [k]. When (6}, — ¢)2npL < ¢ for some large enough constant to be
specified later, we can directly bound the probability using the trivial bound 1. Thus, we
only need to consider the regime when (67, — t)2npL > ¢’

Following the proof of Theorem 4.1, we have (S3)-(S14) and (S12) hold. Note that we
now have A2 Lnp > ¢ instead of A2 Lnp — oo which is needed in the proof of Theorem 4.1.
As a consequence, we now have (S10) hold with § = 4Cye*/+/¢ instead of some o(1) as in
the proof of Theorem 4.1. To sum up, with this J, we have

[Tim = | _ Tm| 5(1 — e=Bm), (S121)
7T'I’)’L

2 jelm)\{m} AjmYjm
2 jen\{m} Aim (05 — 05,)

—1] <5, (S122)

hold with probability at least 1 — O(n~%) — exp (—A?nan L ) — exp (—A%lan ”pL>.

logn logn

We can make 0 to be an arbitrarily small constant by setting ¢ large as K = O(1).
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Then for any ¢ < k, by the same argument as in the proof of Theorem 4.1, we have

un
< P <7Tl _*Ti < 67& — 1>
;
. . 0:—0;
< P <Zj€[n]\{i} L s e e e—&'))
2jetmn iy A (95 — 67)

_ . L
+0(n™%) + exp (—A?anlnp> + exp (—A?an P > ,
ogn logn

which has the same upper bound as in (S14). We then have the same (S16) as in the proof
of Theorem 4.1 which leads to
. . _ 0:—0;
p [ Zaemngy Aii(@i — 9O — 7)) +ev7) (1 81— e By
ety A (05 — 07) N

2
1—o(1))LpAZ (>, G
N GO, 2 (et ¥ = 01) o

e 2
22 jemn gy ¥ (07 = 65) (1 + e 91)

B (1- (52)an5% _
exp <_2Vz'(9*) > +0(n™4

(1 — d2)npL(6; — t)i) -4

exp [ — - +O(n
b ( 2V,(67) )

with d1, d2 > 0 being some constant that can be arbitrarily small. The last inequality holds be-

cause when min ((0;* —1)%, \/l‘;gp”) = \/l‘fp”, the first term becomes exp (_%)7

which can be absorbed by O(n~*). Since exp (—A%an ap ) + exp (—A%an an) <

IN

logn logn
_ * 27’1
exp <*—(1 52;(70?(95% pL) + O(n_4), we have
¢ 1—82)(6F —t)2npL
Pl7<—"0| <2ewp <—( 207 — t)smp ) +O(n™), (S123)
Z?:l e’J 2V,(0*)
for all 7 < k. The proof is complete. O

Proof of (32) of Theorem 7.2. The upper bound (32) is a straightforward consequence of
Lemma C.3 in the same way as the proof of (29) of Theorem 7.1, and hence is omitted
here. O

The rest of the section focuses on the lower bound (30). The proof follows the proof of
Theorem 3.4 with some modification and is also very similar to the proof of (30) of Theorem
7.1. We include it below for completeness.
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Proof of (33) of Theorem 7.2. To prove the lower bound (33), we are going to show

Rl([k]a 0*>t*a _6) +§2([n]\[k5]’ 9*7t*7 _5)
k

E(@*m*)Hk(?,T*) 2 (8124)
where t* is the unique solution such that Ri([k],0%,t*,—0) = Ra([n]\[k], 0%, t*,—5). The
existence and uniqueness of t* follow the same argument as in the proof of (30) of Theo-
rem 7.1. Recall the definition of Sj(¢) in (S92). Since we assume inf,(R;([k],0%,t,—0) +
Ro([n]\[k],0%,t,—6)) — oo, we have

Ry ([k], 0%, t*, —0) — oo. (S125)

The proof of (S124) follows the proof of Theorem 4.3. We will omit repeated details and
only present the differences. Define

0; — )2

Vi(6%)

for some small enough constant p > 0 to be specified later. Following the same argument as

gll(p, t*) = {z € S1(t") : p|S1(t*)| indices in Sq(t*) with the smallest } (5126)

in the proof of (30) of Theorem 7.1, we only need to show

Py | . I{Fi <t} >C'Ri(S)(p.t"),0%,t7,—6) | >3/4. (S127)

i€, (p,t*)

for some constant C’ > 0. The remaining proof is then devoted to proving (S127).

Recall the definition of 7 in (S3). Define A; = (67 —t*) 1 V a, /np%L where « is some large

§50}-

When (07 —t*)2npL > «, using a similar argument that leads to (S121)-(S122), we can show

enough constant to be determined later. Define the event F; as

> jelnngiy Aiibii
2 jemn iy A (0F — 07

Fi= {|7T2 _*m| < do(1 — e*Ai) and
m;

)—1

that there exists some constant §y > 0, such that

_ ~ ~ L
Pgs ry(Fi) > 1= O(n™) + exp —A?anﬂ +exp | —AZnpL PR ) (S128)
’ logn logn

When (6] — t*)2 npL < «, we can show
Pge poy (Fi) > 1 — (O(n*4) + e=(p/logm)!/2 e*vlog") . (S129)

instead. To establish it, we can choose z = (np/logn)'/? in (S7) and z = /logn in (S8) and
then follow the same proof of (S10) and (S12) as in the proof of Theorem 3.2. In both cases,
this dg can be made arbitrarily small by setting « large.
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Assuming F; is true, we can use arguments similar to the establishment of (S28) to have

A Yy Asi(@ig — 007 — 02) (1 + e 7%) ) \/T
H{m<t}21[{ e\ iy A (65 — 07) < ~(1+d)a npL [

(S130)

Define the RHS of the above display as L;.
Soomi<ty = Y Ll > Y Li— Y Iz (S131)
i€8) (pt*) i€8) (p,t*) i€8) (p,t*) i€8) (pt*)

y (S128) and (S129), we have

IE( > ch)
i€S (pt*)

_ P np ~ npL
<03 + - Z exp (—A?anlogn) + exp (—A%an logn>
i:1€S (p,t*),(0F —t*)2 npL>a

+ 3 exp (~(np/logn)/?) + exp (—/logn) .

-
€Sy (p,t*),(0F —t*)ianSa

Since the above bound is of smaller order than
AanL np 1/4
=29 1/4
A (1
+ Z exp 76" <<logn) (logn) )

7‘ESI (prt*)
we can use Markov’s inequality and obtain

(Z H—<n29+ Z exp

2n n 1/4
-5 (];’f) <<1gpn> A(logn>1/4)]) > 1-0(1).

1€SI(t*) zeSl(pﬂg*)
(S132)
Now to lower bound ). i€F, (o) L;, we define
— . 2 e iy Aig ' (67 = 05) (1 +e 9*)
A= A:VZESl(t*), 5 —1 Ség, (Sl33)
P e (0 —05) (145 7%)
, o Ajip(0F — 0F
2 jeln)\ iy Y w(: * ) <5 (S134)
PZje[n}\{i} ¢(9j - 91‘)

S A (07 - 07) 1+ %) g2pkp+101ogn}. (S135)
JES I (pit*)
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By Bernstein’s inequality and union bound, we have P(4 € A) > 1 — O(n~3). From now
on, we use the notation P4 for the conditional probability P« ,«(:|A) given A. For any
s> 0,

Pogy | D>, Lizs|=PAcA)infPs| > Lixs|. (S136)
= AeA =
i€, (o) © i€, (o)
Now we study Py (Zz‘eﬁﬁ(p ) L; > s). Define S = [n]\gll (p,t*). Note that for each i €
Fll (p, t*), we have LZ' Z Lz‘,l — Li’Q — Li’g, where
Toi=1I 2 jes Aji(mi — (67 — 9*))(1 + %70 -
> jemp gy A (05 — 0F) -
B ot oo Agi (i — 0(0F — 05) (1 + €0 N
=t DSl A0 = 0007 6 ) vaeaeal
> jem\(iy A (0] — 67)
= * * 0%—0r
Lol 22568 (puieyiiey A Wi — (07 = 07)) (1 +€77)
’ > jemp gy A (05 — 07)

for some small constant ¢’ > 0 whose value will be determined later. We are going to control

—(1+28)(1 + 50)2&},

> 61+ 50)251'

each term separately.
(1). Analysis of L;;. Note that conditional on A, {fi,l}i €5, (o)

Bernoulli random variables. We have L;; ~ Bernoulli(p;), where p; = E(9*7T*)(fi71|A). B

are all independent

Chebyshev’s inequality, we have

Pal > fz-,lz% AR A
i€S (pit*) i€Sy (p,t*) i€s (ptr) P
By Lemma C.4, we can lower bound each p; by
s Aji(Yij — 9’»“—0’f 1470 B
pi=P,4 Z]GS J (?JJ ¢( ))( ) —(1+25/)(1+50)2Ai
2 jefn\ iy A (0] = 07)

1+ 69 AZnpL , [AZnpL

>Che — — — !

)

for some constants C1,C] > 0 and some small constant d2 > 0. Note that dy can be an
arbitrarily small constant by making ¢’ and p small as well as making « large. Thus we can
choose ¢, p small enough and « large enough to let dy < §/2. Then we have

1+ 8y A2npL A2npL
Z pi > Cy Z exp | — + 02 2inp - — P

4 4 2 V6" V(6
iesl (p,t*) iesl(pvt*) ( ) ( )

> C Ry (S (p, t*), 0%, t*, —6) (S137)
> C1pRy (51 (), 0%, t*,—6). (S138)
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by the same argument as in the proof of (30) of Theorem 7.1. As a result, under the condition

(S125), we have Zie?’l(p,t*)pi — 00.
Hence, we have proved
A2 A2npL
1—%5262711911_01 Ainp >1—o(1).
Vi(é?*)

— 1

Li > —C ex —
Z =5l Z p 2 V(0%
By (S133)-(S135) and Bernstein’s inequality, we can bound

inf Py
AcA — —
’L'Gsl(p,t*) iESl(p,t*)
(2). Analysis of L;s.
E(L%Q’A) by
* * 9%—9% A * *
2 (LY e (et At (07 = 07) (14 %0002 1 3571+ 02 RL Y cpp 3y Asith(0] — 6))

exp | —
(81 + 000D Xjepup iy (6} — 65))

4 <2kap +10logn + 56(1+ 60)2 AL Y ¢y oy PO e;))

< exp
Now we set &' = p!/8, and make p small enough to ensure (S138). Then, there exists some

-1/2 A?”Z?L

constants Cy, C3 > 0 such that
— 1 ~
E(L;|A <®<<—C —mlLAﬂ<<w; —C i
(LiplA) < exp (—Cop  2npLA7) < exp 70
Then,
— A2npL
E LialA| < exp [ —Cap™ /2 22—
T )z $ oo(-aunii
iesl(pﬂ:*) iesl(pvt*)
By Markov inequality, we have
_ B o —1/2 AnpL
_ 1 A2npL D i *exp( Csp f*)
inf Py Z Lo > Z exp —703/)_1/21& < €5 (pt7) 2\{1(0 ) .
aea M\ g TP 27 i) ) Sy LGyt it
i€5; (p,t*) i€5; (p,t*) i€s (p,rr) P T2H3P 2V;(0%)
(S139)
(3). Analysis of L; 3. By a similar argument, we also have
_ B o —1/2 AnpL
1o p—l/QM Zz’esl<p7t*>eXp< Cap m(e*))
’ 2V, (6*) - _ 1o -1/2 AfnpL )
2ies, (pa) XP | —2 037
(S140)

inf Py ,,Z Zi,g > ,,Z exp <—2
iesl(pvt*) 7"E‘S’l(pvt*)
Now we can combine the above analyses of fi,l, fig and Zl";g. Since we are allowed to
A2npL

146, AZnpL
vior) '\ Vi)

choose p to be an arbitrarily small constant, we shall make

Lo AlpL ) 1 _
Z eXp( 2C3P V1 (0°) 801 Hz: exp 2
) i€S(p,t*)
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and

. o —1/2 AZnpL

Ziesup,t*)e’(p( Cap 2Vz'<9*>> <L
1 —12 A8l T 16

2T, (pyi+) CXP ( 30307 2V1w*>>

Thus, we have

: - 14 0y A2npL , [AZnpL 7
£ P L, >C _ AL Gl Y > L o),
P 2 L2 e T Ty W e ) ) 2

i€, (p,t*) €S (p,t*)

(S141)

for some constant Cy > 0. Then (S131), (S132), (S136) together with (S125) lead to

N Cy 1+ 6y A2npL , A2npL 7
- E ; > — - L — _t > .
Fenr) ( . )H{m <thzg ) )eXp( > vy NV ) T s o(1)
1€571(ps *

ie§'1 (p,t*
(S142)

Finally, (S127) follows from (S138) which completes the proof. O

We state Lemma C.4 to close this section. Its proof is essentially the same as the proof
of Lemma A.4 and hence is omitted here.
Lemma C.4. Assume % — 00, k = O(1). Recall the definition of Sy(p,t*) in (S126),

S = [n]\?ll (p,t*) and A; = (0F —t*) . Va m'%' There exists some constants Cq,Cy > 0 such

that for any small constant 0.1 > 6 > 0, there exists constant 6, > 0 such that for any constant
a>0,i€S(t), any A € A where A is defined in (S133)-(5135), any 0* € O(k,0,k) and

any r* € Sy, we have

0r.~0:.
. Yjes Aji(Gig — w0 —05))(L+e ™ ) < 14 5Al
0*,r* % ¥ >~ 7
o) 2 jemniy A (07, — 07
146, A2npL A2ppL
>C — = —Cay | = . S143
s ( 2 V) \ Ve (5145)
Moreover, 61 is able to be arbitrarily small zfg and p are small enough.
D Proof of Lemma 8.5
Define a gradient descent sequence
9@+U::mﬂ-—n(vaxeﬁh-%xmﬂ>. (S144)
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We also need to introduce a leave-one-out gradient descent sequence. Define

gy — Ai'[_i'l R SR 1]
+ Z p [¢(9i _Hm)l()gm + (0, —Hl-)logw(em_ei)} .

i€[n]\{m}
With the objective E%m)(ﬁ), we define
gL — gt (T (9 + Ag(Em) ) (S145)

We initialize both (S144) and (S145) by 6(® = (0™ — ¢* and use the same step size
n= ﬁ' Note that 176* = 0 implies 176®) = 179t = 0 for all t. See Section 4.3 of [2].
We will establish the following bounds,

max |6 — 9| < 1, (S146)
men

0 _gr < [T 14
max |0 — 0% < 1. (S148)
men]

It is obvious that (S146), (S147) and (S148) hold for ¢ = 0. We use a mathematical induction

argument to show (S146), (S147) and (S148) for a general t. Let us suppose (S146), (S147)

and (S148) are true, and we need to show the same conclusions continue to hold for ¢ + 1.
First, we have

e(t—i—l) _ H(t—‘rl,m) — (1 - ,'7)\)(0(15) _ e(t,m)) o U(an(e(t)) o Véglm)(g(t,m)))
= (L= NI = gH(©) (01 — 00 — 1y (Ve (0 — v (ptm)) )

where ¢ is a convex combination of #®) and #(-™ . By (S146) and (S148), we have
69— 6"l < mae 64 — 60+ ma 5™ — 07, <2, (S149)
me|n mein

and
100 — 6% |0 < (169 = 6%[|oo + [|0¢™ — 6P| < 3. (S150)

We thus have ||£ — 0*|| < 3, and we can apply Lemma 8.3 to obtain the bound

(1 = pA) I, — nH () (01 — 0™ < (1 — nX — eymnp) ][0 — o™, (S151)

49



for some constant ¢; > 0. We also note that

[V, (05™)) — welm) (pttm)y |12

2
= ( Do Am@im =0 ) = Y (A = D)@ 65 — (8] - 9:;»)
j€m\{m} F€MN\{m}
2
D (A =0 = 6)) = (A — P O™ = 0™ = (65 — 6,)))
j€m\{m}
nplogn
i
for some constant C; > 0 by Lemma 8.2 and Lemma 8.4. We combine the two bounds (S151)
and (S152), and obtain

+ Cinplogn||0®™ — %2, (S152)

160+ — gL < (1~ — crmp)[[6© — 6E™) | 44 /Craplogn (L1 + ([0 — 6x2,)
< (1 —cnp) +n+/Cinplogn (L=1 + 9) (S153)
<1 (S154)

where the inequality (S153) is by (S146) and (S150). The inequality (S154) requires that
\/ Cinplogn (L= 4+9) < ¢inp, which is implied by the condition that p > CO]% for some
sufficiently large ¢y > 0. We thus have proved (S146) for ¢ + 1.

Next, we have

oD _gr = g0 gy (wnw(t)) + Ae(t>)

= (1—pN)ED —6*) 1y (wn(e@) - wn(e*)) A — VL (67)
= (L=nN) I =nH(E)) (09 = ") — nA0™ =V L,(6%),

where ¢ is abused for a vector that is a convex combination of #(*) and #*. Since by (S149)
we get [|€ — 0 loo < |8®) — 6|00 < 2, we can use Lemma 8.3 to obtain the bound

(1 = NI — nH(€)) (09 — 67) < (1 —nX — cannp) |09 — 0|, (S155)
for some constant co > 0. We also note that
2
*\ |12 g — * * n2p
V@I =2 | > Ay —v(0; —6) | <Co—r, (S156)
i=1 \je[n]\{i}

for some constant Co > 0 with high probability by Lemma 8.4. Combine the bounds (S155)

and (S156), and we obtain
‘ |~ n?p "
(1= A = commp)|[0”) — 07| + 1 Co—- + A7

00 — o <
< )/ —— +m/C P, Nl
— conn, — —
=~ 2MMp logn n 2 I n
< n

\ logn’
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where the last inequality is due to 74/ CQ" E 4+ n)||0% < F + n3/2 =o0 (nnp 10gn> by the
choice of n and A. Hence, (S147) holds for ¢ + 1.
Finally, we have

o —on, = O g Y (08— 05) = p(6%™ — 6™ ) — At

JEM\{m}
= 9™ st Y W(E)(0h, — 0F — 6™ 4 6™y — Appltm)
JE[N\{m}

= |1=m—mp > W) | O™ —05) — Moy,
JEMN\{m}

Y (g™ 65,
jemim}

where {; is a scalar between 05, — 0% and ot —G;t’m). By (5150), we have |§;—05,+67| < |07, —

0;—97(5’m)+0](-t’m)\ < 6, which implies |||« is bounded. We then have } ;.\ (ny ¥'(§5) = can
for some constant c3 > 0, and thus

L—nph—np > (&) | (0%™ —05)| < (1—nX—csmmp)0E™ — 03] (S157)
JE[N\{m}

We also have

ST W)™ — 6] < 06 — 07y < Vall o) — 6| < Vi <1+\/g>

j€[n\{m}
(S158)
where the last inequality is by (S146) and (S147). Combine the bounds (S157) and (S158),
and we get

S —gx | < (1 — A — canmp) |0L™) — 07| + npv/n <1 '\ oon ogn > + Anl6;,]

< (1 —c3nnp) +npv/n+np + An|0;,|
< 1,

\/IT

where the last inequality is because of np/n + np—=2— \/@ + An|67,| = o (nnp) by the choice of
n and . Hence, (S148) holds for ¢ + 1.

To summarize, we have shown that (S146), (S147) and (S148) hold for all ¢t < ¢* with
probability at least 1 — O(t*n~'?). The reason why we have the probability 1 — O(t*n~10) is
because we need to apply Lemma 8.2 with a different weight at each iteration to show (S152).
Note that the bound (S149) holds for all t < t* as well and we thus have [|[§(*") — §*|| o, < 2
With a standard optimization result for a strongly convex objective function, we have

16 <8l < (1 55 ) 1B =l
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See Lemma 6.7 of [3]. By triangle inequality, we have

A
A+np

t*
16x — 6 [|loo < (16 — x| + 6% — 6*||os < (1 — > V|0 — 0% ||oe + 2.

Anp +np
implies ||f) — 6*||oc < 4 with probability at least 1 — O(n~") as desired.

t*
Since (1 — L) <1- ﬁ’ we can take t* = n? in order that <1 - %) Vn < % This

E Proofs of Technical Lemmas

In this section, we prove Lemma 3.1, Lemma 8.1, Lemma 8.2, Lemma 8.3 and Lemma 8.4.
We first list some additional technical results that will be needed in the proofs.

Lemma E.1 (Hoeffding’s inequality). For independent random variables Xy,--- , X, that
satisfy a; < X; < b;, we have

- 22
P (X; —EX;) >t | <exp <—n> ,
(zZ:; ) > i1 (bi — a;)?
for any t > 0.

Lemma E.2 (Bernstein’s inequality). For independent random wvariables Xi,--- , X, that
satisfy | X;| < M and EX; =0, we have

n 142
P X, >t <exp| - 2 ,
S

for any t > 0.

Lemma E.3 (Central limit theorem, Theorem 2.20 of [7]). If Z ~ N(0,1) and W = >"" | X;
where X; are independent mean 0 and Var(W) =1, then

sup [B(W < t) —P(Z < 1) <2,|3) (Ex})*".
¢ =1

Proof of Lemma 3.1. Without loss of generality, we consider r; = 7 so that 67 > --- > 0.
Then, we can write the loss as 2kHg (7, r*) = Zle]l{ﬁ >k} + 300 I{7 < k}. Since
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7 e &,, we must have SF  T{F >k} = Y icps1 1{7i < k}. This implies

k n
2kH,(7,7*) = 2min (Zﬂ{a >k}, Y I{E < k:})
1=1

fart
< 2min (iﬂ{é < Ben Zn: 1{: > A(k)}>

= e
< 2maxmin (}jﬂ{é <t ,l_kﬂﬂ{i > t}) (8159)
_ thinma: <§;H{§ < t},i%lﬂ{? > t}) (S160)
< 2min (;H{é <t} +i_§lﬂ{§i > t}) |

The inequality (S159) uses the fact that é}k) > é\(kﬂ) where {0;)};_; are the order statistics

o~ ~

with 6(;) being the largest and 0, being the smallest. The equality (S160) holds since
Sk {51 < t} is a nondecreasing function of ¢ and > 77, |1 {51 > t} is a nonincreasing
function of ¢.

Proof of Lemma 8.1. The first conclusion is a direct consequence of Bernstein’s inequality
and a union bound argument. The second and third conclusion is a standard property of
random graph Laplacian [8]. O

Proof of Lemma 8.2. To see the first conclusion, we note that E(A;; —p)? < p and Var((4;; —
p)?) < p, and thus we can apply Bernstein’s inequality followed by a union bound argument
to obtain the desired result. The second conclusion is a direct consequence of Bernstein’s
inequality and a union bound argument. O

Proof of Lemma 8.3. For any u € R" such that 11w = 0,

ul H(Q)u = Z Aijtp(0; — 0;)0(0; — 0:) (ui — uy)*.

1<i<j<n

Since ¥(0; — 0;)y(0; — 6;) > %e_M, we have Amin, 1 (H(0)) min, L (£4). By Lemma
8.1, we obtain the desired result. O

AV
PN
ml

=
>

Proof of Lemma 8.4. Let U = {u eR™: Zie[n] u? < 1} be the unit ball in R™. Then there
exists a subset of V C U such that for any u € U, there is a v € V satisfying |lu — v|| < 1/2.
Moreover, we also have log |V| < C’'n for some constant C’. See Lemma 5.2 of [9]. Then for
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any u € U, with the corresponding v € V, we have

Doui| D Ay — (0] - 67))

i=1 J€n)\{s}
= Zvi Z Aij(Gij — (07 = 67)) | + Z(Ui —v;) Z Aij (i — (07 — 67))
i=1 jen\{i} i=1 Jen\{i}
2
- = * * 1 - - * *
< Zvi Z Aij (G5 — (07 — 0]‘)) + 5 Z Z Aij(ig — (0] — ej))
i=1 jer\{i} =1 \jen]\{i}

Maximize v and v on both sides of the inequality, after rearrangement, we have

2
n

Mo DD Ay —w(6; —6y)

=1 \jen\{i}

<2 i A (Yii — R
< 1;[125<Zv > Ay — (65 - 67))

=1 \Jeln\(i}

= 2111)125( Aij(vi - Uj)(gij - ¢(9: - 9;))
i<j

Conditional on A, applying Hoeffding’s inequality and union bound on the last line, we have

2
" 1 v i Aii(vi — vj)?
S S Ay v 6| < orloEnEm EVLEK] Ao
i1 \seinh i)

(logn + n)Amax(LA)

< C/l
- L

with probability at least 1 — O(n~1%). By Lemma 8.1, we obtain the desired bound for the
first conclusion.

The second conclusion is a direct application of Hoeffding’s inequality and a union bound
argument.

The proof of the third conclusion is similar to that of the first one. Define U; =
{u c R 1. Zje[n]\{i} Aiju]z < 1}. Conditioning on A, one can think of I; as a unit ball with
dimension Zje[n]\{i} A;; — 1. Then, there exists a subset V; C U; such that for any u € U;,
there is a v € V; that satisfies |ju — v|| < 3. Moreover, we also have log |V;| < 2 > jem\fiy Aig
by Lemma 5.2 of [9]. For any u € U;, with the corresponding v € V;, following a similar
argument of the proof of the first conclusion, we have

> Ay — (0 —0)2 < 2max Y Ayvii(Gy — (0] - 0))),

jel i) Vi ety
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which implies

max > Ay — (0 — 09))2 < 22%{%@( > Aguii(5i; — (0] — 05)).

j€l\{i} jel\{i}
Applying Hoeffding’s inequality and union bound, we have

logn + max;e(y] Zje[n]\{i} Aij

max Aij(Yig — (07 — 9;))2 <G L

et

with probability at least 1 — O(n~1?). Finally, applying Lemma 8.1, we obtain the desired
bound for the third conclusion, which concludes the proof. O

F Some Discussion on the Count Method

One of the simplest ranking methods is a count-based algorithm, often referred to as the
Borda count [1] or the Copeland count [5] method. In this method, the players are ranked
according to the number of games won. We will argue that this method is in general not
optimal under the BTL model. Define

Si= Y. Ayl
jem\{a}

and then LS; is the number of games won by the ith player. The top-k set is determined by
the players with the largest values of .S;’s. To understand the condition of exact recovery, let
us assume 7; = ¢ without loss of generality. We first compute the signal gap

ESy —ESipi=p > (b(0f —05) = (01 — 07)) + (0 — Oisr) — pY(G5 iy — 0F).
jelmN\kk+1}

Under the condition that 07 — 0, < k= O(1) and ¢} — 6}, = A, we have
C1A < (0 — 05) — (054 — 67) < C2A,
for some constants C', Co > 0 for all j. Therefore,
ESy — ESi11 < npA,

which is the order of the signal gap. Next, we compute the variance,

Var(Si) = Z Var(Aij;gij)

JE€n\{i}

= Z [EVar(Az]gjw\Aw) + Var(E(AUgj”\A”))]
JEn\{i}

py' (07 — 67) .

= Z <LJ + (07 — ej)p(l - P))
J€[n]\{i}

=< np(l—p).

95



In order that exact recovery is possible, it is necessary that the signal gap exceeds the stan-
dard deviation, which leads to the condition npA 2 /np(1 — p) (we have ignored the possible
logarithmic factor due to a potential union bound argument). Suppose p is bounded away

from 1, this condition becomes A > ——. In comparison, both the MLE and the spectral

np "’

method achieve exact recovery under t\ﬁzcondition AZ ﬁ (again, we ignore the logarith-
mic factor here). It is very clear that compared with the MLE or the spectral method, top-k
ranking based on sums of wins {S;} does not even achieve the optimal rate. The condition
A2 \/% does not depend on L, which means increasing the number of games does not
improve the accuracy of ranking.

To better illustrate the role of L, let us consider the extreme case L = oo, which implies
that g;; = ¥(0; — 07) almost surely. In this situation, it is clear that both the MLE and
the spectral method exactly recovers the top-k set without any error (the exact recovery

condition becomes A > 0). However, since

Si= > A0 —05),
jem\{i}
it is still possible that Sy < Sky1 due to the randomness of {A4;;}, which leads to error. In

fact, by Lindeberg’s central limit theorem, the probability of Si < Ski1 is of constant order
1
vnp'

In addition to the number of games won, ranking based on the statistic of win ratio
2jemminfiy Aig¥is
2jem\ (i} Ais
2 jefn\ iy A P07 —07)

o 2gemiiy A
limit theorem that

> jein\ ik} Ak (0 — 67) - > e\ k1) Akt 1005 — 05)
2 jetnn\(ky Aks et ik} Akt

as long as A <

suffers from a similar issue. Even when L = oo, the average statistic becomes

almost surely, which is still noisy. One can similarly show via the central

)

with a constant probability as long as A <

g
=
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