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Given partially observed pairwise comparison data generated by the
Bradley–Terry–Luce (BTL) model, we study the problem of top-k ranking.
That is, to optimally identify the set of top-k players. We derive the minimax
rate with respect to a normalized Hamming loss. This provides the first result
in the literature that characterizes the partial recovery error in terms of the
proportion of mistakes for top-k ranking. We also derive the optimal signal
to noise ratio condition for the exact recovery of the top-k set. The maximum
likelihood estimator (MLE) is shown to achieve both optimal partial recov-
ery and optimal exact recovery. On the other hand, we show another popular
algorithm, the spectral method, is in general suboptimal. Our results comple-
ment the recent work (Ann. Statist. 47 (2019) 2204–2235) that shows both
the MLE and the spectral method achieve the optimal sample complexity for
exact recovery. It turns out the leading constants of the sample complexity are
different for the two algorithms. Another contribution that may be of indepen-
dent interest is the analysis of the MLE without any penalty or regularization
for the BTL model. This closes an important gap between theory and practice
in the literature of ranking.

1. Introduction. Given partially observed pairwise comparison data from n players, a
central statistical question is how to optimally aggregate the comparison results and to find
the leading top k players. This problem is known as top-k ranking, which has important
applications in many areas such as web search [11, 12] and competitive sports [19, 22]. In
this paper, our goal is to study the statistical limits of both partial and exact recovery of the
top-k ranking problem.

We will focus on the popular Bradley–Terry–Luce (BTL) pairwise comparison model [3,
18]. That is, we observe L games played between i and j , and the outcome is modeled by

(1) yijl
ind∼ Bernoulli

(
w∗

i

w∗
i + w∗

j

)
, l = 1, . . . ,L.

We only observe outcomes from a small subset of pairs. This subset E is modeled by
edges generated by an Erdős–Rényi [13] random graph with connection probability p on
the n players. More details of the model will be given in Section 2. With the observations
{yijl}(i,j)∈E,l∈[L], the goal is to reliably recover the set of top-k players with the largest skill
parameters w∗

i .
Theoretical properties of the top-k ranking problem have been studied by [6–8, 14, 15, 21,

23] and references therein. The literature is mainly focused the problem of exact recovery.
That is, to investigate the signal to noise ratio condition under which one can recovery the top-
k set without any error in probability. For this purpose, the state-of-the-art result is obtained
by the recent work [7]. It was shown by [7] that both the MLE and the spectral method can
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perfectly identify the top-k players under optimal sample complexity up to some constant
factor. This discovery was also verified by a numerical experiment that shows almost identical
performances of the two methods. The results of [7] lead to the following intriguing research
questions. What is the leading constant factor of the optimal sample complexity? Are the
MLE and the spectral method still optimal if we take the leading constant into consideration?

In this paper, we give complete answers to the above questions. Our results show that while
the MLE achieves a leading constant that is information-theoretically optimal, the spectral
method only achieves a suboptimal constant. In particular, the MLE achieves exact recovery
when

(2) npL�2 > 2.001V (κ)
(√

log k +
√

log(n − k)
)2

,

and the spectral method requires

npL�2 > 2.001V (κ)
(√

log k +
√

log(n − k)
)2

.

In the above two formulas, � is the logarithmic gap of the skill parameters between the top-k
group and the rest of the players. The parameter κ is the dynamic range of the skill vector that
will be defined in Section 2. The performances of the two methods are precisely characterized
by the two functions V (κ) and V (κ), which are understood to be the effective variances of the
two algorithms. The two functions satisfy the strict inequality that V (κ) > V (κ) for all κ > 0,
and the equality V (κ) = V (κ) only holds when κ = 0. We also establish an information-
theoretic lower bound that shows the MLE constant V (κ) is optimal, and it characterizes the
phase transition boundary of exact recovery for the top-k ranking problem.

We would like to emphasize that our results do not contradict the conclusions of [7]. On the
contrary, the current paper complements and refines the results of [7]. The optimality claim
made by [7] on both the MLE and the spectral method only refers to the order of the sample
complexity. Our results show that the performances of the two algorithms can be drastically
different when the dynamic range parameter κ is strictly positive. We are also able to explain
why the numerical experiment conducted in [7] demonstrates nearly identical performances
of the MLE and the spectral method. Note that the experiment in [7] was conducted with
the skill parameters w∗

i only taking two possible values, e� or 1, depending on whether i

belongs to the top-k group or not. We show in Section 5 that this configuration of w∗ is
asymptotically equivalent to κ = 0, which is the only case that makes V (κ) = V (κ), and thus
the nearly identical performances of the two algorithms are actually well expected by our
theory. As long as w∗ deviates from this simple two-piece structure, our extensive numerical
experiments in this paper show that the MLE always performs better than the spectral method,
and the advantage of the MLE is usually quite significant.

Another popular ranking algorithm is to select the k players with the most number of
games won. This is often referred to as the Borda count [2] or the Copeland count [10]. This
simple method does not require an explicit parametric model assumption, which makes it
robust under potential model misspecification, an advantage over the MLE and the spectral
method. The performance of the count method has been analyzed by [23] under a very general
nonparametric setting. However, under the BTL model, it can be shown that the count method
has an undesirable property that its error probability does not decrease to zero as L tends to
infinity, which implies that it is not even rate-optimal under the BTL model. See Appendix F
of the Supplementary Material [5] for an analysis of the count method.

In addition to the exact recovery results, we have also obtained a series of results for partial
recovery. We observe that top-k ranking can be viewed as a clustering problem. That is, one
wants to cluster the players into two groups of sizes k and n − k, respectively. Therefore, it
is more natural to consider the problem of partial recovery by analyzing the proportion of
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players that are clustered into a wrong group. Clearly, this problem is more relevant in prac-
tice, since one rarely expects any real application where top-k ranking can be done without
any error. From a mathematical point of view, the partial recovery problem is more general
and we will show in Section 3 that an optimal partial recovery error bound will lead to the
optimal exact recovery condition (2). To the best of our knowledge, a systematic study of
partial recovery for top-k ranking has never been done in the literature. Our paper is perhaps
the first work that formulates the top-k ranking problem into a decision-theoretic framework
and derives the minimax optimal partial recovery error rate. Similar to the results of exact re-
covery, we show that the MLE is also optimal for partial recovery. It has an exponential error
bound with respect to a normalized Hamming loss. The error exponent is shown to depend on
the variance function V (κ). In comparison, the spectral method still achieves a suboptimal
error rate for partial recovery, with the error exponent depending on V (κ).

Recently, a few papers provide sharp analysis of spectral methods on some high-
dimensional estimation problems and show spectral methods can achieve optimal theoretical
guarantees just as MLEs. For example, it was shown by [1] that spectral clustering achieves
optimal community detection for a special class of stochastic block models (SBMs). The
paper [16] proved spectral clustering is also optimal under Gaussian mixture models. We
emphasize that the results of both papers imply that not only the order of the sample com-
plexity of spectral clustering is optimal, but even the leading constant is optimal, at least in
the setting of SBMs and Gaussian mixture models. The results of the current paper, however,
show that the optimality of spectral methods may not hold under more complicated settings
such as the BTL model.

Finally, we discuss another contribution of the paper that may be of independent interest.
That is, we are able to give a sharp analysis of the MLE under the BTL model. Previous
analyses of the MLE in the literature [7, 8, 21] all impose some additional regularization
to address the challenge that the Hessian of the log-likelihood function is not well behaved.
Whether the vanilla MLE works theoretically without any penalty or regularization remains
an open problem. Our analysis solves this open problem by relating a regularized MLE to an
�∞-constrained MLE. This allows us to show that the solution to the �∞-constrained MLE
lies in the interior of the constraint. Thus, we can conclude that the �∞-constrained MLE is
equivalent to the vanilla MLE in its original form. This equivalence then leads to the desired
control of the spectrum of the Hessian matrix, which is the most critical step of our analysis.

The rest of the paper is organized as follows. We introduce the setting of the problem in
Section 2. The results of the MLE and the spectral method will be given in Section 3 and
Section 4, respectively. We then comprehensively compare the two methods in Section 5 by
numerical experiments. Section 6 presents a minimax lower bound for partial recovery. In
Section 7, we analyze the error rates of the MLE and the spectral method for each individual
parameter. Due to the limit on pages, we include the proofs of the results of the MLE in
Section 8 and the proofs of all the other results in the Supplementary Material.

We close this section by introducing some notation that will be used in the paper. For an
integer d , we use [d] to denote the set {1,2, . . . , d}. Given two numbers a, b ∈ R, we use
a ∨ b = max(a, b) and a ∧ b = min(a, b). We also write a+ = max(a,0). For two positive
sequences {an}, {bn}, an � bn or an = O(bn) means an ≤ Cbn for some constant C > 0
independent of n, an = �(bn) means bn = O(an), and an 	 bn means an � bn and bn �
an. We also write an = o(bn) when lim supn

an

bn
= 0. For a set S, we use I{S} to denote its

indicator function and |S| to denote its cardinality. For a vector v ∈R
d , its norms are defined

by ‖v‖1 = ∑d
i=1 |vi |, ‖v‖2 = ∑d

i=1 v2
i and ‖v‖∞ = max1≤i≤d |vi |. The notation 1d means

a d-dimensional column vector of all ones. For any v ∈ R
d , we write ave(v) = d−11T

d v.
Given p,q ∈ (0,1), the Kullback–Leibler divergence is defined by D(p‖q) = p log p

q
+ (1 −

p) log 1−p
1−q

. For a natural number n, Sn is the set of permutations on [n]. The notation P and
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E are used for generic probability and expectation whose distribution is determined from the
context.

2. Models and methods.

2.1. The BTL model. We start by introducing the setting of our problem. Consider n

players, and each one is associated with a positive latent skill parameter w∗
i for i ∈ [n].

The comparison scheme of the n players is characterized by an Erdős–Rényi random graph

A ∼ G(n,p). That is, Aij
iid∼ Bernoulli(p) for all 1 ≤ i < j ≤ n. For a pair (i, j) that is

connected by the random graph and Aij = 1, we observe L games played between i and j .
The outcome of the games is modeled by the Bradley–Terry–Luce (BTL) model (1). Our goal
is to identify the top-k players whose skill parameters w∗

i ’s have the largest values.
To formulate this problem from a decision-theoretic point of view, we reparametrize the

BTL model (1) by a sorted vector θ∗ and a rank vector r∗. A sorted vector θ∗ satisfies θ∗
1 ≥

θ∗
2 ≥ · · · ≥ θ∗

n , and a rank vector r∗ is an element of permutation r∗ ∈ Sn. Then the BTL
model (1) can be equivalently written as

(3) yijl
ind∼ Bernoulli

(
ψ

(
θ∗
r∗
i
− θ∗

r∗
j

))
, l = 1, . . . ,L,

where ψ(·) is the sigmoid function ψ(t) = 1
1+e−t . In the original representation, we have

w∗
i = exp(θ∗

r∗
i
) for all i ∈ [n]. With (3), the top-k ranking problem is to identify the subset

{i ∈ [n] : r∗
i ≤ k} from the random comparison data. This is a typical semiparametric problem

because of the presence of the nuisance parameter θ∗.

2.2. Loss function for top-k ranking. Our goal is to study optimal top-k ranking in terms
of both partial and exact recovery. We thus introduce a loss function to quantify the error of
top-k ranking. Given any r̂ , r∗ ∈Sk , define the normalized Hamming distance by

(4) Hk

(̂
r, r∗) = 1

2k

(
n∑

i=1

I
{̂
ri > k, r∗

i ≤ k
} +

n∑
i=1

I
{̂
ri ≤ k, r∗

i > k
})

.

The definition (4) gives a natural loss function for top-k ranking, since Hk(̂r, r
∗) can be

equivalently written as the cardinality of the symmetric difference of the sets {i ∈ [n] : r̂i ≤ k}
and {i ∈ [n] : r∗

i ≤ k} normalized by 2k. The value of Hk(̂r, r
∗) is always within the unit

interval [0,1]. Moreover, Hk(̂r, r
∗) = 0 if and only if {i ∈ [n] : r̂i ≤ k} = {i ∈ [n] : r∗

i ≤ k}.
The loss function (4) can be related to various quantities previously defined in the liter-

ature. One of the most popular distances to compare two rank vectors is the Kendall tau
distance defined as

K
(̂
r, r∗) = 1

n

∑
1≤i<j≤n

I
{
sign(̂ri − r̂j ) sign

(
r∗
i − r∗

j

)
< 0

}
.

Since K(̂r, r∗) counts all pairwise differences in the ranking relation, it is a stronger distance
than (4). While K(̂r, r∗) = 0 requires r̂ = r∗, Hk(̂r, r

∗) = 0 only requires the two top-k sets
are identical regardless of the actual ranks of the members of the sets. In fact, the study of the
BTL model under K(̂r, r∗), called full ranking, is also a very interesting problem, and will be
considered in a different paper.

As we have discussed in Section 1, the top-k ranking problem can be thought of as a spe-
cial variable selection problem. Variable selection under the normalized Hamming loss has
recently been studied by [4, 20]. Consider either a Gaussian sequence model or a regression
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model with coefficient vector β∗ ∈R
p that satisfies either β∗

j = 0 or |β∗
j | > a. The papers [4,

20] consider estimating β∗ under the loss

Hs

(
β̂, β∗) = 1

2s

( p∑
j=1

I
{|β̂j | > a,β∗

j = 0
} +

p∑
j=1

I
{
β̂j = 0,

∣∣β∗
j

∣∣ > a
})

,

where s is the number of β∗
j ’s that are not zero. One can clearly see the similarity between the

two loss functions Hk(̂r, r
∗) and Hs(β̂, β∗). Similarly, the loss Hs(β̂, β∗) only characterizes

the estimation error of the set {j ∈ [p] : |β∗
j | > a}, and Hs(β̂, β∗) = 0 if and only if {j ∈ [p] :

|β̂j | > a} = {j ∈ [p] : |β∗
j | > a}.

2.3. Parameter space. For the nuisance parameter θ∗ of the model (3), it is necessary
that there exists a positive gap between θ∗

k and θ∗
k+1 for the top-k set {i ∈ [n] : r∗

i ≤ k} to be
identifiable. We introduce a parameter space for this purpose. For any 0 ≤ � ≤ κ , define

	(k,�,κ) = {
θ ∈ R

n : θ1 ≥ · · · ≥ θn, θk − θk+1 ≥ �,θ1 − θn ≤ κ
}
.

For any θ∗ ∈ 	(k,�,κ), a positive � guarantees that there is a separation between the group
of top-k players and the rest. The number κ is called dynamic range of the problem.1 This is
a very important quantity, since it is closely related to the effective variance of the problem.
Our results will give the exact dependence of the top-k ranking error on both � and κ .

2.4. MLE and spectral method. We study and compare the performances of two algo-
rithms in the paper. The first algorithm is based on the maximum likelihood estimator (MLE).
For each (i, j), we use the notation ȳij = 1

L

∑L
l=1 yijl . Throughout the paper, we adopt the

convention of notation that Aij = Aji and ȳij = 1 − ȳj i . Then the negative log-likelihood
function is given by

(5) �n(θ) = ∑
1≤i<j≤n

Aij

[
ȳij log

1

ψ(θi − θj )
+ (1 − ȳij ) log

1

1 − ψ(θi − θj )

]
.

Define the MLE,

(6) θ̂ ∈ argmin
θ :1T

n θ=0
�n(θ).

It can be shown that θ̂ is unique as long as the comparison graph is connected. Then set r̂ to
be the rank of players based on θ̂ . In other words, find any r̂ ∈ Sn such that θ̂σ̂1 ≥ · · · ≥ θ̂σ̂n is
satisfied, where σ̂ is the inverse of r̂ . We emphasize that the MLE (6) is written in its vanilla
version, without any constraint or penalty. To the best of our knowledge, (6) has not been
previously analyzed in the literature.

Another popular algorithm for ranking is the spectral method, also known as rank centrality
proposed by [21]. Define a matrix P ∈ R

n×n by

(7) Pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

d
Aij ȳj i, i �= j,

1 − 1

d

∑
l∈[n]\{i}

Ailȳli , i = j,

where d needs to be at least the maximum degree of the random graph A. We just set d = 2np

throughout the paper. One can check that P is a transition matrix of a Markov chain. To see

1For readers who are familiar with [7], we note that our definitions of � and κ are slightly different from those
in [7].
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why P is useful, we can compute the conditional expectation of P given the random graph
A,

P ∗
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

d
Aijψ

(
θ∗
r∗
j
− θ∗

r∗
i

)
, i �= j,

1 − 1

d

∑
l∈[n]\{i}

Ailψ
(
θ∗
r∗
l
− θ∗

r∗
i

)
, i = j.

The stationary distribution induced by the Markov chain P ∗ is

(
π∗)T =

( exp(θ∗
r∗
1
)∑n

i=1 exp(θ∗
r∗
i
)
, . . . ,

exp(θ∗
r∗
n
)∑n

i=1 exp(θ∗
r∗
i
)

)
.

One can easily check that (π∗)T P ∗ = (π∗)T . Since π∗ preserves the order of {θ∗
r∗
i
}, the set

with the k largest π∗
i ’s is the top-k group. With the sample version P , we can first compute its

stationary distribution π̂ , and then find any r̂ ∈ Sn such that π̂σ̂1 ≥ · · · ≥ π̂σ̂n , with σ̂ being
the inverse of r̂ .

3. Results for the MLE. We study the property of MLE in this section. Our first result
gives theoretical guarantees for (6) under both �2 and �∞ loss functions.

THEOREM 3.1. Assume p ≥ c0
logn

n
for some sufficiently large constant c0 > 0 and κ ≤

c1 for some constant c1 > 0. Then, for the estimator θ̂ defined by (6), we have

n∑
i=1

(
θ̂i − θ∗

r∗
i

)2 ≤ C
1

pL
,(8)

max
i∈[n]

∣∣θ̂i − θ∗
r∗
i

∣∣2 ≤ C
logn

npL
,(9)

for some constant C > 0 only depending on c1 with probability at least 1−O(n−7) uniformly
over all r∗ ∈Sn and all θ∗ ∈ 	(k,0, κ) such that 1T

n θ∗ = 0.

Let us give some comments on the assumptions and conclusions of Theorem 3.1. We have
established that the MLE achieves the error rates O( 1

pL
) and O(

logn
npL

) for the squared �2

loss and the squared �∞ loss, respectively. Both error rates are known to be optimal in the
literature [7, 21]. Since the BTL model (3) is defined through pairwise differences of θ∗

i ’s, the
model parameter is only identifiable up to a constant shift. We therefore require both 1T

n θ̂ = 0
and 1T

n θ∗ = 0 so that the two vectors are properly aligned. Note that the results for parameter
estimation do not need a positive �, and we only assume θ∗ ∈ 	(k,0, κ). The condition p ≥
c0

logn
n

is imposed for the random graph A to be well behaved in terms of both its degrees and

the eigenvalues of the graph Laplacian. In fact, p � logn
n

is necessary to ensure the random
graph is connected. Otherwise, ranking and parameter estimation would be impossible due
to the identifiability issue caused by the lack of comparison between disconnected graph
components. In the rest of the paper, some of the results will require a slightly stronger
condition np

logn
→ ∞, but we will give very detailed remarks on when and why it will be

needed. Last but not least, we require that the dynamic range κ to be bounded by a constant.
One can certainly allow κ to tend to infinity, but the rates (8) and (9) would depend on κ

exponentially [7, 21]. This is because the eigenvalues of the Hessian of the objective function
of (6) will be exponentially small when κ diverges. In fact, when κ → ∞, it is not clear
whether MLE still leads to optimal error rates for parameter estimation. In this paper, we will
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focus on the case κ = O(1). We will see in later theorems that even with κ = O(1), the exact
value of κ still plays a fundamental role in top-k ranking.

To the best of our knowledge, Theorem 3.1 is the first result in the literature that gives
optimal rates for parameter estimation by vanilla MLE under the BTL model. Previous results
in the literature including [7, 8, 21] all work with regularized MLE,

(10) θ̂λ = argmin
θ :1T

n θ=0

[
�n(θ) + λ

2
‖θ‖2

]
.

In particular, the recent paper [7] shows that θ̂λ also achieves the optimal rates (8) and (9) for
a λ that is chosen appropriately, though in practice it is known that the vanilla MLE performs
very well. Theorem 3.1 shows that penalty is not needed for the MLE to be optimal, thus
closing a gap between theory and practice.

The proof of Theorem 3.1 is built upon the elegant leave-one-out technique in [7]. We
first show that with a sufficiently small λ, a (suboptimal) �∞ bound for θ̂λ can be transferred
to θ̂ . Then we apply a leave-one-out argument to derive the optimal rates (8) and (9). We
also note that our leave-one-out argument is actually different from the form used in [7].
While the leave-one-out argument in [7] is applied together with a gradient descent analysis,
we do not need to follow this gradient descent analysis because of the �∞ bound that has
already been obtained. As a result, we are able to remove the additional technical assumption
logL = O(logn) that is imposed in [7]. A detailed analysis of the MLE will be given in
Section 8.

Next, we study the theoretical property of r̂ , the rank induced by the MLE θ̂ . Without loss
of generality, let us assume k ≤ n

2 throughout the paper. The case k > n
2 can be dealt with

by a symmetric bottom-k ranking problem. Before presenting the error bound for the loss
function Hk(̂r, r

∗), we need to introduce a few notation. We first define the effective variance
of the MLE by

(11) V (κ) = max
κ1+κ2≤κ
κ1,κ2≥0

n

kψ ′(κ1) + (n − k)ψ ′(κ2)
.

Recall that ψ(t) = 1
1+e−t is the sigmoid function so that ψ ′(t) = ψ(t)ψ(−t). Since κ =

O(1), we have V (κ) 	 1. Then the signal to noise ratio is defined by

SNR = npL�2

V (κ)
.

Note that SNR is a function of n, k, p, L, �, but we suppress the dependence for simplicity
of notation. The following theorem shows that Hk(̂r, r

∗) has an exponential rate with SNR
appearing in the exponent.

THEOREM 3.2. Assume np
logn

→ ∞ and κ ≤ c1 for some constant c1 > 0. Then, for the
rank vector r̂ that is induced by the MLE (6), there exists some δ = o(1), such that

(12) Hk

(̂
r, r∗) ≤ C exp

(
−1

2

(√
(1 − δ)SNR

2
− 1√

(1 − δ)SNR
log

n − k

k

)2

+

)
,

for some constant C > 0 only depending on c1 with probability 1 − o(1) uniformly over all
r∗ ∈ Sn and all θ∗ ∈ 	(k,�,κ).

The error exponent of (12) is complicated. We present a special case of the bound when
k 	 n to help understand the result.
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COROLLARY 3.1. Assume np
logn

→ ∞, κ = O(1) and k 	 n. Then, as long as SNR →
∞, the rank vector r̂ induced by the MLE (6) satisfies

(13) Hk

(̂
r, r∗) ≤ exp

(
−(

1 − o(1)
)SNR

8

)
,

with probability 1 − o(1) uniformly over all r∗ ∈ Sn and all θ∗ ∈ 	(k,�,κ).

Under the additional assumption k 	 n, the top-k ranking problem can be viewed as a clus-
tering or community detection problem, with the goal to divide the n players into two groups
of sizes k and n − k, respectively. The exponential convergence rate (13) is in a typical form
of optimal clustering error [17, 25]. It is intuitively clear that a larger SNR leads to a faster
convergence rate. When the sizes of the two clusters are of different orders, one can obtain a
more general convergence rate in the form of (12). The extra term log n−k

k
characterizes the

unbalancedness of the two clusters. We note that for variable selection under Hamming loss
[4, 20], the optimal rate is very similar to the form of (12). This is because variable selection
can also be thought of as clustering with two clusters of sizes s and p − s, whose orders can
potentially be different.

Theorem 3.2 and Corollary 3.1 together reveal an interesting phenomenon for top-k
ranking. The result shows that the top-k ranking problem can be very different for dif-
ferent orders of k. We note that in order to successfully identify the majority of the set
{i ∈ [n] : r∗

i ≤ k}, we need to have Hk(̂r, r
∗) → 0. When k = n/4, Corollary 3.1 shows that

Hk(̂r, r
∗) → 0 is achieved when SNR → ∞. In comparison, when k = 5, Theorem 3.2 shows

that Hk(̂r, r
∗) → 0 when SNR > (1 + ε)2 logn for some arbitrarily small constant ε > 0. In

other words, in terms of partial recovery consistency, top-quarter ranking is an easier prob-
lem than top-5 ranking. In general, a larger SNR is required for a smaller k according to the
formula (12).

Compared with Theorem 3.1, we need a slightly stronger condition np
logn

→ ∞ for Theo-

rem 3.2 and Corollary 3.1. If we only assume p ≥ c0
logn

n
, the 1 − δ factor in the exponent

of (12) can be replaced by 1 − ε with some ε of constant order. The constant ε can be made
arbitrarily small as long as c0 is sufficiently large.

The proof of Theorem 3.2 relies on a very interesting lemma that is stated below.

LEMMA 3.1. Suppose r̂ is a rank vector induced by θ̂ , we then have

Hk

(̂
r, r∗) ≤ 1

k
min
t∈R

[ ∑
i:r∗

i ≤k

I{θ̂i ≤ t} + ∑
i:r∗

i >k

I{θ̂i ≥ t}
]
.

The inequality holds for any r∗ ∈ Sn.

We will prove Lemma 3.1 in Appendix E. This inequality shows that the error of ranking
θ̂ is bounded by the error of any thresholding rule. Using this result, we immediately obtain
that

EHk

(̂
r, r∗) ≤ 1

k
min
t∈R

[ ∑
i:r∗

i ≤k

P(θ̂i ≤ t) + ∑
i:r∗

i >k

P(θ̂i ≥ t)

]
.

We then obtain the exponential error bound (12) by carefully analyzing the probability P(θ̂i ≤
t) (or P(θ̂i ≥ t)) for each i ∈ [n]. The analysis of P(θ̂i ≤ t) is quite involved. We need to first
obtain a local linear expansion of the MLE at each coordinate, and then apply the leave-
one-out technique introduced by [7] to decouple the dependence between the data and the
coefficients of the local linear expansion. The details will be given in Section 8.
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The result of Theorem 3.2 immediately implies a condition for exact recovery of the top-k
set. By the definition of Hk(̂r, r

∗), it is easy to see that

(14) Hk

(̂
r, r∗) ∈ {

0, (2k)−1,2(2k)−1,3(2k)−1, . . . ,1
}
.

Then as long as Hk(̂r, r
∗) < (2k)−1, we must have Hk(̂r, r

∗) = 0. Under the condition that
the right-hand side of (12) is smaller than (2k)−1, we obtain exact recovery of the top-k set.
This result is stated as follows.

THEOREM 3.3. Assume np
logn

→ ∞, κ = O(1), and

(15)
npL�2

V (κ)
> (1 + ε)2

(√
log k +

√
log(n − k)

)2
,

for some arbitrarily small constant ε > 0. Then, for the rank vector r̂ that is induced by the
MLE (6), we have Hk(̂r, r

∗) = 0 with probability 1 − o(1) uniformly over all r∗ ∈ Sn and all
θ∗ ∈ 	(k,�,κ).

We remark that the condition np
logn

→ ∞ can be relaxed to p ≥ c0
logn

n
for a sufficiently

large constant c0 without affecting the conclusion of Theorem 3.3. The result of Theorem 3.3
improves the exact recovery threshold obtained in the literature. The paper [7] proves that
the MLE exactly recovers the top-k set when npL�2 > C(

√
logk + √

log(n − k))2 for some
sufficiently large constant C > 0. We complement the result of [7] by showing that the leading
constant should be 2V (κ), an increasing function of the dynamic range κ . Moreover, the
symmetry of k and n−k in (15) agrees with the understanding that top-k ranking and bottom-
k ranking are mathematically equivalent.

The next theorem shows that the exact recovery threshold (15) is optimal, and cannot be
further improved.

THEOREM 3.4. Assume np
logn

→ ∞, κ = O(1), (logn)8 = O(L) and

(16)
npL�2

V (κ)
< (1 − ε)2

(√
log k +

√
log(n − k)

)2
,

for some arbitrarily small constant ε > 0. Then we have

lim inf
n→∞ inf

r̂
sup

r∗∈Sn
θ∗∈	(k,�,κ)

P(θ∗,r∗)
(
Hk

(̂
r, r∗)

> 0
) ≥ 0.95,

where we use the notation P(θ∗,r∗) for the data generating process (3).

The proof of Theorem 3.4 relies on a precise lower bound characterization of the maximum
of dependent binomial random variables. The extra assumption L � (logn)8 allows us to
apply a high-dimensional central limit theorem [9] for this purpose. Without this additional
technical condition, we are not aware of any probabilistic tool to deal with maximum of
dependent binomial random variables.

Theorem 3.3 and Theorem 3.4 together nail down the phase transition boundary of exact

recovery, which is npL�2

V (κ)
= 2(

√
log k + √

log(n − k))2. Thus, the MLE is an optimal pro-
cedure that achieves this boundary. The lower bound result of Theorem 3.4 also suggests
that the partial recovery error rate obtained in Theorem 3.2 cannot be improved, since other-
wise one would obtain a better SNR condition for exact recovery in Theorem 3.3. A rigorous
minimax lower bound for partial recovery will be given in Section 6.
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4. Results for the spectral method. In this section, we study the theoretical property of
the spectral method, also known as rank centrality [21]. Let π̂ be the stationary distribution
of the Markov chain with transition probability (7). The estimation error of π̂ has already
been investigated by [7, 21]. For both �2 and �∞ loss functions, it has been shown by [7] that
π̂ achieves the optimal rates (8) and (9) after an appropriate scaling. We therefore directly
study the accuracy of the rank vector r̂ induced by π̂ . This is where we can see the difference
between the MLE and the spectral method.

We first define the effective variance of the spectral method,

(17) V (κ) = max
κ1+κ2≤κ
κ1,κ2≥0

kψ ′(κ1)(1 + eκ1)2 + (n − k)ψ ′(κ2)(1 + e−κ2)2

(kψ(κ1) + (n − k)ψ(−κ2))2/n
.

Note that V (κ) 	 1 when κ = O(1). The signal to noise ratio is defined by

SNR = npL�2

V (κ)
.

The error rate of the spectral method with respect to Hk(̂r, r
∗) is stated as follows.

THEOREM 4.1. Assume np
logn

→ ∞ and κ ≤ c1 for some constant c1 > 0. Then, for the
rank vector r̂ that is induced by the stationary distribution of the Markov chain (7), there
exists some δ = o(1), such that

(18) Hk

(̂
r, r∗) ≤ C exp

(
−1

2

(√
(1 − δ)SNR

2
− 1√

(1 − δ)SNR
log

n − k

k

)2

+

)
,

for some constant C > 0 only depending on c1 with probability 1 − o(1) uniformly over all
r∗ ∈ Sn and all θ∗ ∈ 	(k,�,κ).

The formula (18) characterizes the convergence rate of partial recovery of the top-k set by
the spectral method. It can be compared with the MLE error bound (12). The only difference
lies in the effective variance of the two methods. We will show in Lemma 5.1 that V (κ) ≥
V (κ) and the equality only holds when κ = 0. Therefore, the spectral method is not optimal
in general. Detailed comparisons of the two algorithms will be given in Section 5.

By the property (14), we immediately obtain an exact recovery result from Theorem 4.1.

THEOREM 4.2. Assume np
logn

→ ∞, κ = O(1), and

(19)
npL�2

V (κ)
> (1 + ε)2

(√
log k +

√
log(n − k)

)2
,

for some arbitrarily small constant ε > 0. Then, for the rank vector r̂ that is induced by
the stationary distribution of the Markov chain (7), we have Hk(̂r, r

∗) = 0 with probability
1 − o(1) uniformly over all r∗ ∈ Sn and all θ∗ ∈ 	(k,�,κ).

It has been shown in [7] that the spectral method exactly recovers the top-k set when
npL�2 > C(

√
logk + √

log(n − k))2 for some sufficiently large constant C > 0. Without
specifying the constant C, one cannot tell the difference between the MLE and the spectral
method. In view of the lower bound result given by Theorem 3.4, the exact recovery threshold
(19) of the spectral method does not achieve the phase transition boundary for a general κ .
A careful reader may wonder whether this is resulted from a loose analysis in the proof. Our
next result shows that the suboptimality of the spectral method is intrinsic.
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THEOREM 4.3. Assume np
logn

→ ∞, κ ≤ c1 for some constant c1 > 0, k → ∞ and

(20)
npL�2

V (κ)
< (1 − ε)2

(√
log k +

√
log(n − k)

)2
,

for some arbitrarily small constant ε > 0. Then, for the rank vector r̂ that is induced by the
stationary distribution of the Markov chain (7), we have

lim inf
n→∞ sup

r∗∈Sn
θ∗∈	(k,�,κ)

P(θ∗,r∗)
(
Hk

(̂
r, r∗)

> 0
) ≥ 0.95.

Moreover, there exists some δ = o(1), such that

sup
r∗∈Sn

θ∗∈	(k,�,κ)

E(θ∗,r∗)Hk

(̂
r, r∗)

≥ C exp
(
−1

2

(√
(1 + δ)SNR

2
− 1√

(1 + δ)SNR
log

n − k

k

)2

+

)
,

(21)

for some constant C > 0 only depending on c1 and ε.

Theorem 4.3 shows that the results of Theorem 4.1 and Theorem 4.2 on the performance
of spectral method are sharp, under the additional condition that k → ∞. The conclusion of
Theorem 4.3 can also be extended to the case of k = O(1) via a similar argument that is used
in the proof of Theorem 3.4, as long as the technical condition (logn)8 = O(np) is further
imposed.

To close this section, we remark that all the theorems we have obtained for the spectral
method can be stated under the weaker assumption p ≥ c0

logn
n

for some sufficiently large
constant c0 > 0, as long as the δ in (18) and (21) are replaced by some sufficiently small
constant.

5. Comparison of the two methods. In this section, we compare the MLE and the spec-
tral method based on the results obtained in Section 3 and Section 4. The statistical properties
of the two methods in terms of partial and exact recovery are characterized by the two vari-
ance functions V (κ) and V (κ), respectively. We first give a direct comparison of the two
functions by plotting them together with different values of k/n. We observe in Figure 1 that
V (κ) ≥ V (κ) for all κ ≥ 0. This inequality is rigorously established by the following lemma.

LEMMA 5.1. For V (κ) and V (κ) defined in (11) and (17), respectively, we have

V (κ) ≥ V (κ),

for all κ ≥ 0. Moreover, the equality holds if and only if κ = 0.

PROOF. By Jensen’s inequality, we have

(22)
k eκ1

(1+eκ1 )2 + (n − k) e−κ2

(1+e−κ2 )2

keκ1 + (n − k)e−κ2
≥

(k eκ1

1+eκ1 + (n − k) e−κ2

1+e−κ2

keκ1 + (n − k)e−κ2

)2
.

Another way to see the above inequality is to construct a random variable X such that
P(X = 1

1+eκ1 ) = keκ1

keκ1+(n−k)e−κ2
and P(X = 1

1+e−κ2
) = (n−k)e−κ2

keκ1+(n−k)e−κ2
. Then (22) is equiva-

lent to EX2 ≥ (EX)2. The inequality (22) can be rearranged into

(23)
kψ ′(κ1)(1 + eκ1)2 + (n − k)ψ ′(κ2)(1 + e−κ2)2

(kψ(κ1) + (n − k)ψ(−κ2))2/n
≥ n

kψ ′(κ1) + (n − k)ψ ′(κ2)
.
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FIG. 1. The functions V (κ) and V (κ) with k/n ∈ {0.15,0.25,0.5}. In the first row, we plot the functions for
κ ∈ [0,5]. The second row plots the same functions for κ ∈ [0,10] in a logarithmic scale to better illustrate
the global structure. It is very interesting that both V (κ) and V (κ) have a point at which the derivative is not
continuous. Before this critical point, the optimization of V (κ) is achieved by (κ∗

1 , κ∗
2 ) = (0, κ). Right after the

critical point, κ∗
1 is immediately bounded away from 0 and κ∗

2 is immediately bounded away from κ . The same
property also holds for V (κ). Moreover, the critical point occurs earlier as k/n becomes larger (when k/n ≤ 1/2).

Taking maximum over κ1 and κ2 on both sides, we obtain the inequality V (κ) ≥ V (κ). When
κ = 0, we obviously have V (κ) = V (κ). When κ > 0, we need to show V (κ) �= V (κ). The
optimization of V (κ) must be achieved by some (κ∗

1 , κ∗
2 ) �= (0,0). For such (κ∗

1 , κ∗
2 ), the

constructed random variable X has a positive variance, and thus both inequalities (22) and
(23) are strict. We then have

V (κ) ≥ kψ ′(κ∗
1 )(1 + eκ∗

1 )2 + (n − k)ψ ′(κ∗
2 )(1 + e−κ∗

2 )2

(kψ(κ∗
1 ) + (n − k)ψ(−κ∗

2 ))2/n

>
n

kψ ′(κ∗
1 ) + (n − k)ψ ′(κ∗

2 )

= V (κ).

The proof is complete. �

The comparison between V (κ) and V (κ) shows that the spectral method is not optimal
in general. It has a worse error exponent for partial recovery and requires a larger signal to
noise ratio threshold for exact recovery. In fact, the difference V (κ)−V (κ) eventually grows
exponentially fast as a function of κ . See Figure 1.

Note that both V (κ) and V (κ) are the worst-case effective variances with respect to the
parameter space 	(k,�,κ) for the two algorithms. In Section 7, we will further show that
the MLE outperforms the spectral method for each θ∗ ∈ 	(k,�,κ). This conclusion is sup-
ported by extensive numerical experiments. We set n = 200, p = 0.25, L = 20 and k = 50
throughout the experiments.
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FIG. 2. The partial recovery error (left) and the exact recovery probability (right) for the MLE and the spectral
method. The parameter θ∗ is chosen to be a piecewise constant vector of four pieces of sizes 25, 25, 75, 75. The
plots are obtained by averaging 100 independent experiments.

In our first experiment, we consider θ∗ ∈ R
n that has four pieces, with the three change-

points located at {25,50,200}. The values of the four pieces are set as 10, 10− τ , 10− τ −�

and 0, respectively, where τ = θ∗
1 − θ∗

k ∈ {1,4} and � is varied from 0.01 to 5. We apply both
the MLE and the spectral method to the data. Figure 2 shows the results for both partial and
exact recovery. We observe that the MLE consistently outperforms the spectral method.

In the second experiment, we consider θ∗ ∈ R
n that has four pieces, with the three change-

points located at {50(1 − ρ),50,50 + 150ρ}. The values of the four pieces are set as 10, 6,
6 − � and 0, respectively. The parameter ρ is chosen in {0.1,0.5,0.9} and � is varied from
0.01 to 3. The performance of the two methods for partial and exact recovery are plotted in
Figure 3. Again, the MLE always outperforms the spectral method.

FIG. 3. The partial recovery error (left) and the exact recovery probability (right) for the MLE and the spectral
method. The parameter θ∗ is chosen to be a piecewise constant vector of four pieces of sizes 50(1 − ρ), 50ρ,
150(1 − ρ), 150ρ. The plots are obtained by averaging 100 independent experiments.
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FIG. 4. The partial recovery error (left) and the exact recovery probability (right) for the MLE and the spectral
method. The parameter θ∗ is randomly generated from some distribution. The plots are obtained by averaging
100 independent experiments.

Next, we consider a θ∗ ∈ R
n that has a more complicated structure. We fix θ∗

1 = 10, θ∗
200 =

0, generate θ∗
2 , . . . , θ∗

50 from Uniform[6,10] and generate θ∗
51, . . . , θ

∗
199 from Uniform[0,6 −

�], and we vary � from 0.01 to 2. We find even for such randomly generated θ∗’s, the MLE
always outperforms the spectral method. The results are summarized in Figure 4 for both
partial and exact recovery.

In summary, we are able to confirm that the MLE is a much better algorithm than the spec-
tral method under various scenarios. Our results complement the analysis in [7]. It is claimed
in [7] that both the MLE and the spectral method are optimal in terms of the order of the ex-
act recovery threshold. In addition, the paper conducts a very curious numerical experiment
that shows the performances of the MLE and the spectral method are nearly identical. We
note that the θ∗ chosen in the numerical experiment of [7] is a piecewise constant vector with
only two pieces. We will explain why this choice leads to nearly identical performances of
the two algorithms. Let us first conduct a similar experiment to replicate this conclusion. We
continue to use the setting n = 200, p = 0.25, L = 20 and k = 50. Then choose θ∗ such that
θ∗

1 = · · · = θ∗
50 = � and θ∗

51 = · · · = θ∗
200 = 0. Figure 5 plots the results of partial and exact

recovery with � varied from 0.01 to 0.55. For both partial recovery and exact recovery, the
results are indeed nearly identical for the two algorithms. This phenomenon can be easily ex-
plained by our theory. For θ∗ ∈ 	(k,�,κ) with only two pieces, we must have κ = �. When
� = o(1), we have V (κ) = (1 + o(1))V (0) and V (κ) = (1 + o(1))V (0). This leads to the
relation V (κ) = (1 + o(1))V (κ), and thus the spectral method has the same asymptotic error
exponent for partial recovery and achieves the optimal phase transition boundary for exact re-
covery. When � does not tend to zero but of a constant order, we have SNR � npL � logn,

FIG. 5. The partial recovery error (left) and the exact recovery probability (right) for the MLE and the spectral
method. The parameter θ∗ is chosen to be a piecewise constant vector of two pieces of sizes 50 and 150. The plots
are obtained by averaging 100 independent experiments.
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and the error bound (18) already leads to exact recovery because of the large value of SNR.
In either case, the spectral method is optimal. Let us summarize the optimality of the spectral
method under this special situation by the following corollary.

COROLLARY 5.1. Assume np
logn

→ ∞ and κ = � ≤ c1 for some constant c1 > 0. Then,
for the rank vector r̂ that is induced by the stationary distribution of the Markov chain (7),
there exists some δ = o(1), such that

Hk

(̂
r, r∗) ≤ C exp

(
−1

2

(√
(1 − δ)SNR

2
− 1√

(1 − δ)SNR
log

n − k

k

)2

+

)
,

for some constant C > 0 only depending on c1 with probability 1 − o(1) uniformly over all
r∗ ∈ Sn and all θ∗ ∈ 	(k,�,�). Moreover, as long as

npL�2

V (κ)
> (1 + ε)2

(√
log k +

√
log(n − k)

)2
,

for some arbitrarily small constant ε > 0. Then Hk(̂r, r
∗) = 0 with probability 1 − o(1) uni-

formly over all r∗ ∈Sn and all θ∗ ∈ 	(k,�,�).

To close this section, we remark that according to the equality condition of Lemma 5.1,
the two-piece θ∗, or equivalently κ = �, is essentially the only situation where the spectral
method is optimal and performs as well as the MLE. Moreover, since both functions V (κ)

are V (κ) are increasing, the setting with κ = � leads to the smallest effective variance, and
thus provides the two algorithms with the most favorable scenario.

6. Minimax lower bound of partial recovery. The purpose of this section is to show
that the partial recovery error rate (12) achieved by the MLE cannot be improved from a
minimax perspective. We are able to establish a matching lower bound for Theorem 3.2 using
a slightly more general parameter space. Define

(24) 	′(k,�,κ) = {
θ ∈ R

n : θ1 ≥ · · · ≥ θn, θk − θk+2 ≥ �,θ1 − θn ≤ κ
}
.

Compared with 	(k,�,κ), the new definition (24) imposes a gap between θk and θk+2. It is
clear that 	(k,�,κ) ⊂ 	′(k,�,κ), and the only difference of 	′(k,�,κ) is the ambiguity
of θk+1. The player ranked at the (k +1)th position does not necessarily has a gap from either
the top group or the bottom group. Though this additional uncertainty clearly better models
scenarios in many real applications of top-k ranking, the main reason we adopt the slightly
larger parameter space is to have a clean lower bound analysis. Directly establishing a lower
bound for 	(k,�,κ) is still possible, but it requires some additional technical assumptions
that make the problem unnecessarily involved.

Throughout this section, we assume that (16) holds. This is the regime of partial recovery,
since exact recovery is impossible by Theorem 3.4. We first remark that with a slight modifi-
cation of the proof of Theorem 3.2, the MLE can be shown to achieve the same error rate (12)
over the parameter space 	′(k,�,κ) as well. Thus, the space 	′(k,�,κ) does not increase
the statistical complexity of the problem.

Our lower bound analysis is based on the two least favorable vectors θ ′, θ ′′ ∈ 	′(k,�,κ).
They are constructed as follows. Let ρ = o(1) be a vanishing sequence that tends to zero
with a sufficiently slow rate. We define κ∗

1 and κ∗
2 such that the optimization (11) is achieved

at (κ1, κ2) = (κ∗
1 , κ∗

2 ). Then define θ ′
i = κ∗

1 for 1 ≤ i ≤ k − ρk, θ ′
i = 0 for k − ρk < i ≤ k,

θ ′
i = −� for k < i ≤ k + ρ(n − k) and θ ′

i = −κ∗
2 for k + ρ(n − k) < i ≤ n. For θ ′′, we let
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θ ′′
i = θ ′

i for all i ∈ [n]\{k + 1} and set θ ′′
k+1 = 0. We will show that there exist r ′, r ′′ ∈ Sn, so

that the hardness of top-k ranking is characterized by an optimal testing problem,

(25) inf
0≤φ≤1

[
E(θ ′′,r ′′)φ + n − k − 1

k
E(θ ′,r ′)(1 − φ)

]
.

Moreover, there exists some i ∈ [n], such that the two rank vectors r ′, r ′′ satisfy θ ′
r ′
j
= θ ′′

r ′′
j

for

all j ∈ [n]\{i}. For the ith entry, we have θ ′
r ′
i
= −� and θ ′′

r ′′
i

= 0. The reduction of the top-k

ranking problem to the testing problem (25) is the most important step in our lower bound
analysis. A rigorous argument will be given in Appendix B.

The testing problem (25) can be roughly understood as to test whether the ith player be-
longs to the top-k set or not. The two hypotheses receive different weights 1 and n−k−1

k
because of the definition of the loss function Hk(̂r, r

∗). The optimal procedure to (25) is
given by the likelihood ratio test

φ = I

{
dP(θ ′,r ′)
dP(θ ′′,r ′′)

≥ k

n − k − 1

}
,

according to Neyman–Pearson lemma. Since the vectors {θ ′
r ′
i
}i∈[n] and {θ ′′

r ′′
i
}i∈[n] only differ

at the ith entry, the likelihood ratio statistic only depends on {ȳij }j∈[n]\{i} and {Aij }j∈[n]\{i}.
Therefore, the testing error (25) is relatively easy to quantify. A sharp lower bound can be
obtained by a large deviation analysis.

THEOREM 6.1. Assume np
logn

→ ∞, κ ≤ c1 for some constant c1 > 0, and (16) holds for
some arbitrarily small constant ε > 0. Then there exists some δ = o(1), such that

inf
r̂

sup
r∗∈Sn

θ∗∈	′(k,�,κ)

E(θ∗,r∗)Hk

(̂
r, r∗)

≥ C exp
(
−1

2

(√
(1 + δ)SNR

2
− 1√

(1 + δ)SNR
log

n − k

k

)2

+

)
,

for some constant C > 0 only depending on c1 and ε.

7. Local error rates. So far, our study of the top-k ranking problem has been conducted
under the minimax decision-theoretic framework laid out in Section 2. The upper and lower
bounds for the MLE and the spectral method are established uniformly over the parameter
space 	(k,�,κ). To complement the minimax results, in this section, we present local error
rates for the MLE and the spectral method, which leads to a refined comparison between the
two popular methods.

7.1. Local error rate for the MLE. To analyze the statistical property of the MLE for
each individual θ , we first need to generalize the effective variance (11). For any θ ∈ R

n and
any i ∈ [n], define

(26) Vi(θ) = n∑n
j=1 ψ ′(θi − θj )

.

With the help of Vi(θ), for any subset S ⊂ [n], we also define

R1(S, θ, t, δ) = ∑
i∈S

exp
(
−(1 − δ)(θi − t)2+npL

2Vi(θ)

)
,(27)

R2(S, θ, t, δ) = ∑
i∈S

exp
(
−(1 − δ)(t − θi)

2+npL

2Vi(θ)

)
.(28)
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THEOREM 7.1. Assume np
logn

→ ∞, κ ≤ c1 for some constant c1 > 0. Then, for the rank
vector r̂ that is induced by the MLE (6), any small constant 0 < δ < 0.1, any r∗ ∈ Sn and
any θ∗ ∈ 	(k,0, κ), we have

E(θ∗,r∗)Hk

(̂
r, r∗) ≤ C1

(
inf
t

R1([k], θ∗, t, δ) + R2([n]\[k], θ∗, t, δ)
k

+ n−3
)
,(29)

where C1 > 0 is a constant only depending on c1 and δ. Moreover, we also have

E(θ∗,r∗)Hk

(̂
r, r∗) ≥ C2

(
inf
t

R1([k], θ∗, t,−δ) + R2([n]\[k], θ∗, t,−δ)

k

)
,(30)

for some constant C2 > 0 only depending on c1 and δ, if we additionally assume that
inft (R1([k], θ∗, t,−δ) + R2([n]\[k], θ∗, t,−δ)) → ∞.

Theorem 7.1 gives matching upper and lower bounds for the error of the MLE for each
individual θ∗ ∈ 	(k,0, κ) and r∗ ∈ Sn, except for the additional n−3 term and an arbitrarily
small δ. We remark that the n−3 term in the upper bound can be replaced by n−C for an arbi-
trarily large constant C. The upper bound (29) can be viewed as an extension of Theorem 3.2,
though the δ in Theorem 3.2 is allowed to vanish because of the less general setting. The lower
bound (30) requires an extra condition inft (R1([k], θ∗, t,−δ) + R2([n]\[k], θ∗, t,−δ)) →
∞, which implies the error rate is of higher order than O(k−1). It plays the same role as
the condition (20) in Theorem 4.3. This assumption covers most interesting partial recovery
cases, since O(k−1) is already the error rate of exact recovery.

Let t∗ be a minimizer of the right-hand side of (29) or (30). Then we can interpret∑k
i=1 exp(− (θ∗

i −t∗)2+npL

2Vi(θ
∗) ) as the order of the number of top k players that are ranked among

the bottom group, and
∑n

i=k+1 exp(− (t∗−θ∗
i )2+npL

2Vi(θ
∗) ) as the order of the number of bottom n−k

players that are ranked in the top group.
A careful reader may notice that the error rate in Theorem 7.1 does not have a clear de-

pendence on the signal gap θ∗
k − θ∗

k+1. This is because the current error rate depends on θ∗
more explicitly rather than just the difference between θ∗

k and θ∗
k+1. Even when θ∗

k = θ∗
k+1, it

is still possible that the right-hand side of (29) converges to zero as long as the majority of
{θ∗

i }1≤i≤k are separated from most of {θ∗
i }k+1≤i≤n.

7.2. Local error rate for the spectral method. To present a similar local error rate for the
spectral method, we also need to generalize the effective variance (17). For any θ ∈ R

n and
any i ∈ [n], define

(31) V i(θ) = n
∑n

j=1 ψ ′(θi − θj )(1 + eθj−θi )2

(
∑n

j=1 ψ(θj − θi))2 .

We also introduce two quantities similar to (27) and (28),

R1(S, θ, t, δ) = ∑
i∈S

exp
(
−(1 − δ)(θi − t)2+npL

2V i(θ)

)
,

R2(S, θ, t, δ) = ∑
i∈S

exp
(
−(1 − δ)(t − θi)

2+npL

2V i(θ)

)
.

THEOREM 7.2. Assume np
logn

→ ∞, κ ≤ c1 for some constant c1 > 0. Then, for the rank
vector r̂ that is induced by the stationary distribution of the Markov chain (7), any small
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constant 0 < δ < 0.1, any r∗ ∈ Sn and any θ∗ ∈ 	(k,0, κ), we have

E(θ∗,r∗)Hk

(̂
r, r∗) ≤ C1

(
inf
t

R1([k], θ∗, t, δ) + R2([n]\[k], θ∗, t, δ)
k

+ n−3
)
,(32)

where C1 > 0 is a constant only depending on c1 and δ. Moreover, we also have

E(θ∗,r∗)Hk

(̂
r, r∗) ≥ C2

(
inf
t

R1([k], θ∗, t,−δ) + R2([n]\[k], θ∗, t,−δ)

k

)
,(33)

for some constant C2 > 0 only depending on c1 and δ, if we additionally assume that
inft (R1([k], θ∗, t,−δ) + R2([n]\[k], θ∗, t,−δ)) → ∞.

Similar to Theorem 7.1, Theorem 7.2 also gives matching upper and lower bounds for the
error of the spectral method for each individual θ∗ ∈ 	(k,0, κ) and r∗ ∈Sn.

Let us remark that the results of Theorem 7.1 and Theorem 7.2 can be further extended
beyond the setting of the Erdős–Rényi graph and exactly L comparisons on each edge.
To be specific, we can consider a random graph Aij ∼ Bernoulli(pij ) independently for
all 1 ≤ i < j ≤ n. For each edge, we observe Lij independent games. Then, as long as
maxij pij ≤ C minij pij and maxij Lij ≤ C minij Lij hold for some constant C > 0, the re-

sults of Theorem 7.1 and Theorem 7.2 continue to hold with Vi(θ)
npL

and V i(θ)
npL

replaced by∑
j∈[n]\{i}

pij
Lij

ψ(θi−θj )ψ(θj−θi)

(
∑

j∈[n]\{i} pijψ(θi−θj )ψ(θj−θi))
2 and

∑
j∈[n]\{i}

pij
Lij

ψ(θi−θj )ψ(θj−θi)(1+e
θj −θi )2

(
∑

j∈[n]\{i} pijψ(θj−θi))
2 , respectively.

7.3. Comparison of the two methods for each θ∗. Theorem 7.1 and Theorem 7.2 allow
us to give a refined comparison between the MLE and the spectral method. By ignoring the
n−3 term in the upper bounds and the δ in each exponent, we can write the error rates of the
MLE and the spectral method as

(34) inf
t

1

k

[
k∑

i=1

exp
(
−(θ∗

i − t)2+npL

2Vi(θ∗)

)
+

n∑
i=k+1

exp
(
−(t − θ∗

i )2+npL

2Vi(θ∗)

)]
,

and

(35) inf
t

1

k

[
k∑

i=1

exp
(
−(θ∗

i − t)2+npL

2V i(θ∗)

)
+

n∑
i=k+1

exp
(
−(t − θ∗

i )2+npL

2V i(θ∗)

)]
.

It is clear that the only difference between (34) and (35) lies in the difference of the variance
functions (26) and (31), whose comparison is given by the following lemma.

LEMMA 7.1. For any θ∗ ∈ R and any i ∈ [n], we have Vi(θ
∗) ≤ V i(θ

∗). The equality
holds if and only if θ∗

1 = · · · = θ∗
n .

PROOF. Notice the following chain of equalities and inequality:

Vi

(
θ∗) = n∑

j∈[n] ψ ′(θ∗
j − θ∗

i )

= n(
∑

j∈[n] e
θ∗
j −θ∗

i )

(
∑

j∈[n] ψ ′(θ∗
j − θ∗

i ))(
∑

j∈[n] e
θ∗
j −θ∗

i )

≤ n(
∑

j∈[n] ψ ′(θ∗
j − θ∗

i )(1 + e
θ∗
j −θ∗

i )2)

(
∑

j∈[n] ψ(θ∗
j − θ∗

i ))2

= V i

(
θ∗)

,

(36)
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where (36) is by the Cauchy–Schwarz inequality on the denominator. According to the equal-
ity condition of the Cauchy-Schwarz inequality, we know that Vi(θ

∗) = V i(θ
∗) only when

θ∗
1 = · · · = θ∗

n . �

To close this section, we discuss two special cases of θ∗, under which the error rates
recover the results of Theorem 3.2, Theorem 4.1 and Corollary 5.1.

EXAMPLE 7.1. According to the proof of Theorem 4.3 and the construction discussed
in Section 6, the least favorable θ∗ ∈ 	(k,�,κ) takes the following form: θ∗

i = κ1 for all
1 ≤ i ≤ k − ρk, θ∗

i = 0 for k − ρk < i ≤ k, θ∗
i = −� for k < i ≤ k + ρ(n − k) and θ∗

i = −κ2
for k + ρ(n − k) < i ≤ n. Here, κ1 and κ2 are maximizers of either (11) for the MLE or (17)
for the spectral method, and ρ is a sufficiently small constant. For this θ∗, the formulas (34)
and (35) recover the minimax rates obtained in Theorem 3.2 and Theorem 4.1.

EXAMPLE 7.2. Another interesting θ∗ is the two-piece model θ∗ ∈ 	(k,�,�). By the
translational invariance of the variance functions, we can consider θ∗

i = � for all 1 ≤ i ≤ k

and θ∗
i = 0 for all k < i ≤ n. We discuss the consequence of this choice of θ∗ under two

situations. First, consider � = o(1), and one can check that Vi(θ
∗) = (1 + o(1))4 and

V i(θ
∗) = (1 + o(1))4 for all i ∈ [n], which implies the equivalence of error rates of the MLE

and the spectral method. Second, consider � lower bounded by some constant. In this case,
both the formulas (34) and (35) are o(k−1), which implies both the MLE and the spectral
method achieve exact recovery with high probability. As shown in Corollary 5.1, the spectral
method is actually optimal for θ∗ ∈ 	(k,�,�). We are therefore able to give a theoretical
justification of the numerical experiment of [7].

8. Analysis of the MLE. In this section, we analyze the MLE (6), and prove Theo-
rem 3.1, Theorem 3.2 and Theorem 3.3. Since the BTL model (3) is invariant to a shift of
the model parameter, we can assume 1T

n θ∗ = 0 without loss of generality. For simplicity of
notation, we also assume r∗

i = i for each i ∈ [n], and thus we have θ∗
r∗
i

= θ∗
i . Recall the con-

vention of notation that Aij = Aji and ȳij = 1 − ȳj i for any i < j . We also set Aii = 0 for
all i ∈ [n]. Throughout the analysis, we will repeatedly use the properties that both ψ(t) and
ψ ′(t) are bounded continuous functions with bounded Lipschitz constants.

The section is organized as follows. We will first give a brief overview of the techniques
and the main steps of the analysis in Section 8.1. We then present a few technical lemmas in
Section 8.2. In Section 8.3, we establish an important result on the �∞ bound of the MLE.
Theorem 3.1 will be proved in Section 8.4. Finally, we prove Theorem 3.2 and Theorem 3.3
in Section 8.5.

8.1. Overview of the techniques. A major difficulty of analyzing the MLE is to control
the spectrum of the Hessian matrix of the negative log-likelihood function. Recall the defini-
tion of �n(θ) in (5). Its Hessian ∇2�n(θ) = H(θ) ∈ R

n×n is given by the formula

Hij (θ) =
⎧⎪⎨⎪⎩

∑
l∈[n]\{i}

Ailψ
′(θi − θl), i = j,

−Aijψ
′(θi − θj ), i �= j.

It can be viewed as the Laplacian of the weighted random graph {ψ ′(θi − θj )Aij }. For θ

that satisfies maxi<j |θi − θj | = O(1), the spectrum of H(θ) can be well controlled via some
standard random matrix tool [24]. The property maxi<j |θi − θj | = O(1) certainly holds for
θ∗ ∈ 	(k,�,κ). However, when analyzing the Taylor expansion of �n(θ), we actually need
to understand H(θ) for θ that is a convex combination between θ̂ and θ∗. Since the MLE
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is defined without any constraint or regularization, there is no such control for θ̂ . Our first
step is to establish the following proposition that shows ‖θ̂ − θ∗‖∞ is bounded with high
probability even though the MLE has no constraint or regularization.

PROPOSITION 8.1. Under the setting of Theorem 3.1, we have

(37)
∥∥θ̂ − θ∗∥∥∞ ≤ 5,

with probability at least 1 − O(n−7).

The proof of Proposition 8.1 borrows strength from the property of a regularized MLE.
Recall the definition of θ̂λ in (10). This is the version of MLE that has been analyzed by [7].
We will choose λ = n−1 in order that θ̂λ is close to θ̂ . Following the techniques in [7], we
can first show ‖θ̂λ − θ∗‖∞ ≤ 4 with high probability. The presence of the penalty in (10) is
crucial for the result ‖θ̂λ − θ∗‖∞ ≤ 4 to be established. Next, we have an argument to show
that the two estimators θ̂λ and θ̂ are sufficiently close. This leads to the bound (37). A detailed
proof of Proposition 8.1 will be given in Section 8.3.

The result of Proposition 8.1 is arguably the most important step in the analysis of the
MLE. It directly leads to the control of the spectrum of H(θ). Then the first bound (8) of
Theorem 3.1 can be obtained by a Taylor expansion of the objective function �n(θ). The
second bound (9) of Theorem 3.1 and Theorem 3.2 requires an entrywise analysis of θ̂ , and
is therefore more complicated. We need to take advantage of the powerful leave-one-out
argument in [7]. The intuition of the leave-one-out technique has been thoroughly discussed
in [7], and we do not repeat it here. We would like to emphasize that our version of the
leave-one-out argument is in fact different from the form introduced in [7]. We do not need
to combine the leave-one-out argument with a gradient descent analysis as in [7]. This helps
us to avoid the extra technical condition logL = O(logn) in [7] when proving the theorems.

8.2. Some technical lemmas. Let us present a few technical lemmas that facilitate our
analysis of the MLE. The first two lemmas are concentration properties of the random graph
A ∼ G(n,p). We define LA = D − A to be the graph Laplacian of A, where D is a diagonal
matrix whose entries are given by Dii = ∑

j∈[n]\{i} Aij .

LEMMA 8.1. Assume p ≥ c0 logn
n

for some sufficiently large c0 > 0. We then have

1

2
np ≤ min

i∈[n]
∑

j∈[n]\{i}
Aij ≤ max

i∈[n]
∑

j∈[n]\{i}
Aij ≤ 2np,

and

λmin,⊥(LA) = min
u�=0:1T

n u=0

uT LAu

‖u‖2 ≥ np

2
,

λmax(LA) = max
u�=0

uT LAu

‖u‖2 ≤ 2np

with probability at least 1 − O(n−10).

LEMMA 8.2. Assume p ≥ c0 logn
n

for some sufficiently large c0 > 0. For any fixed {wij },
we have

max
i∈[n]

∑
j∈[n]\{i}

w2
ij (Aij − p)2 ≤ Cnp max

i,j∈[n] |wij |2,
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and

max
i∈[n]

( ∑
j∈[n]\{i}

wij (Aij − p)

)2
≤ C(logn)2 max

i,j∈[n] |wij |2 + Cp lognmax
i∈[n]

∑
j∈[n]

w2
ij ,

for some constant C > 0 with probability at least 1 − O(n−10).

With λmin,⊥(LA) shown to be well behaved, the next lemma establishes a similar control
for λmin,⊥(H(θ)).

LEMMA 8.3. Assume p ≥ c0 logn
n

for some sufficiently large c0 > 0. For any θ ∈ R
n that

satisfies maxi∈[n] θi − mini∈[n] θi ≤ M , we have

λmin,⊥
(
H(θ)

) ≥ 1

8
e−Mnp,

with probability at least 1 − O(n−10).

Finally, we need a few concentration inequalities.

LEMMA 8.4. Assume κ = O(1) and p ≥ c0 logn
n

for some sufficiently large c0 > 0. Then
we have

n∑
i=1

( ∑
j∈[n]\{i}

Aij

(
ȳij − ψ

(
θ∗
i − θ∗

j

)))2
≤ C

n2p

L
,

max
i∈[n]

( ∑
j∈[n]\{i}

Aij

(
ȳij − ψ

(
θ∗
i − θ∗

j

)))2
≤ C

np logn

L
,

max
i∈[n]

∑
j∈[n]\{i}

Aij

(
ȳij − ψ

(
θ∗
i − θ∗

j

))2 ≤ C
np

L
,

for some constant C > 0 with probability at least 1 − O(n−10) uniformly over all θ∗ ∈
	(k,0, κ).

The proofs of the four lemmas above will be given in Appendix E.

8.3. Proof of Proposition 8.1. As we have outlined in Section 8.1, the main argument to
bound ‖θ̂ − θ∗‖∞ is to first derive a bound for ‖θ̂λ − θ∗‖∞, where θ̂λ is the penalized MLE
defined in (10). Then we only need to show θ̂λ and θ̂ are close with λ as small as λ = n−1.
We first state a lemma that bounds ‖θ̂λ − θ∗‖∞.

LEMMA 8.5. Under the setting of Theorem 3.1, for the estimator θ̂λ with λ = n−1, we
have ∥∥θ̂λ − θ∗∥∥∞ ≤ 4,

with probability at least 1 − O(n−7).

We first prove Proposition 8.1 with the help of Lemma 8.5. The proof of Lemma 8.5 largely
follows the arguments in [7] that analyze the regularized MLE. Since we only need to show
‖θ̂λ − θ∗‖∞ ≤ 4 rather than the optimal rate, the condition on L imposed by [7] is not needed
anymore. This requires a few minor changes in the proof of [7]. We include the detailed proof
of Lemma 8.5 in Appendix D in the Supplementary Material to be self-contained.
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PROOF OF PROPOSITION 8.1. Define a constraint MLE as

(38) θ̂con = argmin
1T

n θ=0:‖θ−θ∗‖∞≤5
�n(θ).

By Lemma 8.5, θ̂λ is feasible for the constraint of (38). We then have

(39) �n(θ̂λ) ≥ �n

(
θ̂con)

.

We apply Taylor expansion, and obtain

�n

(
θ̂con) = �n(θ̂λ) + (

θ̂con − θ̂λ

)T ∇�n(θ̂λ) + 1

2

(
θ̂λ − θ̂con)T

H(ξ)
(
θ̂λ − θ̂con)

,

where ξ is a convex combination of θ̂con and θ̂λ. By Lemma 8.5, we know that ‖θ̂λ − θ∗‖∞ ≤
4. We also have ‖θ̂con − θ∗‖∞ ≤ 5 by the definition of θ̂con. Thus, ‖ξ − θ∗‖∞ ≤ 5. By
Lemma 8.3, we get the lower bound

(40) �n

(
θ̂con) ≥ �n(θ̂λ) + (

θ̂con − θ̂λ

)T ∇�n(θ̂λ) + c1np
∥∥θ̂con − θ̂λ

∥∥2
,

for some constant c1 > 0. By (39) and (40), we have

∥∥θ̂con − θ̂λ

∥∥2 ≤ |(θ̂con − θ̂λ)
T ∇�n(θ̂λ)|

c1np
.

By the Cauchy–Schwarz inequality and the fact that ∇�n(θ̂λ) + λθ̂λ = 0, we have

∥∥θ̂con − θ̂λ

∥∥2 ≤ ‖∇�n(θ̂λ)‖2

(c1np)2 = λ2‖θ̂λ‖2

(c1np)2 � nλ2

(c1np)2 � n−1.

Finally, since ∥∥θ̂con − θ∗∥∥∞ ≤ ∥∥θ̂λ − θ∗∥∥∞ + ∥∥θ̂con − θ̂λ

∥∥ ≤ 4 + c2√
n

≤ 9

2
,

the minimizer of (38) is in the interior of the constraint. By the convexity of (38), we have
θ̂con = θ̂ , and thus the desired conclusion ‖θ̂ − θ∗‖∞ ≤ 5 is obtained. �

8.4. Proof of Theorem 3.1. We give separate proofs for the conclusions (8) and (9) in this
section.

PROOF OF (8) OF THEOREM 3.1. By the definition of θ̂ , we have �n(θ
∗) ≥ �n(θ̂). We

then apply Taylor expansion and obtain

�n(θ̂) = �n

(
θ∗) + (

θ̂ − θ∗)T ∇�n

(
θ∗) + 1

2

(
θ̂ − θ∗)T

H(ξ)
(
θ̂ − θ∗)

,

where ξ is a convex combination of θ̂ and θ∗. By Proposition 8.1, we have ‖θ̂ − θ∗‖∞ ≤ 5,
which implies ‖ξ − θ∗‖∞ ≤ 5. Thus, we can apply Lemma 8.3 and get 1

2(θ̂ − θ∗)T H(ξ)(θ̂ −
θ∗) ≥ c1np‖θ̂ − θ∗‖2 for some constant c1 > 0. Together with �n(θ

∗) ≥ �n(θ̂) and a Cauchy–

Schwarz inequality, we have ‖θ̂ − θ∗‖2 ≤ ‖∇�n(θ∗)‖2

(c1np)2 . Use (S128) and Lemma 8.4, we obtain

the desired conclusion that ‖θ̂ − θ∗‖2 � 1
Lp

. �

The proof of (9) is more involved. It is based on a leave-one-out argument that is very
different from the one used in [7]. Let us decompose the objective function �n(θ) as

(41) �n(θ) = �(−m)
n (θ−m) + �(m)

n (θm|θ−m),
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where we use θm ∈ R for the mth entry of θ and θ−m ∈ R
n−1 for the remaining entries. The

two functions in (41) are defined as

�(−m)
n (θ−m) = ∑

1≤i<j≤n:i,j �=m

Aij

[
ȳij log

1

ψ(θi − θj )
+ (1 − ȳij ) log

1

1 − ψ(θi − θj )

]
,

�(m)
n (θm|θ−m) = ∑

j∈[n]\{m}
Amj

[
ȳmj log

1

ψ(θm − θj )
+ (1 − ȳmj ) log

1

1 − ψ(θm − θj )

]
.

Define

(42) θ
(m)
−m = argmin

θ−m:‖θ−m−θ∗−m‖∞≤5
�(−m)
n (θ−m).

We first present an �2 norm bound for θ
(m)
−m . We also use H(−m)(θ−m) for the Hessian matrix

∇2�
(−m)
n (θ−m).

LEMMA 8.6. Under the setting of Theorem 3.1, there exists some constant C > 0 such
that

max
m∈[n]

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥2 ≤ C
1

pL
,

with probability at least 1 − O(n−9), where am = ave(θ
(m)
−m − θ∗

m).

PROOF. The proof is very similar to that of (8), since θ
(m)
−m can be thought of as a con-

strained MLE on a subset of the data. By the definition of θ
(m)
−m , we have

�(−m)
n

(
θ∗−m

) ≥ �(−m)
n

(
θ

(m)
−m

)
= �(−m)

n

(
θ∗−m

) + (
θ

(m)
−m − θ∗−m − am1n−1

)T ∇�(−m)
n

(
θ∗−m

)
+ 1

2

(
θ

(m)
−m − θ∗−m − am1n−1

)T
H(−m)(ξ)

(
θ

(m)
−m − θ∗−m − am1n−1

)
,

where ξ is a convex combination of θ
(m)
−m and θ∗−m. In the above Taylor expansion, we

have also used the property that �
(−m)
n (θ−m) = �

(−m)
n (θ−m + c1n−1), ∇�

(−m)
n (θ−m) =

∇�
(−m)
n (θ−m + c1n−1) and H(−m)(θ−m) = H(−m)(θ−m + c1n−1) for any c ∈ R. Since

‖ξ − θ∗−m‖∞ ≤ ‖θ(m)
−m − θ∗−m‖∞ ≤ 5, we can apply Lemma 8.3 to the subset of the data,

and obtain

1

2

(
θ

(m)
−m − θ∗−m − am1n−1

)T
H(−m)(ξ)

(
θ

(m)
−m − θ∗−m − am1n−1

)
≥ c1np

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥2
,

with probability at least 1 − O(n−10) for some constant c1 > 0. By the Cauchy–Schwarz
inequality, we have

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥2 ≤ ‖∇�
(−m)
n (θ∗−m)‖2

(c1np)2 .

Apply (S128) and Lemma 8.4 to the subset of the data, and we obtain that ‖θ(m)
−m − θ∗−m −

am1n−1‖2 ≤ C 1
pL

with probability at least 1 − O(n−10). Finally, a union bound argument
leads to the desired result. �
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With the help of Lemma 8.6, we are ready to prove (9).

PROOF OF (9) OF THEOREM 3.1. By Proposition 8.1, we have ‖θ̂−m − θ∗−m‖∞ ≤ ‖θ̂ −
θ∗‖∞ ≤ 5, and thus θ̂−m is feasible for the constraint of (42). By the definition of θ

(m)
−m , we

have

�(−m)
n (θ̂−m) ≥ �(−m)

n

(
θ

(m)
−m

)
= �(−m)

n (θ̂−m) + (
θ

(m)
−m − θ̂−m − ām1n−1

)T ∇�(−m)
n (θ̂−m)

+ 1

2

(
θ

(m)
−m − θ̂−m − ām1n−1

)T
H(−m)(ξ)

(
θ

(m)
−m − θ̂−m − ām1n−1

)
,

where ām = ave(θ
(m)
−m − θ̂−m) and ξ is a convex combination of θ

(m)
−m and θ̂−m. Since both

θ
(m)
−m and θ̂−m satisfy the constraint of (42), we must have ‖ξ − θ∗−m‖∞ ≤ 5. Then we can

apply Lemma 8.3 to the subset of the data, and obtain

1

2

(
θ

(m)
−m − θ̂−m − ām1n−1

)T
H(−m)(ξ)

(
θ

(m)
−m − θ̂−m − ām1n−1

)
≥ c1np

∥∥θ(m)
−m − θ̂−m − ām1n−1

∥∥2
,

for some constant c1 > 0. By the Cauchy–Schwarz inequality, we have

∥∥θ(m)
−m − θ̂−m − ām1n−1

∥∥2 ≤ ‖∇�
(−m)
n (θ̂−m)‖2

(c1np)2 .

For each i ∈ [n]\{m}, by the decomposition (41), we have

∂

∂θi

�(−m)
n (θ−m) = ∂

∂θi

�n(θ) − ∂

∂θi

�(m)
n (θm|θ−m).

Since ∇�n(θ̂) = 0, we have

∂

∂θi

�(−m)
n (θ−m)|θ=θ̂ = − ∂

∂θi

�(m)
n (θm|θ−m)|θ=θ̂ = −Ami

(
ȳmi − ψ(θ̂m − θ̂i )

)
.

We therefore have the bound,∥∥∇�(−m)
n (θ̂−m)

∥∥2 = ∑
i∈[n]\{m}

Ami

(
ȳmi − ψ(θ̂m − θ̂i )

)2

≤ 2
∑

i∈[n]\{m}
Ami

(
ȳmi − ψ

(
θ∗
m − θ∗

i

))2

+ 2
∑

i∈[n]\{m}
Ami

(
ψ

(
θ∗
m − θ∗

i

) − ψ(θ̂m − θ̂i )
)2

≤ 2
∑

i∈[n]\{m}
Ami

(
ȳmi − ψ

(
θ∗
m − θ∗

i

))2 + 2
∥∥θ̂ − θ∗∥∥2

∞
∑

i∈[n]\{m}
Ami

≤ 2
∑

i∈[n]\{m}
Ami

(
ȳmi − ψ

(
θ∗
m − θ∗

i

))2 + 4np
∥∥θ̂ − θ∗∥∥2

∞,

where the last inequality is by Lemma 8.1. This implies

max
m∈[n]

∥∥θ(m)
−m − θ̂−m − ām1n−1

∥∥2 ≤ maxm∈[n]
∑

i∈[n]\{m} Ami(ȳmi − ψ(θ∗
m − θ∗

i ))2

(c1np)2/2

+ ‖θ̂ − θ∗‖2∞
c2

1np/4
.
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Since we need a bound for maxm∈[n] ‖θ(m)
−m − θ̂−m − am1n−1‖2, we need to quantify the

difference between am and ām. Recall that am = ave(θ
(m)
−m − θ∗

m). Since 1T
n θ̂ = 1T

n θ∗ = 0, we
have

‖am1n−1 − ām1n−1‖2 = (n − 1)
(
ave

(
θ̂−m − θ∗−m

))2 = (θ̂m − θ∗
m)2

n − 1
≤ ‖θ̂ − θ∗‖2∞

n − 1
.

We then have

max
m∈[n]

∥∥θ(m)
−m − θ̂−m − am1n−1

∥∥2

≤ C1
maxm∈[n]

∑
i∈[n]\{m} Ami(ȳmi − ψ(θ∗

m − θ∗
i ))2

n2p2(43)

+ C1
‖θ̂ − θ∗‖2∞

np
,

for some constant C1 > 0.
Next, let us derive a bound for ‖θ̂ − θ∗‖2∞ in terms of maxm∈[n] ‖θ(m)

−m − θ̂−m − am1n−1‖2.
We introduce the notation:

f (m)(θm|θ−m) = ∂

∂θm

�(m)
n (θm|θ−m) = − ∑

i∈[n]\{m}
Ami

(
ȳmi − ψ(θm − θi)

)
,

g(m)(θm|θ−m) = ∂2

∂θ2
m

�(m)
n (θm|θ−m) = ∑

i∈[n]\{m}
Amiψ(θm − θi)ψ(θi − θm).

By the definition of θ̂ , we know that �n(θ̂) = minθ :1T
n θ=0 �n(θ). Since �n(θ) = �n(θ + c1n)

for any c ∈ R, we also have �n(θ̂) = minθ �n(θ). This allows us to compare the value of the
objective �n(θ) at θ̂ with any vector that is not necessarily centered. We then have

�(m)
n (θ∗

m|θ̂−m) + �(−m)
n (θ̂−m) ≥ �n(θ̂),

which implies

�(m)
n

(
θ∗
m|θ̂−m

) ≥ �(m)
n (θ̂m|θ̂−m)

= �(m)
n

(
θ∗
m|θ̂−m

) + (
θ̂m − θ∗

m

)
f (m)(θ∗

m|θ̂−m

) + 1

2

(
θ̂m − θ∗

m

)2
g(m)(ξ |θ̂−m),

where ξ is a scalar between θ∗
m and θ̂m. By Proposition 8.1, |ξ − θ∗

m| ≤ |θ̂m − θ∗
m| ≤ ‖θ̂ −

θ∗‖∞ ≤ 5. Therefore, for any i ∈ [n]\{m}, |ξ − θ̂i | ≤ |ξ −θ∗
m|+|θ∗

m−θ∗
i |+|θ̂i −θ∗

i | ≤ 10+κ .
This implies 1

2g(m)(ξ |θ̂−m) ≥ c2np for some constant c2 > 0 with the help of Lemma 8.1. We
then have the bound

(44)
(
θ̂m − θ∗

m

)2 ≤ |f (m)(θ∗
m|θ̂−m)|2

(c2np)2 .

We bound |f (m)(θ∗
m|θ̂−m)| by∣∣f (m)(θ∗
m|θ̂−m

)∣∣ =
∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ȳmi − ψ

(
θ∗
m − θ̂i

))∣∣∣∣
≤

∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ȳmi − ψ

(
θ∗
m − θ∗

i

))∣∣∣∣(45)
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+
∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣(46)

+
∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ψ

(
θ∗
m − θ

(m)
i + am

) − ψ
(
θ∗
m − θ̂i

))∣∣∣∣.(47)

We use Lemma 8.2 to bound (46). We have∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣
≤ p

∣∣∣∣ ∑
i∈[n]\{m}

(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣(48)

+
∣∣∣∣ ∑
i∈[n]\{m}

(Ami − p)
(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣(49)

≤ p
√

n
∥∥θ(m)

−m − θ∗−m − am1n−1
∥∥ + C2 logn

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥∞

+ C2

√
p logn

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥
≤ (p

√
n + C2

√
p logn)

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥ + C2 logn
∥∥θ̂ − θ∗∥∥∞

+ C2 logn
∥∥θ(m)

−m − θ̂−m − am1n−1
∥∥.

With the help of 8.1, we can also bound (47), and we get∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ψ

(
θ∗
m − θ

(m)
i + am

) − ψ
(
θ∗
m − θ̂i

))∣∣∣∣
≤

√ ∑
i∈[n]\{m}

Ami

∥∥θ(m)
−m − θ̂−m − am1n−1

∥∥(50)

≤ C3
√

np
∥∥θ(m)

−m − θ̂−m − am1n−1
∥∥.

Plug the bounds into (44), and we have∥∥θ̂ − θ∗∥∥∞ ≤ maxm∈[n] |∑i∈[n]\{m} Ami(ȳmi − ψ(θ∗
m − θ∗

i ))|
c2np

+ (p
√

n + C2
√

p logn)maxm∈[n] ‖θ(m)
−m − θ∗−m − am1n−1‖

c2np

+ (C2 logn + C3
√

np)‖θ(m)
−m − θ̂−m − am1n−1‖

c2np
+ C2 logn‖θ̂ − θ∗‖∞

c2np
.

Since np ≥ c0 logn for some sufficiently large c0, we obtain the bound∥∥θ̂ − θ∗∥∥∞ ≤ C4
maxm∈[n] |∑i∈[n]\{m} Ami(ȳmi − ψ(θ∗

m − θ∗
i ))|

np

+ C4
p
√

nmaxm∈[n] ‖θ(m)
−m − θ∗−m − am1n−1‖
np

(51)

+ C4
(logn + √

np)‖θ(m)
−m − θ̂−m − am1n−1‖
np

.
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Let us plug the above bound into (43). Then, after some rearrangement, we obtain

max
m∈[n]

∥∥θ(m)
−m − θ̂−m − am1n−1

∥∥ ≤ C5

maxm∈[n]
√∑

i∈[n]\{m} Ami(ȳmi − ψ(θ∗
m − θ∗

i ))2

np

+ C5
maxm∈[n] |∑i∈[n]\{m} Ami(ȳmi − ψ(θ∗

m − θ∗
i ))|

np
√

np

+ C5
maxm∈[n] ‖θ(m)

−m − θ∗−m − am1n−1‖
n
√

p
.

By Lemma 8.4 and Lemma 8.6, we have

(52) max
m∈[n]

∥∥θ(m)
−m − θ̂−m − am1n−1

∥∥ ≤ C7

√
1

npL
.

Now we can plug the bound (52) back into (51), and together with Lemma 8.4 and
Lemma 8.6, we have

(53)
∥∥θ̂ − θ∗∥∥∞ ≤ C8

√
logn

npL
,

which is the desired conclusion. Tracking all the probabilistic events that we have used in the
proof, we can conclude that both (52) and (53) hold with probability at least 1−O(n−7). �

8.5. Proofs of Theorem 3.2 and Theorem 3.3. In the proof of (9), we have established the
byproduct (52). This bound turns out to be extremely important for us to establish the result
of Theorem 3.2. We therefore list it, together with its consequence, as a lemma.

LEMMA 8.7. Under the setting of Theorem 3.1, there exists some constant C > 0 such
that

max
m∈[n]

∥∥θ(m)
−m − θ̂−m − am1n−1

∥∥2 ≤ C
1

npL
,

max
m∈[n]

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥2
∞ ≤ C

logn

npL
,

with probability at least 1−O(n−7), where am = ave(θ
(m)
−m − θ∗

m) and θ
(m)
−m is defined by (42).

PROOF. The first conclusion has been established in (52). The second conclusion is a
consequence of the inequality

max
m∈[n]

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥2
∞ ≤ 2 max

m∈[n]
∥∥θ(m)

−m − θ̂−m − am1n−1
∥∥2 + 2

∥∥θ̂ − θ∗∥∥2
∞,

and (53). �

Now we are ready to prove Theorem 3.2.

PROOF OF THEOREM 3.2. When the error exponent is of constant order, the bound is
also a constant, and the result already holds since Hk(̂r, r

∗) ≤ 1. Therefore, we only need to
consider the case when the error exponent tends to infinity. We first introduce some notation.
Define

(54) η = 1

2
− V (κ)

(1 − δ̄)�2npL
log

n − k

k
,
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where δ̄ = o(1) is chosen such that η > 0. The specific choice of δ̄ will be specified in the
proof. Then let

(55) �̄i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

(
η
(
θ∗
k − θ∗

k+1
) + θ∗

i − θ∗
k ,

(
logn

np

)1/4)
, 1 ≤ i ≤ k,

min
(
(1 − η)

(
θ∗
k − θ∗

k+1
) + θ∗

k+1 − θ∗
i ,

(
logn

np

)1/4)
, k + 1 ≤ i ≤ n.

Since the diverging error exponent implies SNR → ∞, we have mini∈[n] �̄2
i Lnp → ∞ and

maxi∈[n] �̄i → 0.
The proof involves several steps. In the first step, we need to derive a sharp probabilis-

tic bound for |f (m)(θ∗
m|θ̂−m)|. In the proof of (9) of Theorem 3.1, we have shown that

|f (m)(θ∗
m|θ̂−m)| can be bounded by the sum of (45), (47), (48) and (49). For (45), we can

use Hoeffding’s inequality and Lemma 8.1 and obtain the bound∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ȳmi − ψ

(
θ∗
m − θ∗

i

))∣∣∣∣ ≤ C1

√
x

∑
i∈[n]\{m} Ami

L
≤ C2

√
xnp

L
,(56)

with probability at least 1 − O(n−10) − e−x . Take x = �̄
3/2
m Lnp, and we have

(57)
∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ȳmi − ψ

(
θ∗
m − θ∗

i

))∣∣∣∣ ≤ C2

√
�̄

3/2
m (np)2,

with probability at least 1 − O(n−10) − e−�̄
3/2
m Lnp . Since we have already shown (47) can be

bounded by (50) with probability at least 1 − O(n−10), an application of Lemma 8.7 implies
that

(58)
∣∣∣∣ ∑
i∈[n]\{m}

Ami

(
ψ

(
θ∗
m − θ

(m)
i + am

) − ψ
(
θ∗
m − θ̂i

))∣∣∣∣ ≤ C3

√
1

L
,

with probability at least 1 − O(n−7). By the Cauchy–Schwarz inequality, we can bound (48)
by p

√
n‖θ(m)

−m − θ∗−m − am1n−1‖. With the help of Lemma 8.6, we have

(59) p

∣∣∣∣ ∑
i∈[n]\{m}

(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣ ≤ C4

√
np

L
,

with probability at least 1 − O(n−9). For (49), we use Bernstein’s inequality, and we have∣∣∣∣ ∑
i∈[n]\{m}

(Ami − p)
(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣
≤ C5

√
px

∥∥θ(m)
−m − θ∗−m − am1n−1

∥∥ + C5x
∥∥θ(m)

−m − θ∗−m − am1n−1
∥∥∞,

(60)

with probability at least 1 − e−x . We choose x = min(�̄2
mLnp

np
logn

,7 logn). Then, with the
help of Lemma 8.6 and Lemma 8.7, we have∣∣∣∣ ∑

i∈[n]\{m}
(Ami − p)

(
ψ

(
θ∗
m − θ∗

i

) − ψ
(
θ∗
m − θ

(m)
i + am

))∣∣∣∣
≤ C6

1√
L

√
min

(
�̄2

mLnp
np

logn
,7 logn

)
(61)

+ C6

√
logn

npL
min

(
�̄2

mLnp
np

logn
,7 logn

)
,
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with probability at least 1−O(n−7)−exp(−�̄2
mnpL

np
logn

). Combining the bounds (57)–(61),

we obtain a bound for |f (m)(θ∗
m|θ̂−m)|. This also implies a bound for |θ̂m − θ∗

m| because of
the inequality (44).

In the second step, we define

θ̄m = θ∗
m − f (m)(θ∗

m|θ̂−m)

g(m)(θ∗
m|θ̂−m)

.(62)

We need to show θ̄m and θ̂m are close. By Proposition 8.1, ‖θ̂ − θ∗‖∞ ≤ 5, and thus
g(m)(θ∗

m|θ̂−m) ≥ c1np for some constant c1 > 0, so that we have the bound |θ̄m − θ∗
m| ≤

|f (m)(θ∗
m|θ̂−m)|

c1np
. In fact, given the inequality (44), we can choose c1 to be sufficiently small so

that |θ̂m − θ∗
m| ≤ |f (m)(θ∗

m|θ̂−m)|
c1np

is also true. Therefore, we can express θ̄m and θ̂m as

θ̄m = argmin
|θm−θ∗

m|≤ |f (m)(θ∗
m|θ̂−m)|

c1np

�̄(m)
n (θm|θ̂−m),

θ̂m = argmin
|θm−θ∗

m|≤ |f (m)(θ∗
m|θ̂−m)|

c1np

�(m)
n (θm|θ̂−m),

where

�̄(m)
n (θm|θ̂−m) = �(m)

n

(
θ∗
m|θ̂−m

) + (
θm − θ∗

m

)
f (m)(θ∗

m|θ̂−m

) + 1

2

(
θm − θ∗

m

)2
g(m)(θ∗

m|θ̂−m

)
.

Recall the definition of �
(m)
n (θm|θ−m) in (41) and the display afterwards. We will show θ̄m

and θ̂m are close by bounding the difference between the two objective functions. By Taylor
expansion, we have∣∣�(m)

n (θm|θ̂−m) − �̄(m)
n (θm|θ̂−m)

∣∣ = 1

2

(
θm − θ∗

m

)2∣∣g(m)(ξ |θ̂−m) − g(m)(θ∗
m|θ̂−m

)∣∣,
where ξ is a scalar between θm and θ∗

m. We then have∣∣g(m)(ξ |θ̂−m) − g(m)(θ∗
m|θ̂−m

)∣∣
=

∣∣∣∣ ∑
i∈[n]\{m}

Amiψ(ξ − θ̂i )ψ(θ̂i − ξ) − ∑
i∈[n]\{m}

Amiψ
(
θ∗
m − θ̂i

)
ψ

(
θ̂i − θ∗

m

)∣∣∣∣
≤ ∣∣ξ − θ∗

m

∣∣ ∑
i∈[n]\{m}

Ami

≤ C7
∣∣θm − θ∗

m

∣∣np,

where the last inequality uses Lemma 8.1. Therefore, for any θm that satisfies |θm − θ∗
m| ≤

|f (m)(θ∗
m|θ̂−m)|

c1np
, the difference between the two objective functions can be bounded by

∣∣�(m)
n (θm|θ̂−m) − �̄(m)

n (θm|θ̂−m)
∣∣ ≤ C7np

2

∣∣θm − θ∗
m

∣∣3 ≤ C7np

2

( |f (m)(θ∗
m|θ̂−m)|

c1np

)3
.

By Pythagorean identity, �̄
(m)
n (θ̂m|θ̂−m) = �̄

(m)
n (θ̄m|θ̂−m) + 1

2g(m)(θ∗
m|θ̂−m)(θ̂m − θ̄m)2. Then

1

2
g(m)(θ∗

m|θ̂−m

)
(θ̂m − θ̄m)2

= �̄(m)
n (θ̂m|θ̂−m) − �̄(m)

n (θ̄m|θ̂−m)
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≤ �(m)
n (θ̂m|θ̂−m) − �̄(m)

n (θ̄m|θ̂−m) + C7np

2

( |f (m)(θ∗
m|θ̂−m)|

c1np

)3

≤ �(m)
n (θ̄m|θ̂−m) − �̄(m)

n (θ̄m|θ̂−m) + C7np

2

( |f (m)(θ∗
m|θ̂−m)|

c1np

)3

≤ 2
C7np

2

( |f (m)(θ∗
m|θ̂−m)|

c1np

)3
.

Since g(m)(θ∗
m|θ̂−m) ≥ c1np, we obtain the bound

(θ̂m − θ̄m)2 ≤ 2C7

c4
1

( |f (m)(θ∗
m|θ̂−m)|

np

)3
.

Since |f (m)(θ∗
m|θ̂−m)| has been shown to be bounded by the sum of (57)–(61), we have

(63) |θ̂m − θ̄m| ≤ δ�̄m,

for some δ = o(1) with probability at least 1 − O(n−7) − exp(−�̄
3/2
m Lnp) − exp(−�̄2

mnp ×
L

np
logn

) under the condition that �̄m = o(1) and np
logn

→ ∞.

In the third step, we need to show that f (m)(θ∗
m|θ̂−m)

g(m)(θ∗
m|θ̂−m)

in the definition of θ̄m can be replaced

by
f (m)(θ∗

m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

with a negligible error. By triangle inequality, we can bound |f (m)(θ∗
m|θ̂−m)−

f (m)(θ∗
m|θ∗−m)| by the sum of (58), (59) and (61). Given that g(m)(θ∗

m|θ∗−m) � np, we have

(64)
|f (m)(θ∗

m|θ̂−m) − f (m)(θ∗
m|θ∗−m)|

g(m)(θ∗
m|θ∗−m)

≤ δ�̄m,

for some δ = o(1) with probability at least 1 − O(n−7) − exp(−�̄2
mnpL

np
logn

) under the

assumption that npL�̄2
m → ∞ and np

logn
→ ∞. Note that we can choose the same δ to ac-

commodate the two bounds (63) and (64). We also need to give a sharp approximation to
g(m)(θ∗

m|θ̂−m). We have∣∣g(m)(θ∗
m|θ̂−m

) − g(m)(θ∗
m|θ∗−m

)∣∣
≤ ∣∣g(m)(θ∗

m|θ̂−m

) − g(m)(θ∗
m|θ(m)

−m − am1n−1
)∣∣

+ ∣∣g(m)(θ∗
m|θ(m)

−m − am1n−1
) − g(m)(θ∗

m|θ∗−m

)∣∣
≤

√ ∑
i∈[n]\{m}

Ami

∥∥θ(m)
−m − am1n−1 − θ̂−m

∥∥ + p
√

n
∥∥θ(m)

−m − am1n−1 − θ∗∥∥
+ ∑

i∈[n]\{m}
(Ami − p)

∣∣θ(m)
i − am − θ∗

i

∣∣.
By Lemma 8.1, Lemma 8.6 and Lemma 8.7, the first two terms can be bounded by C8

√
np
L

with probability at least 1 − O(n−7). To bound the third term, we can use Lemma 8.2, and
then

∑
i∈[n]\{m}(Ami − p)|θ(m)

i − am − θ∗
i | can be bounded by

C8

√
p logn

∥∥θ(m)
−m − am1n−1 − θ∗∥∥ + C8 logn

∥∥θ(m)
−m − am1n−1 − θ∗∥∥∞,

with probability at least 1 − O(n−10). By Lemma 8.6 and Lemma 8.7, the above display is

at most C9

√
logn
L

+ C9
(logn)3/2√

npL
with probability at least 1 − O(n−7). Combining our bounds,
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we obtain ∣∣g(m)(θ∗
m|θ̂−m

) − g(m)(θ∗
m|θ∗−m

)∣∣ �
√

np

L
+ (logn)3/2

√
npL

.(65)

Since g(m)(θ∗
m|θ∗−m) � np, we have

(66)
|g(m)(θ∗

m|θ̂−m) − g(m)(θ∗
m|θ∗−m)|

g(m)(θ∗
m|θ∗−m)

≤ δ,

for some δ = o(1) with probability at least 1 − O(n−7). Note that we can choose the same δ

to accommodate the three bounds (63), (64) and (66).
In the last step, we will apply Lemma 3.1 with t = (1 − η)θ∗

k + ηθ∗
k+1 to complete the

proof. Recall the definition of η in (54). For any i ≤ k, we have

P
(
θ̂i ≤ (1 − η)θ∗

k + ηθ∗
k+1

)
)

≤ P
(
θ̂i − θ∗

i ≤ −η
(
θ∗
k − θ∗

k+1
) − (

θ∗
i − θ∗

k

))
≤ P

(
θ̄i − θ∗

i ≤ −(1 − δ)�̄i

) + P
(|θ̄i − θ̂i | > δ�̄i

)
≤ P

(
−f (i)(θ∗

i |θ∗−i )

g(i)(θ∗
i |θ∗−i )

≤ −(
1 + δ2 − 3δ

)
�̄i

)
+ P

(|θ̄i − θ̂i | > δ�̄i

)
(67)

+ P

( |g(i)(θ∗
i |θ̂−i ) − g(i)(θ∗

i |θ∗−i)|
g(i)(θ∗

i |θ∗−i )
> δ

)

+ P

( |f (i)(θ∗
i |θ̂−i ) − f (i)(θ∗

i |θ∗−i )|
g(i)(θ∗

i |θ∗−i )
> δ�̄i

)

≤ P

(
−f (i)(θ∗

i |θ∗−i )

g(i)(θ∗
i |θ∗−i )

≤ −(1 − 3δ)�̄i

)
+ O

(
n−7)

+ exp
(−�̄

3/2
i Lnp

) + exp
(
−�̄2

i npL
np

logn

)
,

where the last inequality is due to (63), (64) and (66). Define the event

Ai =
{
A :

∣∣∣∣
∑

j∈[n]\{i} Aijψ(θ∗
i − θ∗

j )ψ(θ∗
j − θ∗

i )

p
∑

j∈[n]\{i} ψ(θ∗
i − θ∗

j )ψ(θ∗
j − θ∗

i )
− 1

∣∣∣∣ ≤ δ

}
.

By Bernstein’s inequality, we have P(A ∈ Ac
i ) ≤ O(n−7) for some δ = o(1). Again, we shall

adjust the value of δ so that (63), (64) and (66) are still true. We then have

P

(
−f (i)(θ∗

i |θ∗−i)

g(i)(θ∗
i |θ∗−i )

≤ −(1 − 3δ)�̄i

)

≤ sup
A∈Ai

P

( ∑
j∈[n]\{i} Aij (ȳij − ψ(θ∗

i − θ∗
j ))∑

j∈[n]\{i} Aijψ(θ∗
i − θ∗

j )ψ(θ∗
j − θ∗

i )
≤ −(1 − 3δ)�̄i |A

)
+ P

(
A ∈ Ac

i

)
≤ sup

A∈Ai

exp
(
−

1
2(1 − 3δ)2�̄2

i (L
∑

j∈[n]\{i} Aijψ
′(θ∗

i − θ∗
j ))2

L
∑

j∈[n]\{i} Aijψ ′(θ∗
i − θ∗

j ) + 1−3δ
3 �̄iL

∑
j∈[n]\{i} Aijψ ′(θ∗

i − θ∗
j )

)
(68)
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+ O
(
n−7)

= exp
(
−1 + o(1)

2
�̄2

i Lp
∑

j∈[n]\{i}
ψ ′(θ∗

i − θ∗
j

)) + O
(
n−7)

(69)

≤ exp
(
−1 + o(1)

2

(
η
(
θ∗
k − θ∗

k+1
) + (

θ∗
i − θ∗

k

))2
Lp

∑
j∈[n]\{i}

ψ ′(θ∗
i − θ∗

j

))
(70)

+ O
(
n−7)

≤ exp
(
−1 + o(1)

2

(
�̄ + (

θ∗
i − θ∗

k

))2
Lp

∑
j∈[n]\{i}

ψ ′(θ∗
i − θ∗

j

)) + O
(
n−7)

.(71)

The bound (68) is by Bernstein’s inequality. We then use the definition of Ai to obtain the

expression (69). To see why (70) is true, note that when �̄2
i =

√
logn
np

, the first term of (69)

can be absorbed into O(n−7). Finally, in (71), we have used the notation �̄ = min(η(θ∗
k −

θ∗
k+1), (

logn
np

)1/4). For each j ∈ [n], define

hj (t) = (�̄ + t)2ψ ′(t + θ∗
k − θ∗

j

)
, for all t ≥ 0.

The derivative of this function is

h′
j (t) = (�̄ + t)ψ ′(t + θ∗

k − θ∗
j

)[
2 + (�̄ + t)

(
1 − 2ψ

(
t + θ∗

k − θ∗
j

))]
.

Since maxj,k |θ∗
k − θ∗

j | = O(1), we can find a sufficiently small constant c2 > 0, such that
hj (t) is increasing on [0, c2]. Moreover, there exists another small constant c3 > 0 such that
mint∈(c2,κ] hj (t) ≥ c3. With this fact, we can bound the exponent of (71) as(

�̄ + (
θ∗
i − θ∗

k

))2
Lp

∑
j∈[n]\{i}

ψ ′(θ∗
i − θ∗

j

)
≥ Lp

∑
j∈[n]\{i}

min
(
�̄2ψ ′(θ∗

k − θ∗
j

)
, c3

)
≥ Lp(k − 1)min

(
�̄2ψ ′(θ∗

1 − θ∗
k

)
, c3

) + Lp(n − k)min
(
�̄2ψ ′(θ∗

k − θ∗
n

)
, c3

)
(72)

= Lp�̄2(
(k − 1)ψ ′(θ∗

1 − θ∗
k

) + (n − k)ψ ′(θ∗
k − θ∗

n

))
≥ (

1 + o(1)
)
Lp min

(
η2�2,

√
logn

np

)
n

V (κ)

where the equality (72) uses the fact that �̄ → 0. Therefore, we can further bound (71) as

exp
(
−1 + o(1)

2
Lp min

(
η2�2,

√
logn

np

)
n

V (κ)

)
+ O

(
n−7)

≤ exp
(
−(1 + o(1))η2�2npL

2V (κ)

)
+ O

(
n−7)

.

The last inequality holds because when min(η2�2,
√

logn
np

) =
√

logn
np

, the first term be-

comes exp(− (1+o(1))L
√

np logn
2V (κ)

), which can be absorbed by O(n−7). Since exp(−�̄
3/2
i Lnp)+

exp(−�̄2
i npL

np
logn

) ≤ exp(− (1+o(1))η2�2npL
2V (κ)

) + O(n−7), we have

(73) P
(
θ̂i ≤ (1 − η)θ∗

k + ηθ∗
k+1

)
) ≤ exp

(
−(1 − δ′)η2�2npL

2V (κ)

)
+ O

(
n−7)

,
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with some δ′ = o(1) for all i ≤ k. With a similar argument, we also have

(74) P
(
θ̂i ≥ (1 − η)θ∗

k + ηθ∗
k+1

)
) ≤ exp

(
−(1 − δ′)(1 − η)2�2npL

2V (κ)

)
+ O

(
n−7)

,

for all all i ≥ k+1. It can be checked that the δ′ above is independent of the δ̄ in the definition
of η. Now we can choose η as in (54) with δ̄ = δ′. By Lemma 3.1, we have

EHk

(̂
r, r∗) ≤ exp

(
−(1 − δ̄)η2�2npL

2V (κ)

)

+n − k

k
exp

(
−(1 − δ̄)(1 − η)2�2npL

2V (κ)

)
+ O

(
n−7)

≤ 2 exp
(
−1

2

(√
(1 − δ̄)SNR

2
− 1√

(1 − δ̄)SNR
log

n − k

k

)2)
+ O

(
n−7)

.

By Markov’s inequality, the above bound implies

Hk

(̂
r, r∗) ≤ exp

(
−1

2

(√
(1 − δ1)SNR

2
− 1√

(1 − δ1)SNR
log

n − k

k

)2)
+ O

(
n−6)

,

for some δ1 = o(1) with high probability. One can take, for example,

δ1 = δ̄ + 1√
(1−δ̄)SNR

2 − 1√
(1−δ̄)SNR

log n−k
k

.

When O(n−6) dominates the bound, we have Hk(̂r, r
∗) = O(n−6), which implies Hk(̂r, r

∗) =
0 since Hk(̂r, r

∗) ∈ {0, (2k)−1,2(2k)−1,3(2k)−1, . . . ,1}. Therefore, we always have

Hk

(̂
r, r∗) ≤ 2 exp

(
−1

2

(√
(1 − δ1)SNR

2
− 1√

(1 − δ1)SNR
log

n − k

k

)2)
,

with high probability for some δ1 = o(1). The proof is complete. �

PROOF OF THEOREM 3.3. With some rearrangements, the condition is equivalent to

npL�2

2(1 + ε)V (κ)

(
1

2
− (1 + ε)V (κ)

npL�2 log
n − k

k

)2
> logk.

Since ε is a constant, it implies

npL�2

2V (κ)

(
1

2
− V (κ)

(1 − δ)npL�2 log
n − k

k

)2
> (1 + ε) log k,

for any δ = o(1). Therefore, Hk(̂r, r
∗) = o(k−1) when k → ∞. Given the fact that Hk(̂r, r

∗) ∈
{0, (2k)−1,2(2k)−1,3(2k)−1, . . . ,1}, we must have Hk(̂r, r

∗) = 0. When k = O(1), the con-

dition implies npL�2

2V (κ)
> (1 + ε′) logn for some constant ε′ > 0. This leads to the fact that

(1
2 − V (κ)

(1−δ)npL�2 log n−k
k

)2 > c1 for some constant c1 > 0. Therefore, Hk(̂r, r
∗) = o(1) =

o(k−1), which implies Hk(̂r, r
∗) = 0. �
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SUPPLEMENTARY MATERIAL

Supplement to “Partial recovery for top-k ranking: Optimality of MLE and sub-
optimality of the spectral method” (DOI: 10.1214/21-AOS2166SUPP; .pdf). The supple-
ment [5] includes all the technical proofs. In Appendix A, we first give proofs for all the
results established in Section 4: Theorem 4.1, Theorem 4.2 and Theorem 4.3. After that, we
prove Theorem 3.4 and Theorem 6.1 in Appendix B. We then include the proofs of Theo-
rem 7.1 and Theorem 7.2 in Appendix C, the proof of Lemma 8.5 in Appendix D and the
proofs of all the other technical lemmas in Appendix E. The count method is discussed in
Appendix F.
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