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The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between
individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the
understanding of uncertainty quantification in the BTL model remains largely incomplete, especially
when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two
estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the
spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions
for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying
comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for
both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of
�2 estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a
self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis.

Keywords: Bradley–Terry–Luce model; uncertainty quantification; central limit theorem; maximum
likelihood estimator; spectral estimator.

1. Introduction

1.1 Overview

In this paper, we study the problem of uncertainty quantification in the Bradley–Terry–Luce (BTL)
model. Given n individuals with unknown merit scores θ∗ = (θ∗

1 , . . . , θ∗
n )� and an Erdoős–Rényi

comparison graph A = {Aij}i<j with success probability p, individuals i and j are compared L times
if Aij = 1, and each binary result yij� is independently in favour of the former with probability

P(yij� = 1) ≡ eθ∗
i

eθ∗
i + eθ∗

j
.

Equipped with the realization of the comparison graph A and all the pairwise comparison results, the
goal is to conduct inference on the unknown merit vector θ∗. We give a detailed review of the BTL model
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1074 C. GAO ET AL.

in Section 2 ahead. Along with its generalizations [20, 21, 30] and close cousins in assortive networks
[3, 15, 29], the BTL model has found extensive applications in web search [9, 10], competitive sports
[23, 34] and social network analysis [25, 32].

Among many statistical procedures developed for the BTL model, the following two approaches
have received particular attention in recent years due to their wide applicability in practice.

• (Maximum likelihood estimator) In the current formulation, the maximum likelihood estimator
(MLE) leads to a convex program and can be solved by efficient algorithms developed in [12, 16,
18, 44].

• (Spectral estimator) The spectral method, also named rank centrality in its original discovery [24],
associates the pairwise comparisons with a Markov chain on the underlying comparison graph.
The estimator is then taken to be the stationary measure of the corresponding sample transition
probability matrix, and hence can be solved efficiently via power iterations [24].

In the past few years, a series of works [4–6, 24] have studied in depth the theoretical properties
of these two estimators, with focus on their �2/�∞ estimation accuracy and performance in partial/full
ranking; see Section 2 ahead for a detailed review of related results.

Compared to the above thorough study of the first-order asymptotics of the estimators, the
understanding of the associated limiting distribution theory is much less complete. A critical step
in establishing optimal error bounds for partial recovery of ranking in [5] is sharp tail probability
estimates for both the MLE and the spectral method. These results suggest, though do not directly imply,
asymptotic normality. In the seminal work [36], asymptotic normality was first rigourously proved for
the MLE when the comparison graph is fully connected (i.e. the underlying Erdoős–Rényi comparison
graph satisfies p = 1). Using the same proof strategy, [14] later extended the above result to the regime
p � n−1/10 (up to some poly-logarithmic factors). Since the Erdoős–Rényi graph is connected with
high probability as soon as np ≥ (1 + ε) log n for any ε > 0, this leaves open the most challenging
but practically relevant regime p � n−1 (up to some poly-logarithmic factors), as many real world
networks only have near constant degrees. The goal of this paper is to fill this gap by providing a sharp
characterization of both estimators in this regime.

1.2 Main contribution

Using a unified proof strategy, our main theoretical results provide a non-asymptotic expansion of
both estimators in the regime p � n−1 (up to some poly-logarithmic factors). Let us start with the
MLE, which we will denote by θ̂ . Our first main result states that (see Theorem 2 ahead for the formal
statement)

θ̂i − θ∗
i ≈ bi

di
, (1.1)

where

bi =
∑
j:j 	=i

Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)
, di =

∑
j:j 	=i

Aijψ
′(θ∗

i − θ∗
j ).

Here ȳij ≡ L−1∑L
�=1 yij� is the averaged comparison result between individuals i and j when Aij = 1,

ψ(x) ≡ ex/(1 + ex) is the logistic function, and the approximation ≈ in (1.1) is uniform over the
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1075

coordinates i ∈ [n]. To the best of our knowledge, (1.1) as formally stated in Theorem 2 is the first result
in the literature with an explicit non-asymptotic expansion in the sparse regime p � n−1 (up to some
poly-logarithmic factors).

Thanks to the tractable form of the main terms {bi/di} (we will defer their interpretation to Section 2
ahead), we are able to characterize the asymptotic behavior of the MLE θ̂ . In particular, we will present
three concrete applications of the expansion in (1.1): (i) a finite-dimensional central limit theorem (CLT)
of θ̂ ; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of �2 estimation
in the BTL model; see Section 4 ahead for details.

Using the same proof strategy underlying (1.1), we are able to derive a similar expansion for the
spectral estimator which we denote by θ̃ (see Theorem 3 ahead for the formal statement):

θ̃i − θ∗
i ≈ b̃i

d̃i

, (1.2)

where

b̃i =
∑
j:j 	=i

Aij(π
∗
i + π∗

j )
(
ȳij − ψ(θ∗

i − θ∗
j )
)
, d̃i = π∗

i ·
∑
j:j 	=i

Aijψ(θ∗
j − θ∗

i ).

Here π∗ = (π∗
1 , . . . , π∗

n )� is the stationary measure of the Markov chain associated with the spectral
estimator (see Section 2.1 ahead for details), and the approximation ≈ in (1.2) is again uniform over
the coordinates i ∈ [n]. To the best of our knowledge, (1.2) is the first result in the literature that
gives a sharp non-asymptotic expansion of the spectral estimator in the sparse regime p � n−1 (up to
some poly-logarithmic factors). Analogous to the MLE θ̂ , the expansion (1.2) also leads to a finite-
dimensional CLT for the spectral estimator and its exact constant of �2 error. Interestingly, along with
a lower bound in the local minimax framework (cf. Theorem 9 ahead), we are able to conclude that the
MLE achieves the optimal constant of �2 estimation in the BTL model but the spectral method does not.
An analogous observation in terms of ranking performance has previously been made in [5].

Let us now discuss briefly the proof strategy underlying expansions (1.1) and (1.2). The previous
proof strategy adopted in [14, 36] for the MLE θ̂ proceeds by building and then inverting a self-
consistent equation of θ̂ , where the key technical step is to approximate the inverse of the Hessian of the
likelihood equation in an entrywise manner. In the fully connected case p = 1, such a technical result
is available from [35], but its approximation accuracy deteriorates quickly as p gets smaller, resulting
in the final condition n1/10p → ∞ in [14]. In this paper we adopt a higher-order analogue of the above
approach by first building a self-consistent equation over the remainder vector

δi ≡ θ̂i − bi

di

in the case of the MLE θ̂ . This approach allows us to bypass the technical difficulty of approximating the
inverse of the Hessian, and reduces the problem to a sharp enough �∞ control of δ, which we then tackle
with a leave-two-out analysis. As will be detailed in Section 3 ahead, leaving two out instead of one as
in previous works [5, 6] is essential for our analysis. We refer to Section 3 for a detailed discussion of
proof strategies.
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1076 C. GAO ET AL.

In a broader context, this paper can be categorized under the general theme of uncertainty
quantification/statistical inference for models with growing/infinite dimensions, see [7, 11, 17, 22, 26–
28, 31, 37, 40, 41, 45] for an incomplete list of recent works in other benchmark statistical models. This
paper, together with the prior works [14, 36], resolves uncertainty quantification in the BTL model in
both sparse and dense regimes.

1.3 Organization

The rest of the paper is organized as follows. Section 2 starts with a review of the BTL model and
then presents our main results. Section 3 discusses in detail our proof strategy. Section 4 develops three
concrete applications of our main theoretical expansions. Proofs for the MLE and spectral method are
given in Sections 5 and 6 respectively, followed by proofs for the applications in Sections 7–9. Some
additional auxiliary results are presented in Appendix A.

1.4 Notation

For any positive integer n, let [n] denote the set {1, . . . , n}. For a, b ∈ R, a ∨ b ≡ max{a, b} and
a ∧ b ≡ min{a, b}. For a ∈ R, let a+ ≡ a ∨ 0 and a− ≡ (−a) ∨ 0. For x ∈ R

n, let ‖x‖q = ‖x‖�q(Rn)

denote its q-norm (0 < q ≤ ∞) with ‖x‖2 abbreviated as ‖x‖. By 1n we denote the vector of all
ones in R

n. For a matrix M ∈ R
n×n, let ‖M‖op and ‖M‖F denote the spectral and Frobenius norms

of M respectively. Let M† denote its pseudo-inverse. We use {ej} to denote the canonical basis, whose
dimension should be clear from the context. We use I to denote the indicator function.

For two nonnegative sequences {an} and {bn}, we write an � bn or an = O(bn) if an ≤ Cbn for
some absolute constant C. We write an � bn if an � bn and bn � an. We write an � bn or an = o(bn)

(respectively an � bn) if limn→∞(an/bn) = 0 (respectively limn→∞(an/bn) = ∞). We follow the
convention that 0/0 = 0.

Let ϕ, Φ be the density and the cumulative distribution function of a standard normal random
variable. For any α ∈ (0, 1), let zα be the normal quantile defined by P(N(0, 1) > zα) = α.

2. Main results

2.1 BTL model: a review

We start by laying down the details of our problem setting. Consider n individuals where each one is
associated with some latent merit parameter θ∗

i ∈ R for i ∈ [n]. Comparisons among these n individuals
are then made on a random Erdoős–Rényi graph A = {Aij}i<j with edge probability p, i.e. {Aij}i<j are
i.i.d. Bernoulli variables with success probability p. For each connected edge Aij = 1, L independent

comparisons denoted by {yij�}L
�=1 are made between individuals i and j, where yij� are i.i.d. Bernoulli

variables with success probability ψ(θ∗
i − θ∗

j ) with ψ being the logistic function ψ(t) ≡ et/(1+ et). We
observe the comparison graph A and the comparison results {yij�}, and the goal is to conduct statistical

inference of the merit parameters θ∗ = (θ∗
1 , . . . , θ∗

n )�.
Throughout the paper, we will consider the following parameter space for θ∗.

Θ(κ) ≡
{
θ∗ ∈ R

n : max
i∈[n]

θ∗
i − min

i∈[n]
θ∗

i ≤ κ , 1�
n θ∗ = 0

}
. (2.1)
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1077

Here κ is known as the dynamic range, and since the BTL model is only identifiable up to a global shift
in the merit parameter θ∗, we make the centering condition 1�

n θ∗ = 0. In our theory below, n is taken
to be the main asymptotic parameter, and all other problem parameters p, θ∗, κ , L are allowed to change
with n. We will mostly be interested in the following regime:

κ = O(1), np � (log n)α for some α ≥ 1. (2.2)

We make a few remarks on the above conditions.

1. Here κ = O(1) is assumed to facilitate theoretical analysis. Direct conveniences brought by this
condition include that the comparison success probability ψ(θ∗

i −θ∗
j ) is bounded away from 0 and

1, and the Hessian of the log-likelihood function �n(θ) (see (3.2) below) will be well-conditioned.
This condition is commonly assumed in the existing literature [5, 6, 8].

2. It is well-known that the underlying Erdoős–Rényi graph is connected with high probability when
np ≥ (1 + ε) log n and disconnected if np ≤ (1 − ε) log n for any ε > 0. Therefore, the second
condition allows the sparsest possible regime (without losing identifiability) of the graph up to
some poly-logarithmic factors.

More discussions of these conditions will follow after the statement of the main results; see
Remark 2 ahead.

In the BTL model, arguably the most natural procedure is the MLE, which can be traced back to
[12, 44]. After some elementary algebra, the (normalized) negative log-likelihood function is given by

�n(θ) =
∑
i<j

Aij

[
ȳij log

1

ψ(θi − θj)
+ ȳji log

1

ψ(θj − θi)

]
. (2.3)

Here for each i < j, we let ȳij ≡ (∑L
�=1 yij�

)
/L and we take ȳji = 1 − ȳij by convention. In accordance

with the identifiability condition 1�
n θ∗ = 0, we define the MLE to be

θ̂ ∈ argminθ :1�
n θ=0�n(θ). (2.4)

Under conditions in (2.2) with any α ≥ 1, the MLE exists and is unique with probability 1 − O(n−10)

since with the prescribed probability, the above optimization can be constrained to the compact set
{θ : ‖θ − θ∗‖∞ ≤ 5} (cf. [5, Proposition 8.1]) and the likelihood is strongly convex on this set (cf.
Lemma 15 ahead). In what follows, we work on the event where θ̂ is well-defined.

Another popular approach, named rank centrality in its original discovery [24], associates the
pairwise comparisons with a random walk on the underlying Erdoős–Rényi graph. More precisely,
consider a Markov chain with n states (corresponding to the n individuals), and let the sample transition
matrix P be defined by

Pij ≡
{

1
d Aijȳji, i 	= j,

1 − 1
d

∑
k:k 	=i Aikȳki, i = j.
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1078 C. GAO ET AL.

Here we take d = 2np throughout so that with probability 1 − O(n−10), the matrix P has non-negative
entries. Its population version conditioning on A is

P∗
ij ≡ E(Pij|A) =

{
1
d Aijψ(θ∗

j − θ∗
i ), i 	= j,

1 − 1
d

∑
k:k 	=i Aikψ(θ∗

k − θ∗
i ), i = j;

hence, the imaginary random walker on the graph has a higher tendency of moving to an adjacent node
(individual) with a larger merit parameter. By direct verification, this population transition matrix admits
the stationary measure

π∗ ≡
( eθ∗

1∑n
k=1 eθ∗

k
, . . . ,

eθ∗
n∑n

k=1 eθ∗
k

)
, (2.5)

and the approach of rank centrality estimates it using the stationary measure π̂ of P:

π̂�P = π̂�. (2.6)

In accordance with the identifiability condition 1�
n θ∗ = 0, the associated estimator of θ∗ is defined as

θ̃i ≡ log π̂i − 1

n

n∑
k=1

log π̂k. (2.7)

Since the above rank centrality algorithm builds on a long list of spectral ranking methods (see [43] for
a comprehensive survey), we will henceforth call it the spectral method. For the rest of the paper, we
reserve the notation θ̂ for the MLE and θ̃ for the spectral method.

In the last few years, a series of works have made significant contribution towards understanding the
performances of both estimators, in terms of both �2 and �∞ accuracy.

Proposition 1. [5, 6, 24] Suppose the conditions in (2.2) hold with α = 1. Then, there exists some
C = C(κ) > 0 such that the following hold with probability at least 1 − O(n−10) uniformly over
θ∗ ∈ Θ(κ).

(MLE) ‖θ̂ − θ∗‖2 ≤ C

pL
and ‖θ̂ − θ∗‖2∞ ≤ C log n

npL
,

(spectral) ‖θ̃ − θ∗‖2 ≤ C

pL
and ‖θ̃ − θ∗‖2∞ ≤ C log n

npL
.

In fact, both error rates are known to be minimax rate optimal [6, 24] over Θ(κ); see also [5, Lemmas
11.1 and 11.3] for some more refined �∞ tail estimates. Other aspects of the estimators, notably their
ranking performances, have also been studied in depth in [5, 6, 24].

2.2 Non-asymptotic expansions

Compared to the above progress in the first-order asymptotics, the understanding of limiting distribution
theory in the BTL model is much less complete. In the seminal work [36], the authors derived the �∞
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1079

consistency and asymptotic normality of the MLE in the full comparison case p = 1. Adopting a similar
proof technique, the recent work [14] extended [36] to the sparsity regime n1/10p → ∞ (up to some
poly-logarithmic factors). This leaves open the most challenging but practically relevant sparsity regime
(2.2) where the average number of comparisons is only slowly growing.

The following first main result of this paper provides a sharp non-asymptotic expansion of the MLE
θ̂ in the regime (2.2), from which asymptotic normality and a few other interesting corollaries can be
readily deduced. We present its proof in Section 5.

Theorem 2. Suppose that the conditions in (2.2) hold with α = 3/2. Then for any i ∈ [n], we have

θ̂i − θ∗
i = (1 + ε1,i)

bi

di
+ ε2,i. (2.8)

Here ε1, ε2 are two vectors in R
n such that ‖ε1‖∞ = o(1) and ‖ε2‖∞ = o(1/

√
npL) with probability

1 − O(n−10), and b, d ∈ R
n are given by

bi =
∑
j:j 	=i

Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)
, di =

∑
j:j 	=i

Aijψ
′(θ∗

i − θ∗
j ).

Remark 1. Using standard concentration arguments, we have bi � √
np/L and di � np for each i ∈ [n],

so the main term satisfies bi/di � 1/
√

npL. Hence, upon proper normalization, ε2 is a small term in an
entrywise manner.

Remark 2. We comment on two possible generalizations of the above theorem.

1. (Heterogeneity) A direct generalization of the current BTL model is to allow heterogeneity
in the pairwise comparisons, that is, replace the Erdoős–Rényi probability p by pij and the
number of comparisons L by Lij for each pair (i, j) of comparison. With these changes, the above
theorem continues to hold upon changing the conditions in (2.2) to mini<j pij � (log n)α/n and
maxi<j pij/ mini<j pij ≤ C for some universal C > 0, and the main term bi/di to∑

j:j 	=i Aij(yij − Lijψ(θ∗
i − θ∗

j ))∑
j:j 	=i AijLijψ

′(θ∗
i − θ∗

j )
,

where yij is now
∑Lij

�=1 yij�; see [1, Section 3.1] for some related probabilistic properties of the
inhomogeneous Erdoős-Rényi graph. The applications to be introduced in Section 4 ahead will
also hold upon proper modifications.

2. (Sparsity condition) The slightly worse exponent in np � (log n)3/2 (instead of 1) results from
the bound ‖δ‖∞ �

√
(log n)3/(np)2 O(1/

√
npL) in Lemma 6, which is derived from an earlier

rougher estimate ‖δ‖∞ �
√

(log n)1/(np)0O(1/
√

npL) in Lemma 5. Here δ, defined in (5.3) for
the MLE and (6.3) for the spectral method, is the key remainder vector we are trying to bound; see
the proof idea in Section 3 ahead for more details. At the cost of a much lengthier proof, we may
be able to iterate the above arguments and improve the condition to np � (log n)(3+2k)/(2+2k)

after the kth iteration, reaching exponent 1+η after
⌈

1/(2η)
⌉

iterations. An interesting theoretical

question is whether the expansion (2.8) still holds under the condition np � log n, or even better,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/1073/7017369 by U
niversity of Pennsylvania Library user on 23 M

arch 2023



1080 C. GAO ET AL.

under np ≥ C log n with some large universal C > 0 as established for some first-order results in
[5]. We leave the complete resolution of this problem to a future work.

To the best of our knowledge, Theorem 2 is the first result in the literature with an explicit non-
asymptotic expansion in the regime (2.2). To help with its understanding, we now explain the form
{bi/di} of the main term. For each fixed i ∈ [n], let �

(i)
n (θi|θ−i) be the local negative likelihood of the ith

individual given the rest of the merit parameters θ−i:

�(i)
n (θi|θ−i) =

∑
j:j 	=i

Aij

[
ȳij log

1

ψ(θi − θj)
+ ȳji log

1

ψ(θj − θi)

]
.

It can be readily verified that: (i) θ̂i is a minimizer of �
(i)
n (θi|θ̂−i) and (ii) bi = −∂θi

�
(i)
n (θ∗

i |θ∗−i) and

di = ∂2
θi
�
(i)
n (θ∗

i |θ∗−i), so a local quadratic expansion of �
(i)
n (θi|θ̂−i) around θ∗

i yields that

θ̂i ≈ argminθi

[
�(i)

n (θ∗
i |θ̂−i) + ∂θi

�(i)
n (θ∗

i |θ̂−i) · (θi − θ∗
i ) + 1

2
∂2
θi
�(i)

n (θ∗
i |θ̂−i) · (θi − θ∗

i )2
]

≈ argminθi

[
�(i)

n (θ∗
i |θ̂−i) − bi(θi − θ∗

i ) + 1

2
di(θi − θ∗

i )2
]

= θ∗
i + bi

di
. (2.9)

The key task of Theorem 2 is to give a tight control of the above approximation error; see Section 5
ahead for details.

As we will elaborate in Section 3 ahead, the previous proof idea adopted in [14, 36] is no longer
applicable in the sparse regime (2.2), and our Theorem 2 is based on a completely different proof
technique. Interestingly, this new proof technique also allows us to derive the following expansion of
the spectral estimator θ̃ ; see Section 6 for its proof.

Theorem 3. Suppose that the conditions in (2.2) hold with α = 3/2. Then for any i ∈ [n], we have

θ̃i − θ∗
i = (1 + ε̃1,i)

b̃i

d̃i

+ ε̃2,i. (2.10)

Here ε̃1, ε̃2 are two vectors in R
n such that ‖̃ε1‖∞ = o(1) and ‖̃ε2‖∞ = o(1/

√
npL) with probability

1 − O(n−10), and b̃, d̃ ∈ R
n are given by

b̃i =
∑
j:j 	=i

Aij(π
∗
i + π∗

j )
(
ȳij − ψ(θ∗

i − θ∗
j )
)
, d̃i = π∗

i ·
∑
j:j 	=i

Aijψ(θ∗
j − θ∗

i ).

Here π∗ is the population stationary measure defined in (2.5).

We now explain the form {̃bi/̃di} of the main term. Using a first-order Taylor expansion, we have

θ̃i − θ∗
i = log

( π̂i − π∗
i

π∗
i

+ 1
)

− 1

n

n∑
k=1

log
( π̂k − π∗

k

π∗
k

+ 1
)

≈ π̂i − π∗
i

π∗
i

. (2.11)
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1081

Then it follows from the definition of π̂ that

π̂i =
∑

j:j 	=i Aijȳijπ̂j∑
j:j 	=i Aijȳji

≈
∑

j:j 	=i Aijȳijπ
∗
j∑

j:j 	=i Aijȳji
. (2.12)

Combining the above two displays, we have

θ̃i − θ∗
i ≈

∑
j:j 	=i Aij

(
ȳijπ

∗
j − ȳjiπ

∗
i

)
π∗

i ·∑j:j 	=i Aijȳji
≈
∑

j:j 	=i Aij

(
ȳijπ

∗
j − ȳjiπ

∗
i

)
π∗

i ·∑j:j 	=i Aijψ(θ∗
j − θ∗

i )
= b̃i

d̃i

,

upon noting that ȳijπ
∗
j − ȳjiπ

∗
i = (π∗

i + π∗
j )
(
ȳij − ψ(θ∗

i − θ∗
j )
)
. The key task of Theorem 3 is to give a

tight control of the above approximation error; see Section 6 ahead for details.
Theorems 2 and 3 provide us with valuable information on the asymptotic behavior of the two

estimators and allow us to compare the two procedures on a much more refined basis than existing
literature [5, 6, 24]. In particular, we will show that the MLE θ̂ achieves the optimal constant of �2
estimation in the BTL model but the spectral estimator θ̃ does not; see Section 4.3 for more details.

3. Proof Strategy

This section discusses the unified high level proof idea underlying our main theorems, focusing on its
difference from the previous one adopted in [14, 36]; detailed proofs are given in Sections 5 and 6 ahead.

3.1 Summary of previous proof strategy

We start by briefly summarizing the proof outline of [36] when p = 1 and explaining the additional
technical difficulties in the sparse regime (2.2). Differentiating the likelihood in (2.3) leads to the score
equations:

ai

L
=
∑
j:j 	=i

eθ̂i

eθ̂i + eθ̂j
, i ∈ [n],

with its population version given by Eai = L ·∑j:j 	=i eθ∗
i /(eθ∗

i + eθ∗
j ). Here ai =∑j:j 	=i yij is the number

of victories of the ith individual. Let Δui ≡ (eθ̂i − eθ∗
i )/eθ∗

i , which can be seen as a proxy for θ̂i − θ∗
i

using a first-order Taylor expansion. Then, some algebra yields that

eθ̂i

eθ̂i + eθ̂j
− eθ∗

i

eθ∗
i + eθ∗

j
= eθ∗

i eθ∗
j
(
Δui − Δuj

)(
eθ∗

i + eθ∗
j
)2 × eθ∗

i + eθ∗
j

eθ̂i + eθ̂j

≈ ψ ′(θ∗
i − θ∗

j )
(
Δui − Δuj

)
.

Combining the above two displays yields, in matrix form, that

a − Ea ≈ H(θ∗)Δu ≈ H(θ∗)(θ̂ − θ∗), (3.1)
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1082 C. GAO ET AL.

where a = (a1, . . . , an)
�, Δu = (Δu1, . . . , Δun)

�, and H(θ∗) ∈ R
n×n is the Hessian given by

H(θ∗) ≡ ∂2�n(θ)

∂θ2

∣∣∣
θ=θ∗ =

( ∑
k:k 	=i

Aikψ
′(θ∗

i − θ∗
k )Ii=j − Aijψ

′(θ∗
i − θ∗

j )Ii 	=j

)
i,j

, (3.2)

Given that the sample-mean type quantities {ai − Eai} are easy to analyze, it is natural to invert the
Hessian H(θ∗) and find a close approximation S of ideally simple form such that (note that H(θ∗) is
singular along 1n so we take the pseudo-inverse)

θ̂ − θ∗ ≈ (H(θ∗)
)†

(a − Ea) ≈ S(a − Ea),

an expansion similar to our (2.8). The construction of such an S is the main technical ingredient of [36],
whose entrywise closeness to

(
H(θ∗)

)† at the order of n−2 is highly non-trivial to verify even in the case
p = 1 [35]. For general p, this approximation error deteriorates to the order (n2p3)−1 as reported by [14,
Lemma 7], which eventually leads to the sub-optimal condition n1/10p → ∞.

We also mention a recent result by [19] that achieves the sparsity level p � log n
n via a debiasing

technique. However, their method requires L to be of greater order than (n log n)2, while our result and
the results of [14, 35] are all valid even for L = 1.

3.2 New proof strategy: remainder expansion and leave-two-out technique

To bypass the above difficulty of approximating H†(θ∗), we take the following three-step approach. To
avoid redundancy, we elaborate on the MLE θ̂ and briefly discuss the spectral estimator θ̃ .

1. With the approximation remainder vector defined by

δi ≡ θ̂i − θ∗
i − bi

di
,

instead of directly expanding the target θ̂ − θ∗ as in (3.1), we seek to construct a self-consistent
equation for the remainder vector δ.

2. From the above self-consistent equation of δ, derive a sharp bound for ‖δ‖.

3. Starting from the above bound for ‖δ‖ and a rough bound on ‖δ‖∞, we derive a sharp bound for
‖δ‖∞ in the regime (2.2). This step leverages a leave-two-out technique, which is inspired by,
and improves substantially upon, the leave-one-out technique in [5, 6].

We now discuss these three steps in more detail.

3.2.1 Step 1: self-consistent equation of δ By the definitions of bi and di (in Theorem 2), we have

δi = θ̂i − θ∗
i −

∑
j:j 	=i Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)∑

j:j 	=i Aijψ
′(θ∗

i − θ∗
j )

. (3.3)
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1083

On the other hand, a local quadratic expansion of the likelihood (see (2.9) and recall �
(i)
n (θi|θ−i) defined

therein) yields that

θ̂i − θ∗
i ≈ −∂θi

�
(i)
n (θ∗

i |θ̂−i)

∂2
θi
�
(i)
n (θ∗

i |θ∗−i)
≈
∑

j:j 	=i Aij

(
ȳij − ψ(θ∗

i − θ̂j)
)∑

j:j 	=i Aijψ
′(θ∗

i − θ∗
j )

.

Combining the above two displays and Taylor expanding once more in the numerator yields that

δi ≈
∑

j:j 	=i Aij

(
ψ(θ∗

i − θ∗
j ) − ψ(θ∗

i − θ̂j)
)∑

j:j 	=i Aijψ
′(θ∗

i − θ∗
j )

≈
∑

j:j 	=i Aijψ
′(θ∗

i − θ∗
j )(θ̂j − θ∗

j )∑
j:j 	=i Aijψ

′(θ∗
i − θ∗

j )
.

To make δ also appear on the right side, we plug in θ̂j − θ∗
j = δj + (bj/dj) for each j 	= i in the above

display, which yields the following self-consistent equation of δ:

di · δi ≈
∑
j:j 	=i

Aijψ
′(θ∗

i − θ∗
j )δj +

∑
j:j 	=i

Aijψ
′(θ∗

i − θ∗
j )

bj

dj
. (3.4)

In the next two steps, we will use this equation to obtain sharp bounds of ‖δ‖ and ‖δ‖∞.
The derivation for the spectral estimator θ̃ is analogous. The approximation remainder δ is now

defined as

δi ≡ π̂i − π∗
i

π∗
i

− 1

n

n∑
k=1

π̂k − π∗
k

π∗
k

− b̃i

d̃′
i

,

where d̃′
i ≡ π∗

i ·∑j:j 	=i Aijȳji is the sample version of d̃i. Due to the preliminary expansion in (2.11), we

have δi ≈ θ̃i − θ∗
i − (̃bi/̃di). On the other hand, the definition of π̂ (see (2.12)) yields that

π̂i − π∗
i

π∗
i

=
∑

j:j 	=i Aij

(
ȳijπ̂j − ȳjiπ

∗
i

)
π∗

i ·∑j:j 	=i Aijȳji
=
∑

j:j 	=i Aijȳij(π̂j − π∗
j )

π∗
i ·∑j:j 	=i Aijȳji

+ b̃i

d̃′
i

.

Combining the above two displays (and ignoring the small term n−1∑n
k=1(π̂k − π∗

k )/π∗
k ) yields that

δi ≈
∑

j:j 	=i Aijȳij(π̂j − π∗
j )

π∗
i ·∑j:j 	=i Aijȳji

.
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1084 C. GAO ET AL.

By plugging in π̂j − π∗
j ≈ π∗

j

(
δj + (̃bj/̃dj)

)
, we arrive at the following self-consistent equation for the

spectral estimator:

d̃i · δi ≈
∑
j:j 	=i

Aijȳijπ
∗
j · δj +

∑
j:j 	=i

Aijȳijπ
∗
j

b̃j

d̃j

. (3.5)

3.2.2 Step 2: �2 control of δ by leave-one-out analysis This is an essential intermediate step towards
the bound of ‖δ‖∞ in the next step. By rearranging the self-consistent equation in (3.4), we have in
matrix form

H(θ∗)δ ≈ R, (3.6)

where H(θ∗) is the Hessian in (3.2) and R ∈ R
n is some cumulated approximation error. This equation,

which expands δ instead of θ̂ directly, can be seen as a higher-order analogue of (3.1). The bound
‖δ‖ = o(1/

√
pL) (cf. Proposition 11) is now readily obtained by (i) the bound of ‖R‖ by preliminary

estimates in Proposition 1 obtained via a leave-one-out analysis and (ii) the eigenvalue bound of H(θ∗)
in Lemma 15, i.e. with probability 1 − O(n−10),

np � λmin,⊥
(
H(θ∗)

)
� λmax

(
H(θ∗)

)
� np;

see Section 5.2 for details. Here λmin,⊥
(
H(θ∗)

) = minx∈Rn:‖x‖=1,x�1n=0 x�H(θ∗)x is the smallest
eigenvalue of H(θ∗) orthogonal to the direction 1n.

The derivation for the spectral estimator θ̃ is analogous: by rearranging (3.5), we have

Lδ ≈ R̃,

where L is defined by Lij ≡ −Aijȳijπ
∗
j for i 	= j and Lii ≡ ∑

j:j 	=i Aijȳjiπ
∗
i , and R̃ ∈ R

n is some
cumulated approximation error. Note that even though L is not symmetric, its population version E(L|A)

is a symmetric Laplacian matrix similar to H(θ∗); hence, the bound for ‖δ‖ can be similarly obtained
as above.

3.2.3 Step 3: �∞ control of δ by leave-two-out analysis For the more refined �∞ bound of δ, we need
to bound directly the right side of (3.4). For the terms therein, the term

∑
j:j 	=i Aijψ

′(θ∗
i −θ∗

j )(bj/dj) (and
other approximation error terms) can be readily bounded using concentration arguments, and the most
difficult term is ∑

j:j 	=i

Aijψ
′(θ∗

i − θ∗
j )δj.

If {Aij}j:j 	=i was independent of {δj}j:j 	=i, then the above term could be bounded by standard concentration
arguments along with the bound on ‖δ‖ from the previous step. To decorrelate these two terms, we

will define a proxy δ
(i)
j of each δj by leaving out the ith observation, so that δ

(i)
j is independent

of {Aij}j:j 	=i while being close to δj; see Section 5.3.1 for details. The definition and analysis of δ
(i)
j

further requires the analysis of a leave-two-out version of θ̂ , which is essential for our purpose and
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1085

fundamentally different from the bound given by the original leave-one-out analysis used in [5, 6].
Indeed, as commented in Remark 2, a leave-one-out analysis as in [5, 6] will only yield the rough bound

‖δ‖∞ �

√
(log n)1

(np)0 O(
1√
npL

), (3.7)

which is not useful (i.e. of the order o(1/
√

npL)) even for the case p = 1. Starting from the second stage
of this hierarchy (i.e. leave-two-out analysis), this bound is improved to

√
(log n)3/(np)2O(1/

√
npL)

(cf. Proposition 10), which is accurate enough under the sparsity condition np � (log n)1.5. We believe
a higher-order analysis (i.e. leave-k-out for a large but fixed k) will yield a better (but fixed) exponent
closer to 1, but we will not pursue this direction here to avoid digression.

To summarize, our new proof technique adds two novel technical components to the existing
theoretical analysis in [5, 6, 24, 35]: (i) a self-consistent equation for the remainder vector δ of first-
order approximation; (ii) a leave-two-out technique that plays an essential role in the bound of ‖δ‖∞.
The first component allows us to bypass the technical difficulty of approximating the inverse Hessian
as in [35] in the case of vanishing p, which leads to a sub-optimal condition as shown by an earlier
analysis. The second component allows us to improve over the rough bound (3.7), which is not needed
for rate-optimal first-order bounds [5, 6, 24]. The rest of the proof combines concentration inequalities
and the rate-optimal bounds in Proposition 1; we refer to Sections 5 and 6 for proof details of the MLE
and spectral estimator, respectively.

4. Applications of the main expansions

In this section, we present three applications of the expansions in Theorems 2 and 3. Section 4.1 is
devoted to a finite-dimensional CLT for the MLE θ̂ and spectral estimator θ̃ , followed by a construction
of confidence intervals for the rank vector in Section 4.2. Lastly, we discuss the implication for the
optimal constant in �2-estimation in Section 4.3. Some simulation results are presented in Section 4.4.

4.1 Application I: Finite-dimensional CLT

A direct consequence of the expansions in Theorems 2 and 3 is the following CLTs for any finite k-
dimensional components of the estimators. We start with the MLE θ̂ . Without loss of generality, we
state it for the first k components.

Proposition 4. Let θ̂ be the MLE in (2.4) and suppose the conditions of Theorem 2 hold. Then for any
θ∗ ∈ Θ(κ) and fixed k ∈ [n], we have(

ρ1(θ̄)(θ̂1 − θ∗
1 ), . . . , ρk(θ̄)(θ̂k − θ∗

k )
)
� Nk(0, Ik) (4.1)

for both θ̄ ∈ {θ̂ , θ∗}. Here the sequence {ρi(θ)}n
i=1 can be either

ρi(θ) =
√

L ·
∑
j:j 	=i

Aijψ
′(θi − θj) or

√
pL ·

∑
j:j 	=i

ψ ′(θi − θj).
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1086 C. GAO ET AL.

The proof of the above result is presented in Section 7. Using the completely data-driven version
of ρi(θ̂), the above result can be used to produce multiple and simultaneous confidence intervals for
finite-dimensional contrasts of the truth vector θ∗.

We note that previous works [14, 36] that consider the asymptotic normality of the MLE are based
on a different identifiability condition. Namely, they assume that there are n + 1 individuals with merit
parameters (θ∗

0 , . . . , θ∗
n ), θ∗

0 and θ̂0 are set to be 0 by convention, and asymptotics is studied on the
rest of the coordinates (θ̂1, . . . , θ̂n). As we will now show, our CLT in Proposition 4 can be naturally
transformed to be applicable in their setting as well. Therefore, our result is a strict improvement over
previous results in the regime (2.2).

Let (θ̂0, . . . , θ̂n) ∈ argminθ∈Rn+1:1�
n+1θ=0�n+1(θ) be the MLE under the truth 1�

n (θ∗
0 , . . . , θ∗

n ) = 0,

where �n+1(θ) is the variant of (2.3) for n + 1 individuals. By Proposition 4, we have, heuristically
speaking, (θ̂0 − θ∗

0 , . . . , θ̂k − θ∗
k ) � Nk+1(0, V−1

k+1(θ
∗)), where

Vk+1(θ
∗) = L · diag

( ∑
�:0≤�≤n

� 	=0

A0�ψ
′(θ∗

0 − θ∗
� ), . . . ,

∑
�:0≤�≤n

� 	=k

Ak�ψ
′(θ∗

k − θ∗
� )
)

;

note that this representation is not completely rigourous since Vk+1(θ
∗) depends on n. Now under the

identifiability condition (θ∗
0 = 0) in [36], the MLE for (θ∗

1 , . . . , θ∗
k ) becomes

θ̂ SY ≡ (θ̂1 − θ̂0, . . . , θ̂k − θ̂0

)
,

where ‘SY’ stands for Simons–Yao. Then we have
(
θ̂ SY

1 − θ∗
1 , . . . , θ̂ SY

k − θ∗
k

)
� Nk

(
0,
(
VSY(θ∗)

)−1),
with

(
VSY(θ∗)

)−1 ∈ R
k×k given by

(
VSY(θ∗)

)−1
ii = 1

L ·∑�:0≤�≤n,� 	=i Ai�ψ
′(θ∗

i − θ∗
� )

+ 1

L ·∑1≤�≤n A0�ψ
′(θ∗

� )
,

(
VSY(θ∗)

)−1
ij = 1

L ·∑1≤�≤n A0�ψ
′(θ∗

� )
if i 	= j.

In the special case p = 1, this recovers [36, Theorem 2].
Similar to Proposition 4, we have the following finite-dimensional CLT for the spectral estimator θ̃ .

Proposition 5. Let θ̃ be the spectral estimator θ̃ defined in (2.7) and suppose the conditions of Theorem
3 hold. Then for any θ∗ ∈ Θ(κ) and fixed k ∈ [n], we have(

ρ̄1(θ̄)(θ̃1 − θ∗
1 ), . . . , ρ̄k(θ̄)(θ̃k − θ∗

k )
)
� Nk(0, Ik) (4.2)

for both θ̄ ∈ {θ̃ , θ∗}. Here the sequence {ρ̄i(θ)}n
i=1 can be either

ρ̄i(θ) =

√√√√√L ·
(∑

j:j 	=i Aij(e
θi + eθj)ψ ′(θi − θj)

)2

∑
j:j 	=i Aij(e

θi + eθj)2ψ ′(θi − θj)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/1073/7017369 by U
niversity of Pennsylvania Library user on 23 M

arch 2023



UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1087

or its deterministic version with all {Aij}i 	=j replaced by p.

A direct application of Cauchy–Schwarz yields that

ρ̄i(θ) ≤ ρi(θ),

and hence, the spectral estimator has a larger asymptotic variance than the MLE. We will rigourously
justify the optimality of the MLE using the local minimax framework in Section 4.3 ahead.

4.2 Application II: Confidence regions in ranking

Consider the BTL model in the context of sports analytics, where after observing the outcome of a
tournament, one wishes to construct a confidence interval for the rank of her team of interest. More
concretely, let r−1(1), . . . , r−1(n) be the indices of the teams with the highest merit parameter, the
second highest merit parameter and so on, so that

θ∗
r−1(1)

≥ θ∗
r−1(2)

≥ . . . ≥ θ∗
r−1(n)

,

where ties are broken arbitrarily. Correspondingly, {r(1), . . . , r(n)} is the rank vector of teams 1 to n, and
we are interested in building a (discrete) confidence interval for the rank of a pre-fixed team. Without
loss of generality, we choose the first team with merit parameter θ∗

1 (not necessarily the largest one).
Since rank is a global object, we need to construct confidence intervals for all n merit parameters,

instead of just for θ∗
1 . To this end, a straightforward idea is to use the �∞ bound in Proposition 1. This

approach has two disadvantages: (i) the constant C therein is implicit and could potentially be large after
complicated steps of analysis; (ii) the confidence intervals for all teams will have the same length, which
is not ideal since certain teams will have more comparisons than others so their confidence intervals
should heuristically be shorter.

We now describe a different procedure based on the non-asymptotic expansions in Section 2. The
key is to exploit the explicit main terms {bi/di} therein to obtain short confidence intervals with data-
driven lengths. With a fixed confidence level 1 − α, we will construct confidence intervals such that the
target θ∗

1 belongs to its interval with asymptotical probability 1 − α, and all other teams belong to their
respective (slightly more conservative) intervals with overwhelming probability. For θ∗

1 , let

C1 ≡ [θ̂1 − ρ1(θ̂)z1−α/2, θ̂1 + ρ1(θ̂)z1−α/2

]
,

where z1−α/2 is the normal quantile such that P(N(0, 1) ≥ z1−α/2) = α/2. It follows directly from the
CLT in Proposition 4 that θ∗

1 ∈ C1 with asymptotic probability 1 − α. For all other i 	= 1, let

τi ≡ (1 + c0)

√
2 log n · ρ−2

i (θ̂),

where ρi(θ) denotes the sample version (with {Aij}) defined in Proposition 4 and c0 is an arbitrarily
small but fixed constant. We then define the confidence intervals for {θ̂i}n

i=2 to be

Ci ≡ [θ̂i − τi, θ̂i + τi

]
.
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1088 C. GAO ET AL.

The constant in τi comes simply from the application of a (conditional) Bernstein’s inequality to the
main term bi/di in the expansion of Theorem 2, so that by construction θ∗

i ∈ Ci simultaneously for i ∈
{2, . . . , n} with overwhelming probability. Since ρ−2

i is smaller for those teams i with more comparisons,
the above confidence intervals have the desirable property of data-driven length.

The above construction of confidence intervals leads naturally to a confidence interval for the rank
r(1). We say two intervals satisfy Ci ≤ Cj if the upper end of Ci is smaller than the lower end of Cj. Let
n1 be the number of Ci’s such that C1 ≤ Ci, and n2 be the number such that Ci ≤ C1. By definition,
n1, n2 take integer values between 0 and n − 1. The confidence interval for the rank r(1) is then taken to
be all integers inside

[n1 + 1, n − n2].

The following result guarantees the confidence level of the above interval. Details of its proof are given
in Section 8.

Proposition 6. Suppose the conditions of Theorem 2 hold. Then with asymptotic probability at least
1 − α, we have r(1) ∈ [n1 + 1, n − n2].

4.3 Application III: Optimal constant of �2 estimation

With the main expansion in Theorem 2, we are able to pin down the exact constants of �2 errors of the
MLE θ̂ and the spectral estimator θ̃ . The proofs of the following two results are given in Sections 9.1
and 9.2, respectively.

Proposition 7. Suppose the conditions in (2.2) hold with α = 1. Then it holds with probability at least
1 − O(n−10) that

‖θ̂ − θ∗‖2 = 1 + o(1)

pL
·

n∑
i=1

( ∑
k:k 	=i

ψ ′(θ∗
i − θ∗

k )
)−1

,

where the o(1) term is uniform over θ∗ ∈ Θ(κ) in (2.1).

Proposition 8. Suppose the conditions in (2.2) hold with α = 1. Then it holds with probability at least
1 − O(n−10) that

‖θ̃ − θ∗‖2 = 1 + o(1)

pL
·

n∑
i=1

∑
j:j 	=i(e

θ∗
i + eθ∗

j )2ψ ′(θ∗
i − θ∗

j )(∑
j:j 	=i(e

θ∗
i + eθ∗

j )ψ ′(θ∗
i − θ∗

j )
)2 ,

where the o(1) term is uniform over θ∗ ∈ Θ(κ) in (2.1).

Remark 3. Note that as opposed to the main expansions in Section 2, the above results only require the
(almost) minimal sparsity condition np � log n for the underlying Erdoős–Rényi graph to be connected.
This is because the above results only require the �2 control of the remainder vector δ in (5.3) instead of
the �∞ control; see Sections 5.2 and 9.1 for details in the case of MLE.

The above results are much more refined than existing �2 guarantees in the literature [5, 6, 24], whose
optimalities are all based on a (global) minimax framework. In particular, they allow us to compare the
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1089

two estimators θ̂ and θ̃ on a more fine-grained level. For example, while both θ̂ and θ̃ achieve the
(global) minimax rate 1/

√
pL in terms of �2 accuracy [24], a direct application of Cauchy–Schwarz

yields that the error of the spectral estimator in Proposition 8 is always larger than that of the MLE in
Proposition 7, and equality only holds in the case where all θ∗

i ’s are equal.
In fact, the following result states that the �2 accuracy of the MLE cannot be improved asymptoti-

cally in terms of the local minimax framework. For any θ∗ ∈ R
n and ε > 0, we use B(θ∗, ε) to denote

the hyperrectangle ×n
i=1[θ∗

i − ε, θ∗
i + ε].

Theorem 9. Let κ = O(1) and εn be any sequence such that εn � (npL)−1/2. Then for any θ∗ such
that maxi θ

∗
i − mini θ

∗
i ≤ κ/2, it holds that

inf
θ̂

sup
θ∈B(θ∗,εn)∩Θ(κ)

Eθ‖θ̂ − θ‖2 ≥ (1 + o(1)
) · 1

pL

n∑
i=1

(∑
j:j 	=i

ψ ′(θ∗
i − θ∗

j )
)−1

,

where the infimum of θ̂ is taken over all estimators of θ .

Remark 4. It is clear that the localization radius (npL)−1/2 cannot be improved in terms of its order.
Indeed, if localized in a neighbourhood of θ∗ of size δn(npL)−1/2 for some δn = o(1), then the trivial
estimator θ̂fix ≡ θ∗ satisfies Eθ‖θ̂fix − θ‖2 = o

(
(pL)−1

)
uniformly over this neighbourhood.

The proof of Theorem 9 is given in Section 9.3 and is based on van Trees’ inequality [13]. Together
with Proposition 7, they imply that the MLE is asymptotically and locally minimax optimal. This agrees
with the conventional wisdom in classical parametric statistics that MLE is the most efficient estimator
[42].

4.4 Simulation

We close this section with some simulation studies to verify the theoretical results above. Throughout
the simulation, we set the number of comparison to be L = 1 and the dynamic range to be κ = 2. We first
verify the finite-dimensional CLTs established in Section 4.1. For a given number n of individuals, we
sample θ∗ = (θ∗

1 , . . . , θ∗
n )� i.i.d. from Unif([0, 2]), and examine the distribution of θ̂1 and θ̃1 prescribed

by Propositions 4 and 5. For numerical reasons, we use the slightly larger success probability p =
(log n)3/n for the Erdoős–Rényi comparison graph, and the corresponding QQ-plots against the nominal
normal quantiles are presented in Figure 1. We see that starting from n = 500, both QQ-plots align very
well with the diagonal line, validating both CLTs established in Propositions 4 and 5.

Next we validate the �2 risk predictions prescribed by Propositions 7 and 8. For numerical reasons,
we take p = (log n)3.5/n to generate the Erdoős–Rényi comparison graph. From the risk plot in Figure 2,
we observe that the theoretical predictions in Propositions 7 and 8 are very accurate, and also that the
MLE indeed achieves a smaller risk than the spectral estimator.

5. Proof of the main expansion for MLE

The goal of this section is to prove Theorem 2. We introduce some preliminaries in Section 5.1, followed
by two main steps of the proof in Sections 5.2 and 5.3, respectively. We refer to Section 3 for the general
proof idea.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/1073/7017369 by U
niversity of Pennsylvania Library user on 23 M

arch 2023



1090 C. GAO ET AL.

Fig. 1. QQ-plots comparing the theoretical and sample quantiles of θ̂1 and θ̃1. Simulation parameters: L = 1, n ∈
{100, 200, 500, 1000, 2000} and p = (log n)3/n. For each n, θ∗ = (θ∗

1 , . . . , θ∗
n )� are i.i.d. from Unif([0, 2]). The empirical

quantile curves are averaged over 1000 replications.

5.1 Preliminary

We will analyze θ̂ in a coordinate-wise manner. Fix any i ∈ [n], and decompose the total likelihood in
(2.3) as �n(θ) = �

(−i)
n (θ−i) + �

(i)
n (θi|θ−i), where

�(−i)
n (θ−i) ≡

∑
j<k:j,k 	=i

Ajk

[
ȳjk log

1

ψ(θj − θk)
+ ȳkj log

1

ψ(θk − θj)

]
,

�(i)
n (θi|θ−i) ≡

∑
j:j 	=i

Aij

[
ȳij log

1

ψ(θi − θj)
+ ȳji log

1

ψ(θj − θi)

]
.

Next define

f (i)(θi|θ−i) ≡ ∂

∂θi
�(i)

n (θi|θ−i) = −
∑
j:j 	=i

Aij

(
ȳij − ψ(θi − θj)

)
,

g(i)(θi|θ−i) ≡ ∂2

∂θ2
i

�(i)
n (θi|θ−i) =

∑
j:j 	=i

Aijψ
′(θi − θj). (5.1)

Some preliminary estimates regarding θ̂ , f (i)(θ∗
i |θ̂−i) and g(i)(θ∗

i |θ̂−i) are summarized in Lemmas 16
and 18 in the Appendix. Let

θ̄i ≡ θ∗
i − f (i)(θ∗

i |θ̂−i)

g(i)(θ∗
i |θ̂−i)

, (5.2)
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1091

Fig. 2. Squared �2 risks of the MLE θ̂ (red) and the spectral estimator θ̃ (blue), with solid lines denoting the theoretical
predictions by Proposition 7 and 8, and dashed lines denoting the empirical values. Simulation parameters: L = 1, n ∈
{1000, 2000, 3000, 4000, 5000} and p = (log n)3.5/n. For each n, θ∗ = (θ∗

1 , . . . , θ∗
n )� are i.i.d. from Unif([0, 2]). The empirical

risk curves are averaged over 500 replications.

whose definition is motivated by the local quadratic expansion in (2.9). Lastly define the remainder
vector δ ∈ R

n via

θ̂i − θ∗
i = − f (i)(θ∗

i |θ∗−i)

g(i)(θ∗
i |θ∗−i)

+ δi. (5.3)

We have the following �∞ bound for δ.

Proposition 10. Suppose that κ = O(1) and np � (log n)3/2. The following holds with probability
1 − O(n−10).

max
i

∣∣∣δi − εi

f (i)(θ∗
i |θ∗−i)

g(i)(θ∗
i |θ∗−i)

∣∣∣ = o(

√
1

npL
).

Here ε ∈ R
n satisfies ‖ε‖∞ = o(1).

Combining the above result with (5.3) immediately completes the proof. The rest of this section is
devoted to proving Proposition 10. As an essential intermediate step, we need to first give a sharp �2
bound for (a leave-one-out version of) δ. We present the �2 bound in the next subsection and the main
proof of Proposition 10 in Section 5.3 ahead.

5.2 Control of ‖δ‖
The goal of this subsection is to prove the following �2 bound for δ defined in (5.3).
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1092 C. GAO ET AL.

Proposition 11. Suppose that κ = O(1) and np � log n. Then it holds with probability 1 − O(n−10)

that

‖δ‖ � 1√
pL

·
[√

log n

np
+
( log n

npL

)1/4
]

= o(
1√
pL

).

Proof of Proposition 11 Fix m ∈ [n]. By definition, δm can be decomposed as follows:

δm = f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

− f (m)(θ∗
m|θ̂−m)

g(m)(θ∗
m|θ̂−m)

+ θ̂m − θ̄m

= f (m)(θ∗
m|θ∗−m) − f (m)(θ∗

m|θ̂−m)

g(m)(θ∗
m|θ̂−m)

+ f (m)(θ∗
m|θ∗−m)

( 1

g(m)(θ∗
m|θ∗−m)

− 1

g(m)(θ∗
m|θ̂−m)

)
+ θ̂m − θ̄m. (5.4)

For the first term in the above display, Taylor expansion yields that

f (m)(θ∗
m|θ∗−m) − f (m)(θ∗

m|θ̂−m) =
∑

i:i 	=m

Ami

(
ψ(θ∗

m − θ∗
i ) − ψ(θ∗

m − θ̂i)
)

=
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )(θ̂i − θ∗

i ) − 1

2

∑
i:i 	=m

Amiψ
′′(θ∗

m − ξm,i)(θ̂i − θ∗
i )2,

where for each i 	= m, ξm,i is some number between θ̂i and θ∗
i . Now using again the decomposition of

θ̂m in (5.3), we have

f (m)(θ∗
m|θ∗−m) − f (m)(θ∗

m|θ̂−m)

= −
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )

f (i)(θ∗
i |θ∗−i)

g(i)(θ∗
i |θ∗−i)

+
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )δi

− 1

2

∑
i:i 	=m

Amiψ
′′(θ∗

m − ξm,i)(θ̂i − θ∗
i )2.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1093

Go back to the definition of δm, and the above calculation yields that

g(m)(θ∗
m|θ̂−m)δm = ( f (m)(θ∗

m|θ∗−m) − f (m)(θ∗
m|θ̂−m)

)
+ f (m)(θ∗

m|θ∗−m)
(g(m)(θ∗

m|θ̂−m)

g(m)(θ∗
m|θ∗−m)

− 1
)

+ g(m)(θ∗
m|θ̂−m)

(
θ̂m − θ̄m

)
= −

∑
i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )

f (i)(θ∗
i |θ∗−i)

g(i)(θ∗
i |θ∗−i)

+
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )δi

− 1

2

∑
i:i 	=m

Amiψ
′′(θ∗

m − ξm,i)(θ̂i − θ∗
i )2

+ f (m)(θ∗
m|θ∗−m)

(g(m)(θ∗
m|θ̂−m)

g(m)(θ∗
m|θ∗−m)

− 1
)

+ g(m)(θ∗
m|θ̂−m)

(
θ̂m − θ̄m

)
. (5.5)

Rearranging the terms yields that

g(m)(θ∗
m|θ∗−m)δm −

∑
i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )δi + (g(m)(θ∗

m|θ̂−m) − g(m)(θ∗
m|θ∗−m)

)
δm

= −
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )

f (i)(θ∗
i |θ∗−i)

g(i)(θ∗
i |θ∗−i)

− 1

2

∑
i:i 	=m

Amiψ
′′(θ∗

m − ξm,i)(θ̂i − θ∗
i )2

+ f (m)(θ∗
m|θ∗−m)

(g(m)(θ∗
m|θ̂−m)

g(m)(θ∗
m|θ∗−m)

− 1
)

+ g(m)(θ∗
m|θ̂−m)

(
θ̂m − θ̄m

)
≡ R1,m + R2,m + R3,m + R4,m.

Here R1-R4 are vectors in R
n. Let H be the Laplacian matrix defined by Hii ≡ ∑

j:j 	=i Aijψ
′(θ∗

i − θ∗
j )

and Hij ≡ −Aijψ
′(θ∗

i − θ∗
j ) for i 	= j, and D = diag(D1, . . . , Dn) be a diagonal matrix with Dm ≡

g(m)(θ∗
m|θ̂−m) − g(m)(θ∗

m|θ∗−m). Then in matrix form,

(H + D)δ = R1 + R2 + R3 + R4. (5.6)

Note that: (i) λmin,⊥(H) � np with the prescribed probability by Lemma 15; (ii) By Lemma 18, the
operator norm of D satisfies

‖D‖op = max
m∈[n]

|g(m)(θ∗
m|θ̂−m) − g(m)(θ∗

m|θ∗−m)| �
√

np

L
+
√

(log n)3

npL
= o(np).
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1094 C. GAO ET AL.

Hence, for large enough n, with

ave(u) ≡ 1

n

n∑
i=1

ui, ∀u ∈ R
n, (5.7)

the left side of (5.6) can be lower bounded by

‖Hδ‖ − ‖D‖op‖δ‖ = ‖H(δ − ave(δ)1n)‖ − o(np)‖δ‖
� np‖δ − ave(δ)1n‖ − o(np)‖δ‖ ≥ np

2
‖δ‖ − np

√
n|ave(δ)|. (5.8)

Hence by (5.6), Lemma 1 for the bound for |ave(δ)|, and Lemma 2 for the bounds for ‖R1‖-‖R4‖, we
have

‖δ‖ �
√

n|ave(δ)| + (np)−1 · (‖R1‖ + ‖R2‖ + ‖R3‖ + ‖R4‖
)

� 1√
pL

·
√

log n

n
+ (np)−1 ·

[√
n log n

L
+
(n

L

√
np log n

L

)1/2
]

� 1√
pL

·
[√

log n

np
+
( log n

npL

)1/4
]

,

as desired. �

Lemma 1. Suppose that κ = O(1) and np � log n. Then the following holds with probability at least
1 − O(n−10).

|ave(δ)| � 1√
npL

·
√

log n

n
= o(

1√
npL

).

Proof of Lemma 1 Since both θ̂ and θ∗ are centered by definition, the definition of δ in (5.3) yields that

ave(δ) = 1

n

n∑
m=1

f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1095

Let wmi ≡ Ami/
(∑

j:j 	=m Amjψ
′(θ∗

m − θ∗
j )
)
. Then

ave(δ) = 1

n

n∑
m=1

∑
i:i 	=m Ami

(
ȳmi − ψ(θ∗

m − θ∗
i )
)∑

i:i 	=m Amiψ
′(θ∗

m − θ∗
i )

= 1

n

∑
i 	=m

wmi

(
ȳmi − ψ(θ∗

m − θ∗
i )
)

= 1

n

∑
i<m

wmi

(
ȳmi − ψ(θ∗

m − θ∗
i )
)+ wim

(
ȳim − ψ(θ∗

i − θ∗
m)
)

(∗)= 1

n

∑
i<m

(wmi − wim)
(
ȳmi − ψ(θ∗

m − θ∗
i )
)

= 1

nL

∑
i<m

L∑
�=1

(wmi − wim)
(
ymi� − ψ(θ∗

m − θ∗
i )
)
,

where (∗) follows as ȳim − ψ(θ∗
i − θ∗

m) = (1 − ȳmi) − (1 − ψ(θ∗
m − θ∗

i )) = −(ȳmi − ψ(θ∗
m − θ∗

i )).
Now conditioning on the graph A, {wmi} are deterministic and the summands in the above display are
independent across i < m, �. Hence, Hoeffding’s inequality yields that for any t > 0,

P

(∣∣∣1
n

n∑
m=1

f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

∣∣∣ ≥ t
∣∣∣A) ≤ 2 exp

(
− Cn2Lt2∑

i<m(wmi − wim)2

)
.

By Lemma 13, it holds with the prescribed probability that

∑
i<m

w2
mi =

∑
i<m

( Ami∑
j:j 	=m Amjψ

′(θ∗
m − θ∗

j )

)2
� (np)−2

∑
i<m

Ami � p−1.

Since a similar bound holds for
∑

i<m w2
im, we have

∑
i<m(wmi − wim)2 � p−1 with the prescribed

probability. By choosing t � √
log n/(n2pL), the above two displays yield that with the prescribed

probability |ave(δ)| � n−1
√

log n/(Lp) = √
log n/n · (1/

√
npL). The proof is complete. �

Lemma 2. Recall R1-R4 defined in the proof of Proposition 11. Suppose κ = O(1) and np � log n.
Then the following hold with probability 1 − O(n−10).

‖R1‖2 ∨ ‖R2‖2 ∨ ‖R3‖2 � n log n

L
, ‖R4‖2 � n

L

√
np log n

L
.

Proof of Lemma 2 (Bound of R1) For each m ∈ [n], let

wij;m ≡ ψ ′(θ∗
m − θ∗

i )AmiAij∑
k:k 	=i Aikψ

′(θ∗
i − θ∗

k )
.
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1096 C. GAO ET AL.

Then, we have

R1,m =
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )

∑
j:j 	=i Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)∑

k:k 	=i Aikψ
′(θ∗

i − θ∗
k )

=
∑

i,j:j 	=i,i 	=m

( ψ ′(θ∗
m − θ∗

i )AmiAij∑
k 	=i Aikψ

′(θ∗
i − θ∗

k )

)(
ȳij − ψ(θ∗

i − θ∗
j )
)

=
∑

i,j:j 	=i,i,j 	=m

wij;m

(
ȳij − ψ(θ∗

i − θ∗
j )
)+

∑
i:i 	=m

wim;m

(
ȳim − ψ(θ∗

i − θ∗
m)
)

=
∑

i,j:i<j,i,j 	=m

wij;m

(
ȳij − ψ(θ∗

i − θ∗
j )
)+ wji;m

(
ȳji − ψ(θ∗

j − θ∗
i )
)

+
∑

i:i 	=m

wim;m

(
ȳim − ψ(θ∗

i − θ∗
m)
)

(∗)= 1

L

∑
i,j:i<j,i,j 	=m

L∑
�=1

(wij;m − wji;m)
(
yij� − ψ(θ∗

i − θ∗
j )
)

+ 1

L

∑
i:i 	=m

L∑
�=1

wim;m

(
yim� − ψ(θ∗

i − θ∗
m)
)
.

Here (∗) follows as ȳji − ψ(θ∗
j − θ∗

i ) = (1 − ȳij) − (1 − ψ(θ∗
i − θ∗

j )) = −(ȳij − ψ(θ∗
i − θ∗

j )). Now
conditioning on the graph A, {wij;m} are deterministic and the above two sums are independent across
their summands. Hence Hoeffding’s inequality yields that

∣∣∣1
L

∑
i,j:i<j,i,j 	=m

L∑
�=1

(wij;m − wji;m)
(
yij� − ψ(θ∗

i − θ∗
j )
)∣∣∣

�
√√√√ log n

L
·

∑
i,j:i<j,i,j 	=m

(wij;m − wji;m)2,

∣∣∣1
L

∑
i:i 	=m

L∑
�=1

wim;m

(
yim� − ψ(θ∗

i − θ∗
m)
)∣∣∣ �√√√√ log n

L
·
∑

i:i 	=m

w2
im;m
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1097

with the prescribed probability. Now by Lemma 13, we have

∑
i,j:i<j,i,j 	=m

(wij;m − wji;m)2 �
∑

i,j:i<j,i,j 	=m

AijAmi(∑
k:k 	=i Aikψ

′(θ∗
i − θ∗

k )
)2

� (np)−2
∑

i,j:i<j,i,j 	=m

AijAmi � 1,

∑
i:i 	=m

w2
im;m �

∑
i:i 	=m

Aim(∑
k:k 	=i Aikψ

′(θ∗
i − θ∗

k )
)2 � 1

np
.

Combining the above two displays yields that maxm∈[n] |R1,m| �
√

log n/L, and hence ‖R1‖ �√
n log n/L with the prescribed probability.

(Bound of R2) Using supu∈R |ψ ′′(u)| � 1, we have |R2,m| � (
∑

i:i 	=m Aim|θ̂i − θ∗
i |) · ‖θ̂ − θ∗‖∞.

Hence, by Lemma 15 and Proposition 1, we have

‖R2‖2 �
n∑

m=1

( ∑
i:i 	=m

Ami|θ̂i − θ∗
i |
)2 · ‖θ̂ − θ∗‖2∞

≤ ‖A‖2
op · ‖θ̂ − θ∗‖2 · ‖θ̂ − θ∗‖2∞

� (np)2 · 1

pL
· log n

npL
= n log n

L2
.

(Bound of R3) By Lemma 18, it holds with the prescribed probability that

|R3,m| ≤
∣∣∣ f (m)(θ∗

m|θ∗−m)

∣∣∣ · maxm∈[n]

∣∣∣g(m)(θ∗
m|θ∗−m) − g(m)(θ∗

m|θ̂−m)

∣∣∣
g(m)(θ∗

m|θ∗−m)

�
∣∣∣ f (m)(θ∗

m|θ∗−m)

∣∣∣ · 1

np

(√np

L
+
√

(log n)3

npL

)
.

Hence, again by Lemma 18,

‖R3‖2 �
n∑

m=1

(
f (m)(θ∗

m|θ∗−m)
)2 · 1

(np)2

(np

L
+ (log n)3

npL

)

� n2p

L
· 1

(np)2

(np

L
+ (log n)3

npL

)
= n

L2 + n log n

L
·
( log n

np

)2
.
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1098 C. GAO ET AL.

(Bound of R4) Using the bound g(m)(θ∗
m|θ∗−m) =∑i:i 	=m Amiψ

′(θ∗
m − θ∗

i ) � np by Lemma 13, it follows
from Lemma 19 that

[
g(m)(θ∗

m|θ∗−m)(θ̂m − θ̄m)
]2

� (np)2
( | f (m)(θ∗

m|θ̂−m)|
np

)3 =
∣∣ f (m)(θ∗

m|θ̂−m)
∣∣3

np
.

Moreover, it follows from Lemma 18-(4) that g(m)(θ∗
m|θ̂−m) = (

1 + o(1)
)
g(m)(θ∗

m|θ̂−m). Hence, by
Lemma 18-(1), we have

‖R4‖2 =
n∑

m=1

[
g(m)(θ∗

m|θ̂−m)(θ̂m − θ̄m)
]2

�
n∑

m=1

[
g(m)(θ∗

m|θ∗−m)(θ̂m − θ̄m)
]2

� 1

np

n∑
m=1

∣∣∣ f (m)(θ∗
m|θ̂−m)

∣∣∣3
≤ 1

np
· max

m∈[n]

∣∣∣ f (m)(θ∗
m|θ̂−m)

∣∣∣ · n∑
m=1

∣∣∣ f (m)(θ∗
m|θ̂−m)

∣∣∣2
� 1

np
·
√

np log n

L
· n2p

L
= n

L

√
np log n

L
.

The proof is complete. �

5.3 Control of ‖δ‖∞
We will now prove Proposition 10. We start by introducing the leave-two-out technique and some
additional notation in Section 5.3.1, followed by some preliminary estimates of the corresponding
quantities in Section 5.3.2. The main proof of Proposition 10 is given in Section 5.3.3.

5.3.1 Leave-two-out preliminary Recall that δ satisfies the following self-consistent equation in
(5.5): for each i ∈ [n],

g(i)(θ∗
i |θ̂−i)δi =

∑
j:j 	=i

Aijψ
′(θ∗

i − θ∗
j )δj + R̄i

for some error term R̄ ∈ R
n. In the previous section, we derived the bound for ‖δ‖ by treating the above

system as a whole and solving for δ. Here for ‖δ‖∞, we need to bound the right side directly, and the key
difficulty lies in controlling the term

∑
j:j 	=i Aijψ

′(θ∗
i − θ∗

j )δj. By standard concentration arguments, this
term could be properly controlled if the sequence {Aij}j:j 	=i was independent of {δj}j:j 	=i. For this reason,

we introduce in the following a leave-one-out version δ(i) of δ that is independent of the ith individual
(and therefore {Aij}j:j 	=i).
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1099

Fix any index i ∈ [n] to be left out. Recall the leave-one-out likelihood

�(−i)
n (θ−i) =

∑
j<k:j,k 	=i

Ajk

[
ȳjk log

1

ψ(θj − θk)
+ ȳkj log

1

ψ(θk − θj)

]
.

The leave-one-out MLE θ̂ (i) ∈ R
n−1 is defined by

θ̂ (i) ≡ argminθ−i∈Rn−1:ave(θ−i)=ave(θ∗−i)
�(−i)

n (θ−i). (5.9)

We start by finding an approximation θ̄
(i)
j of θ̂

(i)
j for each j 	= i, analogous to the way θ̄j approximates

θ̂j. By isolating the jth individual, we have the following leave-two-out decomposition �
(−i)
n (θ−i) =

�
(−i,−j)
n (θ−i,−j) + �

(−i,j)
n (θj|θ−i,−j), where

�(−i,−j)
n (θ−i,−j) =

∑
k<�:k,�/∈{i,j}

Ak�

[
ȳk� log

1

ψ(θk − θ�)
+ ȳ�k log

1

ψ(θ� − θk)

]
,

�(−i,j)
n (θj|θ−i,−j) =

∑
k/∈{i,j}

Ajk

[
ȳjk log

1

ψ(θj − θk)
+ ȳkj log

1

ψ(θk − θj)

]
.

Analogous to f (i)(θi|θ−i) and g(i)(θi|θ−i), define for each j 	= i

f (−i,j)(θj|θ−i,−j) ≡ ∂

∂θj
�(−i,j)

n (θj|θ−i,−j) = −
∑

k/∈{i,j}
Ajk

(
ȳjk − ψ(θj − θk)

)
,

g(−i,j)(θj|θ−i,−j) ≡ ∂2

∂θ2
j

�(−i,j)
n (θj|θ−i,−j) =

∑
k/∈{i,j}

Ajkψ
′(θj − θk). (5.10)

Using a similar reasoning for θ̄ , define for each j 	= i

θ̄
(i)
j ≡ θ∗

j − f (−i,j)(θ∗
j |θ̂ (i)

−j )

g(−i,j)(θ∗
j |θ̂ (i)

−j )
.

This leads to the definition of a leave-one-out version of δ: for each j 	= i, let δ
(i)
j be defined by

θ̂
(i)
j − θ∗

j ≡ − f (−i,j)(θ∗
j |θ∗−i,−j)

g(−i,j)(θ∗
j |θ∗−i,−j)

+ δ
(i)
j . (5.11)
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1100 C. GAO ET AL.

The following lemma is an analogue of Lemma 18 for the quantities f (−i,j)(θj|θ−i,−j) and

g(−i,j)(θj|θ−i,−j). Its proof relies on the analysis of the leave-two-out MLE defined as

θ̂ (i,j) ≡ argmaxθ−i,−j∈Rn−2:ave(θ−i,−j)=ave(θ∗−i,−j)
�(−i,−j)

n (θ−i,−j). (5.12)

Lemma 3. Suppose κ = O(1) and np � log n. Then the following hold with probability at least
1 − O(n−10).

1. There exists some C = C(κ) > 0 such that

max
i∈[n]

max
j:j 	=i

∣∣ f (−i,j)(θ∗
j |θ̂ (i)

−j )
∣∣ ≤ C

√
np log n

L

and

max
i∈[n]

∑
j:j 	=i

(
f (−i,j)(θ∗

j |θ̂ (i)
−j )
)2 ≤ C

n2p

L
.

2. There exist some positive c = c(κ) and C = C(κ) such that

cnp ≤ min
i∈[n]

min
j:j 	=i

g(−i,j)(θ∗
i |θ∗−i,−j) ≤ max

i∈[n]
max
j:j 	=i

g(−i,j)(θ∗
i |θ∗−i,−j) ≤ Cnp.

3. There exists some C = C(κ) > 0 such that

max
i∈[n]

max
j:j 	=i

∣∣∣g(−i,j)(θ∗
j |θ̂ (i)

−j ) − g(−i,j)(θ∗
j |θ∗−i,−j)

∣∣∣ ≤ C
(√np

L
+
√

(log n)3

npL

)
.

Proof of Lemma 3

(1) For the first inequality, fix any i ∈ [n] and then j such that j 	= i. Then

−f (−i,j)(θ∗
j |θ̂ (i)

−j ) =
∑

k/∈{i,j}
Ajk

(
ȳjk − ψ(θ∗

j − θ̂
(i)
k )
)

=
∑

k/∈{i,j}
Ajk

(
ȳjk − ψ(θ∗

j − θ∗
k )
)+

∑
k/∈{i,j}

Ajk

(
ψ(θ∗

j − θ∗
k ) − ψ(θ∗

j − θ̂
(i)
k )
)

≡ (Iij) + (IIij).
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1101

By Lemma 14, we have maxi∈[n] maxj:j 	=i |(Iij)| �
√

np log n/L with the prescribed probability.
On the other hand, as ψ(·) is Lipschitz with a universal constant, Lemmas 13 and 16 yield that

max
i∈[n]

max
j:j 	=i

|(IIij)| = max
i∈[n]

max
j:j 	=i

∣∣∣ ∑
k/∈{i,j}

Ajk

(
ψ(θ∗

j − θ∗
k ) − ψ(θ∗

j − θ̂
(i)
k )
)∣∣∣

≤ max
i∈[n]

‖θ̂ (i) − θ∗−i‖∞ · max
i∈[n]

max
j:j 	=i

∑
k/∈{i,j}

Ajk

�
√

log n

npL
· np =

√
np log n

L
,

with the prescribed probability. Putting together the estimates concludes the first inequality.
For the second inequality, note that again by Lemma 14, maxi∈[n]

∑n
j:j 	=i(Iij)

2 � n2p/L. On the
other hand, by Taylor expansion,

(IIij) =
∑

k/∈{i,j}
Ajkψ

′(θ∗
j − ξijk)(θ̂

(i)
k − θ∗

k )

for some ξijk between θ̂
(i)
k and θ∗

k . Hence using supu∈R |ψ ′(u)| � 1, we have

max
i∈[n]

∑
j:j 	=i

(IIij)
2 = max

i∈[n]

∑
j:j 	=i

( ∑
k/∈{i,j}

Ajkψ
′(θ∗

j − ξijk)(θ̂
(i)
k − θ∗

k )
)2

� ‖A‖2
op · max

i∈[n]
‖θ̂ (i) − θ∗−i‖2

(∗)

� (np)2 · 1

pL
= n2p

L
,

where (∗) is by Lemmas 15 and 16.

(2) This follows directly from Lemma 13 and the fact that ψ ′(θi − θj) � 1 for any θ ∈ Θ(κ).

(3) Fix i ∈ [n] and then j such that j 	= i. Recall the definition of the leave-two-out MLE θ̂ (i,j) in
(5.12). Then using analogous arguments for the leave-one-out MLE θ̂ (i), we have the following
estimates for the leave-two-out MLE θ̂ (i,j) (cf. Lemma 16):

max
i,j:j 	=i

‖θ̂ (i,j) − θ∗−i,−j‖ �
√

1

pL
, max

i,j:j 	=i
‖θ̂ (i,j) − θ∗−i,−j‖∞ �

√
log n

npL

and

max
i,j:j 	=i

‖θ̂ (i,j) − θ̂
(i)
−j‖ �

√
1

npL
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/1073/7017369 by U
niversity of Pennsylvania Library user on 23 M

arch 2023



1102 C. GAO ET AL.

Using the above estimates and Lemma 13, we have

∣∣g(−i,j)(θ∗
j |θ̂ (i)

−j ) − g(−i,j)(θ∗
j |θ∗−i,−j)

∣∣
= ∣∣ ∑

k/∈{i,j}
Ajk

(
ψ ′(θ∗

j − θ∗
k ) − ψ ′(θ∗

j − θ̂
(i)
k )
)∣∣

�
∑

k/∈{i,j}
Ajk|θ̂ (i)

k − θ∗
k | ≤

∑
k/∈{i,j}

Ajk|θ̂ (i)
k − θ̂

(i,j)
k | +

∑
k/∈{i,j}

Ajk|θ̂ (i,j)
k − θ∗

k |

≤ ( ∑
k/∈{i,j}

Ajk

)1/2‖θ̂ (i)
−j − θ̂ (i,j)‖ + p ·

∑
k/∈{i,j}

|θ̂ (i,j)
k − θ∗

k | +
∑

k/∈{i,j}
(Ajk − p)|θ̂ (i,j)

k − θ∗
k |

≤ √
np

√
1

npL
+ p

√
n‖θ̂ (i,j) − θ∗−i,−j‖ +√p log n‖θ̂ (i,j) − θ∗−i,−j‖ + log n · ‖θ̂ (i,j) − θ∗−i,−j‖∞

�
√

1

L
+
√

np

L
+
√

log n

L
+
√

(log n)3

npL
�
√

np

L
+
√

(log n)3

npL
.

The above bound is uniform over i, j so the proof is complete. �

5.3.2 Bounds for δ(i) We first establish the following analogue of Proposition 11 for ‖δ(i)‖. The
proof is similar so we only sketch the steps.

Lemma 4. Suppose κ = O(1) and np � log n. Then the following holds with probability at least
1 − O(n−10).

max
m∈[n]

‖δ(m)‖ � 1√
pL

·
[√

log n

np
+
( log n

npL

)1/4
]

= o(
1√
pL

).

Proof of Lemma 4 Following the arguments in Proposition 11, we arrive at the following expansion
analogous to (5.6):

(H(m) + D(m))δ(m) = R(m)
1 + R(m)

2 + R(m)
3 + R(m)

4 . (5.13)

Here H(m), D(m), and R(m)
1 -R(m)

4 are leave-one-out versions of H, D, and R1-R4 defined by

• H(m) ∈ R
(n−1)×(n−1) with H(m)

ii =∑j:j/∈{m,i} Aijψ
′(θ∗

i −θ∗
j ) for i 	= m and H(m)

ij = −Aijψ
′(θ∗

i −θ∗
j )

for j /∈ {m, i}.
• D(m) ∈ R

(n−1)×(n−1) is defined by D(m) = diag(D(m)
1 , . . . , D(m)

m−1, D(m)
m+1, . . . , D(m)

n ) with D(m)
i =

g(−m,i)(θ∗
i |θ̂ (m)

−i ) − g(−m,i)(θ∗
i |θ∗−m,−i).
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1103

• R(m)
1 - R(m)

4 are defined by: for each i 	= m,

R(m)
1,i = −

∑
j/∈{m,i}

Aijψ
′(θ∗

i − θ∗
j )

f (−m,j)(θ∗
j |θ∗−m,−j)

g(−m,j)(θ∗
i |θ∗−m,−j)

,

R(m)
2,i = −1

2

∑
j/∈{m,i}

Aijψ
′′(θ∗

i − ξm,j)(θ̂
(m)
j − θ∗

j )2,

R(m)
3,i = f (−m,i)(θ∗

i |θ̂ (m)
−i )

( g(−m,i)(θ∗
i |θ̂ (m)

−i )

g(−m,i)(θ∗
i |θ∗−m,−i)

− 1
)

,

R(m)
4,i = g(−m,i)(θ∗

i |θ̂ (m)
−i )

(
θ̂

(m)
i − θ̄

(m)
i

)
.

Note that: (i) 1n−1 is in the null space of H(m) and the smallest non-null eigenvalue satisfies
minx∈Rn−1:‖x‖=1,ave(x)=0 x�H(m)x � np by Lemma 15; (ii) ‖D(m)‖op = o(np) by Lemma 3-(2). Hence,
continuing with the arguments in Proposition 11 leads to

‖δ(m)‖ �
√

n|ave(δ(m))| + (np)−1 · (‖R(m)
1 ‖ + ‖R(m)

2 ‖ + ‖R(m)
3 ‖ + ‖R(m)

4 ‖).
The quantities on the right side can be bounded as follows:

• Note that by definition ave(θ̂ (m)) = ave(θ∗−m), hence by analogous arguments as in Lemma 1, we
have

|ave(δ(m))| =
∣∣∣ 1

n − 1

∑
i:i 	=m

f (−m,i)(θ∗
i |θ∗−m,−i)

g(−m,i)(θ∗
i |θ∗−m,i)

∣∣∣ � 1√
npL

·
√

log n

n
.

• By analogous arguments as in Lemma 2, we have ‖R(m)
1 ‖ ∨ ‖R(m)

2 ‖ ∨ ‖R(m)
3 ‖ �

√
n log n/L.

• By analogous arguments as in Lemma 19, we have

∣∣θ̂ (m)
i − θ̄

(m)
i

∣∣ � (∣∣ f (−m,i)(θ∗
i |θ̂ (m)

−i )
∣∣

np

)3/2
. (5.14)

The bound ‖R(m)
4 ‖ �

(
n
√

np log n/L3/2
)1/2

now follows from subsequent arguments in Lemma

2 upon using Lemma 3.

Collecting the estimates yields the desired claim. �
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1104 C. GAO ET AL.

The following control of ‖δ(m)‖∞ is also needed in the bound for ‖δ‖∞ below.

Lemma 5. Under the conditions κ = O(1) and np � log n, the following holds with probability at least
1 − O(n−10).

max
m∈[n]

‖δ(m)‖∞ �
√

log n

npL
.

Proof of Lemma 5 By combining (5.14) and Lemma 3-(1), we have

∣∣θ̂ (m)
i − θ̄

(m)
i

∣∣ � (∣∣ f (−m,i)(θ∗
i |θ̂ (m)

−i )
∣∣

np

)3/2
�
( log n

npL

)3/4
. (5.15)

Hence, for any i 	= m, we have

|δ(m)
i | ≤

∣∣∣ f (−m,i)(θ∗
i |θ̂ (m)

−i ) − f (−m,i)(θ∗
i |θ∗−m,−i)

g(−m,i)(θ∗
i |θ̂ (m)

−i )

∣∣∣+ ∣∣θ̂ (m)
i − θ̄

(m)
i

∣∣
+
∣∣∣ f (−m,i)(θ∗

i |θ∗−m,−i)
( 1

g(−m,i)(θ∗
m|θ∗−i)

− 1

g(−m,i)(θ∗
m|θ̂ (m)

−i )

)∣∣∣
(∗)≤ (np)−1

∑
j/∈{m,i}

Aij|θ̂ (m)
j − θ∗

j | +
( log n

npL

)3/4

+
√

np log n

L
(np)−2

(√np

L
+
√

(log n)3

npL

)
� (np)−1

( ∑
j/∈{m,i}

Aij

)
· ‖θ̂ (m) − θ∗−m‖∞ +

( log n

npL

)3/4 +
√

log n

npL
+ (log n)2

(np)2L

(∗∗)

�
√

log n

npL
+
( log n

npL

)3/4 +
√

log n

npL
+ (log n)2

(np)2L
�
√

log n

npL
.

Here (∗) follows from (5.15) and Lemma 3, and (∗∗) follows from Lemma 16. The proof is
complete. �

5.3.3 Main proof

Proof of Proposition 10 Recall the following decomposition of δ in (5.4): for each m ∈ [n],

δm = f (m)(θ∗
m|θ∗−m) − f (m)(θ∗

m|θ̂−m)

g(m)(θ∗
m|θ̂−m)

+ (θ̂m − θ̄m)

+ f (m)(θ∗
m|θ∗−m)

( 1

g(m)(θ∗
m|θ∗−m)

− 1

g(m)(θ∗
m|θ̂−m)

)
.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1105

Recall the definition of the leave-one-out MLE θ̂ (m) in (5.9). Then δm can be further decomposed as

δm =
∑

i:i 	=m Ami

(
ψ(θ∗

m − θ̂
(m)
i ) − ψ(θ∗

m − θ̂i)
)

g(m)(θ∗
m|θ̂−m)

+
∑

i:i 	=m Ami

(
ψ(θ∗

m − θ∗
i ) − ψ(θ∗

m − θ̂
(m)
i )

)
g(m)(θ∗

m|θ̂−m)
+ (θ̂m − θ̄m)

+ f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

(
1 − g(m)(θ∗

m|θ∗−m)

g(m)(θ∗
m|θ̂−m)

)
≡ δ1,m + δ2,m + δ3,m + f (m)(θ∗

m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

(
1 − g(m)(θ∗

m|θ∗−m)

g(m)(θ∗
m|θ̂−m)

)
.

By Lemma 18, we have 1−g(m)(θ∗
m|θ∗−m)/g(m)(θ∗

m|θ̂−m) = o(1) under the condition np � log n. On the
other hand, it follows from Lemma 6 that under the condition np � (log n)3/2, we have maxm∈[n] |δ1,m|∨
|δ2,m| = o(1/

√
npL) and

|δ3,m| � εm

∣∣∣ f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

∣∣∣+ o(
1√
npL

),

where ‖ε‖∞ = o(1) and the o(1/
√

npL) is uniform over m ∈ [n]. The proof is now complete by
collecting the estimates. �

Lemma 6. Recall the definition of δ1,m-δ3,m from the proof of Proposition 10. Suppose κ = O(1) and
np � log n. Then the following holds with probability at least 1 − O(n−10) uniformly over m ∈ [n].

|δ1,m| � 1√
npL

√
1

np
,

|δ2,m| � 1√
npL

·
(√ log n

np
+
( log n

npL

)1/4 +
√

(log n)3

(np)2

)
,

|δ3,m| � εm

∣∣∣ f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

∣∣∣+ 1√
npL

·
[( log n

npL

)1/4 + (log n)7/4

(np)5/4L1/4

]
.

Here ε ∈ R
n satisfies ‖ε‖∞ = o(1). In particular, if np � (log n)3/2, we have maxm∈[n] |δ1,m| ∨

|δ2,m| = o(1/
√

npL) and |δ3,m| � εm

∣∣ f (m)(θ∗
m|θ∗−m)/g(m)(θ∗

m|θ∗−m)
∣∣ + o(1/

√
npL), where ‖ε‖∞ = o(1)

and o(1/
√

npL) is uniform over m ∈ [n].
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Proof of Lemma 6 (Bound for δ1,m) By Lemma 16, we have

|δ1,m| � (np)−1
∑

i:i 	=m

Ami

∣∣θ̂i − θ̂
(m)
i

∣∣ ≤ (np)−1
( ∑

i:i 	=m

Ami

)1/2‖θ̂ (m) − θ̂−m‖

� (np)−1 · √
np ·

√
1

npL
= 1√

npL

√
1

np
.

(Bound for δ2,m) Using Taylor expansion and the expansion in (5.11) for each θ̂
(m)
i , i 	= m, we have

g(m)(θ∗
m|θ̂−m)δ2,m =

∑
i:i 	=m

Ami

[
ψ ′(θ∗

m − θ∗
i )(θ̂

(m)
i − θ∗

i ) − 1

2
ψ ′′(θ∗

m − ξm,i)(θ̂
(m)
i − θ∗

i )2
]

= −
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )

f (−m,i)(θ∗
i |θ∗−m,−i)

g(−m,i)(θ∗
i |θ∗−m,−i)

+
∑

i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )δ

(m)
i − 1

2

∑
i:i 	=m

Amiψ
′′(θ∗

m − ξm,i)(θ̂
(m)
i − θ∗

i )2

≡ R(m)
1 + R(m)

2 + R(m)
3 .

The proof for δ2,m is now complete by using Lemma 7 and the lower bound g(m)(θ∗
m|θ̂−m) � np.

(Bound for δ3,m) It follows from Lemma 19 that

|δ3,m| = |θ̂m − θ̄m| �
(∣∣ f (m)(θ∗

m|θ̂−m)
∣∣

np

)3/2
.

By Lemma 18-(1), we have
∣∣ f (m)(θ∗

m|θ̂−m)
∣∣/(np) �

√
log n/(npL). Furthermore, we have by Lemma

18-(2)

∣∣ f (m)(θ∗
m|θ̂−m)

∣∣ = ∣∣ f (m)(θ∗
m|θ∗−m)

∣∣+ O
(√np

L
+
√

(log n)3

npL

)
.

Hence we have

|δ3,m| �
( log n

npL

)1/4 ·
[ ∣∣ f (m)(θ∗

m|θ∗−m)
∣∣

np
+ O

(√ 1

npL
+
√

(log n)3

(np)3L

)]
= o(1)

∣∣∣ f (m)(θ∗
m|θ∗−m)

g(m)(θ∗
m|θ∗−m)

∣∣∣+ 1√
npL

·
[( log n

npL

)1/4 + (log n)7/4

(np)5/4L1/4

]
,

as desired. The proof is complete. �
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1107

Lemma 7. Recall R(m)
1 -R(m)

3 defined in the proof of Lemma 6. Suppose κ = O(1) and np � log n. Then
the following hold with probability 1 − O(n−10).

max
m∈[n]

|R(m)
1 | �

√
log n

L
, max

m∈[n]
|R(m)

2 | �
√

log n

L
+ (np log n)1/4

L3/4 +
√

(log n)3

npL
,

max
m∈[n]

|R(m)
3 | �

√
log n

L
+ (log n)2

npL
.

Proof of Lemma 7 (Bound of R(m)
1 ) Using a similar argument for the control of R1,m as in Lemma 2, we

have maxm∈[n] |R(m)
1 | � √

log n/L with the prescribed probability.

(Bound of R(m)
2 ) Note that by definition, δ(m) is independent from data involving the mth individual.

Hence, by applying Bernstein’s inequality conditioning on data without the mth observation, we have

R(m)
2 =

∑
i:i 	=m

Amiψ
′(θ∗

m − θ∗
i )δ

(m)
i

= p ·
∑

i:i 	=m

ψ ′(θ∗
m − θ∗

i )δ
(m)
i +

∑
i:i 	=m

(Ami − p)ψ ′(θ∗
m − θ∗

i )δ
(m)
i

� p
√

n‖δ(m)‖ +√p log n‖δ(m)‖ + log n · ‖δ(m)‖∞
(∗)

� p
√

n · 1√
pL

·
[√ log n

np
+
( log n

npL

)1/4]+ log n ·
√

log n

npL

=
√

log n

L
+ (np log n)1/4

L3/4 +
√

(log n)3

npL
,

with the prescribed probability. Here (∗) follows from Lemmas 4 and 5.
(Bound for R(m)

3 ) By definition, we have

|R(m)
3 | �

( ∑
i:i 	=m

Ami|θ̂ (m)
i − θ∗

i |
)

· ‖θ̂ (m) − θ∗−m‖∞.

The first term satisfies, using the independence between {Ami} and θ̂ (m) and Bernstein’s inequality,

∑
i:i 	=m

Ami|θ̂ (m)
i − θ∗

i | = p ·
∑

i:i 	=m

|θ̂ (m)
i − θ∗

i | +
∑

i:i 	=m

(Ami − p)|θ̂ (m)
i − θ∗

i |

� p
√

n‖θ̂ (m) − θ∗−m‖ + log n · ‖θ̂ (m) − θ∗−m‖∞
(∗)

� p
√

n

√
1

pL
+ log n

√
log n

npL
=
√

np

L
+
√

(log n)3

npL
,
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1108 C. GAO ET AL.

where (∗) follows from Lemma 16. Hence,

|R(m)
3 | �

(√np

L
+
√

(log n)3

npL

)
·
√

log n

npL
=

√
log n

L
+ (log n)2

npL
.

This completes the proof. �

6. Proof of the main expansion for spectral method

The goal of this section is to prove Theorem 3. We give a proof outline and introduce some preliminaries
in Section 6.1, followed by two main steps of the proof in Sections 6.2 and 6.3, respectively. We then
complete the proof in Section 6.4.

6.1 Preliminary

First note that by a simple Taylor expansion, we can identify the following main term of θ̃i − θ∗
i :

Δi ≡ π̂i − π∗
i

π∗
i

− 1

n

n∑
k=1

π̂k − π∗
k

π∗
k

. (6.1)

To find a close proxy of Δ that is tractable for analysis, we note the following property of π̂i:

π̂i =
∑

j:j 	=i Aijȳijπ̂j∑
j:j 	=i Aijȳji

,

which leads to the proxy choice (analogue of θ̄ for MLE)

π̄i ≡
∑

j:j 	=i Aijȳijπ
∗
j∑

j:j 	=i Aijȳji
. (6.2)

The remainder vector δ for the spectral estimator is then defined by

Δi = π̂i − π∗
i

π∗
i

− 1

n

n∑
k=1

π̂k − π∗
k

π∗
k

≡ π̄i − π∗
i

π∗
i

+ δi. (6.3)

Now that the main term (π̄i − π∗
i )/π∗

i is tractable for analysis, the goal is control ‖δ‖∞. Similar to the
proof of its counterpart Proposition 10, an essential intermediate step is to give a tight bound for ‖δ‖,
which we now discuss in detail.

6.2 Control of ‖δ‖
The goal of this subsection is to prove the following �2 bound of δ.

Proposition 12. Suppose that κ = O(1) and np � log n. Then it holds with probability 1 − O(n−10)

that ‖δ‖ = o(1/
√

pL).
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Proof of Proposition 12Fix m ∈ [n]. By the definitions of δ in (6.3) and π̄m in (6.2), we have

δm = π̂m − π̄m

π∗
m

− 1

n

n∑
i=1

π̂i − π∗
i

π∗
i

=
∑

i:i 	=m Aimȳmi(π̂i − π∗
i )

π∗
m ·∑i:i 	=m Aimȳim

− 1

n

n∑
i=1

π̂i − π∗
i

π∗
i

.

Using again the expansion (6.3) for each π̂i − π∗
i , we have

δm =
∑

i:i 	=m Aimȳmi(π̄i − π∗
i )

π∗
m ·∑i:i 	=m Aimȳim

+
∑

i:i 	=m Aimȳmiπ
∗
i δi

π∗
m ·∑i:i 	=m Aimȳim

+ 1

n

n∑
i=1

π̂i − π∗
i

π∗
i

·
∑

i:i 	=m Aim(ȳmiπ
∗
i − ȳimπ∗

m)

π∗
m ·∑i:i 	=m Aimȳim

.

In matrix form, the above display is equivalent to Lδ = R1 + R2, where L is defined by Lij = −Aijȳijπ
∗
j

for i 	= j and Lii =∑j:j 	=i Aijȳjiπ
∗
i , and R1, R2 ∈ R

n are defined by

R1,m =
∑

i:i 	=m

Aimȳmi(π̄i − π∗
i ),

R2,m = 1

n

n∑
i=1

π̂i − π∗
i

π∗
i

·
∑

i:i 	=m

Aim(ȳmiπ
∗
i − ȳimπ∗

m).

Note that E(Lij|A) = −Aijψ(θ∗
i −θ∗

j )π∗
j = −Aijψ(θ∗

j −θ∗
i )π∗

i and E(Lii|A) =∑j:j 	=i Aijψ(θ∗
j −θ∗

i )π∗
i ,

and hence E(L|A) is a symmetric Laplacian matrix. Hence,

‖Lδ‖ ≥ ‖E(L|A)δ‖ − ‖L − E(L|A)‖op‖δ‖
= ‖E(L|A)

(
δ − ave(δ)1n

)‖ − ‖L − E(L|A)‖op‖δ‖
≥ λmin,⊥(E(L|A))‖δ − ave(δ)1n‖ − ‖L − E(L|A)‖op‖δ‖
≥ [λmin,⊥(E(L|A)) − ‖L − E(L|A)‖op

]
+‖δ‖ − √

n · λmin,⊥(E(L|A)) · |ave(δ)|.

Here for any M ∈ R
n×n, λmin,⊥(M) ≡ minx∈Rn:1�

n x=0,‖x‖=1 x�Mx. By Lemma 8, ‖L − E(L|A)‖op ≤
λmin,⊥(E(L|A))/2 and λmin,⊥(E(L|A)) � p with the prescribed probability, hence rearranging the terms
yields that

‖δ‖ �
√

n|ave(δ)| + p−1 · (‖R1‖ + ‖R2‖).

The proof is now complete by plugging in the estimates of |ave(δ)| in Lemma 9 and of ‖R1‖ and ‖R2‖
in Lemma 10. �
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1110 C. GAO ET AL.

Lemma 8. Recall the matrix L defined in the proof of Proposition 12. Suppose that κ = O(1) and
np � log n, then with probability at least 1 − O(n−10),

λmin,⊥(E(L|A)) ≥ cp, ‖L − E(L|A)‖op ≤ C
(√p log n

nL
∨ log n

n

)
for some positive c = c(κ) and C = C(κ). Consequently, ‖L−E(L|A)‖op ≤ λmin,⊥(E(L|A))/2 for large
enough n.

Proof of Lemma 8 Recall that E(L|A) is a symmetric Laplacian matrix with E(Lij|A) = −Aijψ(θ∗
j −

θ∗
i )π∗

i for i 	= j and E(Lii|A) =∑j:j 	=i Aijψ(θ∗
j − θ∗

i )π∗
i . Hence, the first claim follows from Lemma 15

by noting that ψ(θ∗
j − θ∗

i )π∗
i � n−1.

Next we establish the concentration of L. Note that L can be written as L =∑i<j Sij, where

Sij ≡ Aij

(− ȳijπ
∗
j · eie

�
j − ȳjiπ

∗
i · eje

�
i + ȳjiπ

∗
i · eie

�
i + ȳijπ

∗
j · eje

�
j

)
,

and Sij are independent across i < j. Hence, by the Bernstein inequality for asymmetric matrices [38,
Theorem 1.6], we have

P

(
‖L − E(L|A)‖op ≥ t|A

)
≤ 2n · exp

(
− Ct2

σ 2 + Rt

)
(6.4)

for some universal C > 0, where R and σ 2 are such that

max
i<j

‖Sij‖op ≤ R, σ 2 ≡ max
{∥∥∑

i<j

E
(
SijS

�
ij |A
)∥∥

op,
∥∥∑

i<j

E
(
S�

ij Sij|A
)∥∥

op

}
.

Obviously, R can be taken to be O(n−1). For σ 2, we have by direct calculation that

E
(
SijS

�
ij |A
) = Aij

L
ψ ′(θ∗

i − θ∗
j )
[
(π∗

i )2 + (π∗
j )2](eie

�
i + eje

�
j − eie

�
j − eje

�
i ).

This implies that, with wij ≡ Aijψ
′(θ∗

i − θ∗
j )
[
(π∗

i )2 + (π∗
j )2
]
/L, W ≡ ∑

i<j E
(
SijS

�
ij |A
)

is a Laplacian

matrix with Wij = −wij for i 	= j and Wii = ∑
j:j 	=i wij. Hence, using the fact that wij/Aij � (n2L)−1,

Lemma 15 implies that ‖W‖op � (n2L)−1 · (np) = p/(nL). A similar estimate for ‖∑i<j E
(
S�

ij Sij

∣∣A)‖op

concludes that σ 2 can be taken to be O(p/(nL)).
Finally, plugging the estimates of R and σ 2 into (6.4) yields that with the prescribed probability,

‖L − E(L|A)‖op �
√

log n · σ + log n · R �
√

p log n

nL
∨ log n

n
.

The fact that ‖L−E(L|A)‖op ≤ ‖E(L|A)‖op/2 (for large enough n) holds under the condition np � log n.
The proof is complete. �
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1111

Lemma 9. Suppose that κ = O(1) and np � log n. Then, it holds with probability at least 1 − O(n−10)

that

|ave(δ)| ≤ C

√
1

npL
·
(√ log n

n
+
√

log n

npL

)
for some positive C = C(κ). Consequently, |ave(δ)| = o(1/

√
npL).

Proof of Lemma 9 By the decomposition (6.3), we have

−ave(δ) = ave
( π̄ − π∗

π∗
)

= 1

n

m∑
m=1

π̄m − π∗
m

π∗
m

= 1

n

n∑
m=1

∑
i:i 	=m Aim

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Aimȳim

= 1

n

n∑
m=1

∑
i:i 	=m Aim

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Aimψ(θ∗
i − θ∗

m)

+ 1

n

n∑
m=1

∑
i:i 	=m Aim(ȳmiπ

∗
i − ȳimπ∗

m)

π∗
m

·
( 1∑

i:i 	=m Aimȳim
− 1∑

i:i 	=m Aimψ(θ∗
i − θ∗

m)

)
≡ (I) + (II).

To control (I), let wim ≡ Aim/
(
π∗

m ·∑k:k 	=m Akmψ(θ∗
k − θ∗

m)
)
. Then

n · (I) =
∑
i 	=m

wim

(
ȳmiπ

∗
i − ȳimπ∗

m

) = 1

n

∑
i<m

(wim − wmi)(ȳmiπ
∗
i − ȳimπ∗

m).

It can be readily checked that the summands ȳmiπ
∗
i − ȳimπ∗

m are independent across the indices
i < m, centered, and sub-Gaussian with variance proxy bounded by L−1‖π∗‖2∞ � (n2L)−1. Hence,
conditioning on the graph A, Hoeffding’s inequality yields that

P(n · |(I)| ≥ t|A) ≤ 2 exp
(

− Ct2

(n2L)−1 ·∑i<m(wim − wmi)
2

)
.

By Lemma 13 and the lower bound minm∈[n] π∗
m � n−1, we have

∑
i<m(wim − wmi)

2 �
∑

i<m(w2
im +

w2
mi) � n2p/p2 = n2/p. Hence, by choosing t � √

log n/(pL), the above display yields that with the
prescribed probability,

|(I)| � 1

n

√
log n

pL
=
√

1

npL
·
√

log n

n
.
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1112 C. GAO ET AL.

To control (II), using the lower bound minm∈[n] π∗
m � n−1 and standard concentration on the graph

A, we have

|(II)| ≤ (np)−2 × max
m∈[n]

∣∣∣ ∑
i:i 	=m

Aim

(
ȳmiπ

∗
i − ȳimπ∗

m

)∣∣∣
×

n∑
m=1

∣∣∣ ∑
i:i 	=m

Aim(ȳim − ψ(θ∗
i − θ∗

m))

∣∣∣
≤ (np)−2√n × max

m∈[n]

∣∣∣ ∑
i:i 	=m

Aim

(
ȳmiπ

∗
i − ȳimπ∗

m

)∣∣∣
×
[ n∑

m=1

∣∣∣ ∑
i:i 	=m

Aim(ȳim − ψ(θ∗
i − θ∗

m))

∣∣∣2]1/2

(∗)

� (np)−2√n ·
√

p log n

nL
·
√

n2p

L
=
√

1

npL
·
√

log n

npL
,

where (∗) follows from Lemma 14. The proof is complete. �

Lemma 10. Recall the definitions of R1 and R2 in the proof of Proposition 12. Suppose that κ = O(1)

and np � log n. Then the following holds with probability at least 1−O(n−10) for some C = C(κ) > 0:

‖R1‖∞ ∨ ‖R2‖∞ ≤ C

√
log n

n
√

L
, ‖R1‖ ∨ ‖R2‖ = o(

√
p

L
).

Proof of Lemma 10 It suffices to bound ‖R1‖∞ and ‖R2‖∞. We first bound ‖R2‖∞. By definition, we
have

‖R2‖2∞ �
(√

n‖π̂ − π∗‖
)2 · max

m∈[n]

( ∑
i:i 	=m

Aim(ȳmiπ
∗
i − ȳimπ∗

m)
)2

(∗)

� 1

npL
· p log n

nL
= log n

n2L
· 1

L
.

Here (∗) follows from Lemmas 17 and 14.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1113

Next we bound ‖R1‖∞. By definition of π̄ in (6.2), we have

R1,m =
∑

i:i 	=m

Aimȳmi

∑
j:j 	=i Aij(ȳijπ

∗
j − ȳjiπ

∗
i )∑

j:j 	=i Aijȳji

=
∑

i:i 	=m

Aimψ(θ∗
m − θ∗

i )

∑
j:j 	=i Aij(ȳijπ

∗
j − ȳjiπ

∗
i )∑

j:j 	=i Aijψ(θ∗
j − θ∗

i )

+
∑

i:i 	=m

Aim

(
ȳmi − ψ(θ∗

m − θ∗
i )
)∑j:j 	=i Aij(ȳijπ

∗
j − ȳjiπ

∗
i )∑

j:j 	=i Aijψ(θ∗
j − θ∗

i )

+
∑

i:i 	=m

Aimȳmi

[∑
j:j 	=i

Aij(ȳijπ
∗
j − ȳjiπ

∗
i )
( 1∑

j:j 	=i Aijȳji
− 1∑

j:j 	=i Aijψ(θ∗
j − θ∗

i )

)]
≡ R1

1,m + R2
1,m + R3

1,m.

(Bound of ‖R1
1‖∞) Fix m ∈ [n]. Define wij ≡ AimAijψ(θ∗

m − θ∗
i )/
(∑

j:j 	=i Aijψ(θ∗
j − θ∗

i )
)
. Then R1

1,m
can be written as

R1
1,m =

∑
i,j:i 	=m,i 	=j

wij

(
ȳijπ

∗
j − ȳjiπ

∗
i

)
=

∑
i,j:i,j 	=m,i 	=j

wij

(
ȳijπ

∗
j − ȳjiπ

∗
i

)+
∑

i:i 	=m

wim

(
ȳimπ∗

m − ȳmiπ
∗
i

)
=

∑
i,j:i,j 	=m,i<j

(wij − wji)
(
ȳijπ

∗
j − ȳjiπ

∗
i

)+
∑

i:i 	=m

wim

(
ȳimπ∗

m − ȳmiπ
∗
i

)
.

Now conditioning on the graph A, {wij} are deterministic and the above two sums are independent across

their summands, which are sub-Gaussian with variance proxy bounded by L−1‖π∗‖2∞ � (n2L)−1.
Hence, Hoeffding’s inequality yields that with the prescribed probability,

∣∣∣ ∑
i,j:i,j 	=m,i<j

(wij − wji)
(
ȳijπ

∗
j − ȳjiπ

∗
i

)∣∣∣ �√√√√ log n

n2L
·

∑
i,j:i,j 	=m,i<j

(wij − wji)
2,

∣∣∣ ∑
i:i 	=m

wim

(
ȳimπ∗

m − ȳmiπ
∗
i

)∣∣∣ �√√√√ log n

n2L
·
∑

i:i 	=m

w2
im.
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1114 C. GAO ET AL.

Now by Lemma 13, we have

∑
i,j:i,j 	=m,i<j

(wij − wji)
2 �

∑
i,j:i,j 	=m,i<j

( AimAijψ(θ∗
m − θ∗

i )∑
j 	=i Aijψ(θ∗

j − θ∗
i )

)2

� (np)−2
∑

i,j:i,j 	=m,i<j

AimAij � 1,

∑
i:i 	=m

w2
im �

∑
i:i 	=m

( Aimψ(θ∗
m − θ∗

i )∑
j 	=i Aijψ(θ∗

j − θ∗
i )

)2
� (np)−1.

Combining the two estimates yields that maxm∈[n] |R1
1,m| � √log n/(n2L).

(Bound of ‖R2
1‖∞) Fix m ∈ [n]. Note that R2

1,m can be further decomposed as

R2
1,m =

∑
i:i 	=m

Aim(ȳmi − ψ(θ∗
m − θ∗

i ))

∑
j:j 	=i,m Aij(ȳijπ

∗
j − ȳjiπ

∗
i )∑

j:j 	=i Aijψ(θ∗
j − θ∗

i )

+
∑

i:i 	=m

Aim(ȳmi − ψ(θ∗
m − θ∗

i ))
Aim(ȳimπ∗

m − ȳmiπ
∗
i )∑

j:j 	=i Aijψ(θ∗
j − θ∗

i )

≡ R2,1
1,m + R2,2

1,m.

To deal with R2,1
1,m, note that

R2,1
1,m =

∑
i,j:i,j 	=m,i 	=j

L∑
�=1

wijzij� =
∑

i,j:i,j 	=m,i<j

L∑
�=1

(wij − wji)zij�

where

wij = AimAij

(
ȳmi − ψ(θ∗

m − θ∗
i )
)∑

k:k 	=i Aikψ(θ∗
k − θ∗

i )
, zij� = 1

L

(
yij�π

∗
j − yji�π

∗
i

)
.

Now conditioning on A and all comparisons involving the mth individual, {wij} is deterministic, and

zij� are independent across i < j and sub-Gaussian with variance proxy of the order (nL)−2; hence,
Hoeffding’s inequality applies to conclude that with the prescribed probability,

|R2,1
1,m| �

√√√√ log n

n2L
·

∑
i,j:i,j 	=m,i 	=j

w2
ij + log n

nL
· max

i,j:i,j 	=m,i 	=j
|wij|.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1115

By definition, we have maxi,j:i,j 	=m,i 	=j |wij| � (np)−1 by Lemma 13, and by Lemma 14 we have

∑
i,j:i,j 	=m,i 	=j

w2
ij � (np)−2 · np ·

∑
i:i 	=m

Aim

(
ȳmi − ψ(θ∗

m − θ∗
i )
)2 � 1

L
.

Plugging in the above estimates yields that maxm∈[n] |R2,1
1,m| � √

log n/(nL).

To deal with R2,2
1 , note that R2,2

1,m =∑i:i 	=m wizi, where

wi = Aim∑
j:j 	=i Aijψ(θ∗

j − θ∗
i )

, zi = (ȳmi − ψ(θ∗
m − θ∗

i )
)(

ȳimπ∗
m − ȳmiπ

∗
i

)
.

Further decompose

R2,2
1,m =

∑
i:i 	=m

wiEzi +
∑

i:i 	=m

wi(zi − Ezi) ≡ (I) + (II).

Since Ezi = −(π∗
i +π∗

m)ψ ′(θ∗
m−θ∗

i )/L so that |Ezi| � (nL)−1, Lemma 13 yields that with the prescribed
probability,

|(I)| �
∑

i:i 	=m

wi|Ezi| � (nL)−1 ·
∑

i:i 	=m

Aim∑
j:j 	=i Aijψ(θ∗

j − θ∗
i )

� (nL)−1.

For (II), note that {zi}i:i 	=m are independent, and each zi is the product of two sub-Gaussian terms with

variance proxies L−1 and (n2L)−1, respectively, so that zi is sub-exponential with norm K � (nL)−1.
Therefore, Bernstein’s inequality yields that

P

(
|(II)| ≥ t

∣∣∣A) ≤ exp
(

− Ct2

‖w‖2K2 + ‖w‖∞K

)
.

By Lemma 13, we have ‖w‖∞ � (np)−1 and ‖w‖2 � (np)−1 with the prescribed probability. Hence, by
choosing t � (nL)−1 · √log n/(np), the above estimate yields that |(II)| � (nL)−1 · √log n/(np) with

the prescribed probability. This concludes that ‖R2,2
1 ‖∞ � 1/(nL). Combining the estimates for R2,1

1

and R2,2
1 yields that ‖R2

1‖∞ �
√

log n/(nL) with the prescribed probability.
(Bound of ‖R3

1‖∞) By definition, we have

|R3
1,m| � (np)−2 ·

∑
i:i 	=m

Aim

∣∣∣∑
j:j 	=i

Aij(ȳijπ
∗
j − ȳjiπ

∗
i )

∣∣∣∣∣∣∑
j:j 	=i

Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)∣∣∣

� (np)−2
( ∑

i:i 	=m

AimU2
i

)1/2 ·
( ∑

i:i 	=m

AimV2
i

)1/2
,
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1116 C. GAO ET AL.

where

Ui ≡
∑
j:j 	=i

Aij(ȳijπ
∗
j − ȳjiπ

∗
i ), Vi ≡

∑
j:j 	=i

Aij

(
ȳij − ψ(θ∗

i − θ∗
j ).

Now we bound
∑

i:i 	=m AimU2
i for each m ∈ [n]. Since ȳijπ

∗
j − ȳjiπ

∗
i = (π∗

i + π∗
j )
(
ȳij − ψ(θ∗

i − θ∗
j )
)
,

we have ( ∑
i:i 	=m

AimU2
i

)1/2 =
[ ∑

i:i 	=m

Aim

(∑
j:j 	=i

Aij(π
∗
i + π∗

j )
(
ȳij − ψ(θ∗

i − θ∗
j )
))2]1/2

= sup
u∈U

∑
i:i 	=m

Aimui ·
∑
j:j 	=i

Aij(π
∗
i + π∗

j )
(
ȳij − ψ(θ∗

i − θ∗
j )
)
,

where U ≡ {∑u∈Rn :
∑

i:i 	=m Aimu2
i ≤ 1} is defined conditioning on A. Let Ū be a 1/2-covering of

U in the sense that for any u ∈ U, there exists some u′ ∈ Ū such that
√∑

i:i 	=m Aim(ui − u′
i)

2 ≤ 1/2.

Since covering U is equivalent to covering the unit ball in dimension
∑

i:i 	=m Aim, we can find such a Ū

with |Ū| ≤ exp(C
∑

i:i 	=m Aim) ≤ exp(C′np) with the prescribed probability. Then a standard covering
argument yields that√∑

i:i 	=m

AimU2
i ≤ 2 sup

u∈Ū

∑
i:i 	=m

Aimui ·
∑
j:j 	=i

Aij(π
∗
i + π∗

j )
(
ȳij − ψ(θ∗

i − θ∗
j )
)

= 2 sup
u∈Ū

{1

L

L∑
�=1

∑
i,j:i 	=m,j 	=m,i 	=j

AimAijui(π
∗
i + π∗

j )(yij� − ψ(θ∗
i − θ∗

j ))

+ 1

L

L∑
�=1

∑
i:i 	=m

Aimui(π
∗
i + π∗

m)
(
yim� − ψ(θ∗

i − θ∗
m)
)}

.

Now by Hoeffding’s inequality as in the analysis of R1
1, we have for any fixed u ∈ Ū and t > 0

P

(∣∣∣1
L

L∑
�=1

∑
i,j:i 	=m,j 	=m,i 	=j

AimAijui(π
∗
i + π∗

j )(yij� − ψ(θ∗
i − θ∗

j ))

∣∣∣ ≥ t|A
)

≤ exp
(

− CLt2∑
i,j:i 	=m,j 	=m,i 	=j AimAiju

2
i (π

∗
i + π∗

j )2

)
.

Hence, by a union bound, Lemma 13, and choosing t � p/
√

L, we have with the prescribed probability

sup
u∈Ū

∣∣∣1
L

L∑
�=1

∑
i,j:i 	=m,j 	=m,i 	=j

AimAijui(π
∗
i + π∗

j )(yij� − ψ(θ∗
i − θ∗

j ))

∣∣∣ � p√
L

.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1117

Using a similar analysis, we have

sup
u∈Ū

∣∣∣1
L

∑
i:i 	=m

Aimui(π
∗
i + π∗

m)
(
yim� − ψ(θ∗

i − θ∗
m)
)∣∣∣ � √ p

nL
= o(

p√
L

).

Putting together the two estimates yields that

max
m∈[n]

( ∑
i:i 	=m

AimU2
i

)1/2
� p√

L
.

A similar calculation yields that maxm∈[n]

(∑
i:i 	=m AimV2

i

)1/2
� np/

√
L, so combining the estimates

yields that maxm∈[n] |R3
1,m| � (nL)−1 with the prescribed probability. Combining the estimates for

‖R1
1‖∞ - ‖R3

1‖∞ concludes the proof. �

6.3 Entrywise expansion for the main term Δ

Recall from Section 6.1 that Δi defined in (6.1) is the main term of θ̃i − θ∗
i . The goal of this subsection

is to prove the following expansion.

Proposition 13. Suppose that κ = O(1) and np � (log n)3/2. Then the following expansion holds
with probability 1 − O(n−10).

Δi = (1 + ε1,i

) ∑j:j 	=i Aij

(
ȳijπ

∗
j − ȳjiπ

∗
i

)
π∗

i ·∑j:j 	=i Aijψ(θ∗
j − θ∗

i )
+ ε2,i,

where ε1, ε2 ∈ R
n satisfy ‖ε1‖∞ = o(1) and ‖ε2‖∞ = o(1/

√
npL).

As in Section 5.3 for the MLE, we will first perform some preliminary analysis in Section 6.3.1, and
the main proof of Proposition 13 will be given in Section 6.3.2.

6.3.1 Some preliminary analysis We first introduce a leave-one-out version of the spectral estimate
π̂ . Fix an index m ∈ [n] to be left out, and define a new transition probability matrix P(m) ∈ R

n×n as
follows. For off-diagonal elements, let

P(m)
ij ≡

{
Pij, i 	= m andj 	= m,

EPij = p
d ψ(θ∗

j − θ∗
i ), i = m orj = m.

This leads to the choice of diagonal elements P(m)
ii ≡ 1 −∑j:j 	=i P(m)

ij . Note that in the case of i = m or

j = m, we have taken unconditional expectation of Pij so that P(m) is independent of the data involving

the mth individual, including the comparison indicators {Ami}i 	=m. With the above definition, let π̂ (m) be

the stationary measure of P(m), i.e. π̂ (m) is defined by

(π̂ (m))�P(m) = (π̂ (m))�, (6.5)
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1118 C. GAO ET AL.

which, after some similar manipulations for π̂ , leads to

π̂
(m)
i =

∑
j:j 	=i π̂

(m)
j P(m)

ji∑
j:j 	=i P(m)

ij

=
∑

j:j 	=i,m Aijȳijπ̂
(m)
j + Ii 	=m · pψ(θ∗

i − θ∗
m)π̂

(m)
m∑

j:j 	=i,m Aijȳji + Ii 	=m · pψ(θ∗
m − θ∗

i )
.

Note that different from the analogue θ̂ (m) ∈ R
n−1 in (5.9) for the MLE, π̂ (m) is still in R

n. Analogous
to π̄ in (6.2), define π̄ (m) ∈ R

n as

π̄
(m)
i =

∑
j:j 	=i,m Aijȳijπ

∗
j + Ii 	=m · pψ(θ∗

i − θ∗
m)π∗

m∑
j:j 	=i,m Aijȳji + Ii 	=m · pψ(θ∗

m − θ∗
i )

.

Lastly, define the leave-one-out analogue of δ in (6.3) as

π̂
(m)
i − π∗

i

π∗
i

− 1

n

n∑
k=1

π̂
(m)
k − π∗

k

π∗
k

≡ π̄
(m)
i − π∗

i

π∗
i

+ δ
(m)
i . (6.6)

Note that by construction, all of π̂ (m), π̄ (m) and δ(m) do not depend on the mth individual. We have the
following estimates for δ(m).

Lemma 11. Suppose that κ = O(1) and np � log n. Then the following holds with probability at least
1 − O(n−10) for some C = C(κ) > 0.

max
m∈[n]

‖δ(m)‖ = o(1/
√

pL) and max
m∈[n]

‖δ(m)‖∞ ≤ C
√

log n/(npL).

Proof of Lemma 11 The �2 bound follows from analogous arguments as in Proposition 12, except now
using the estimate maxm∈[n]‖π̂ (m) −π∗‖ � 1/

√
n2pL (instead of ‖π̂ −π∗‖ � 1/

√
n2pL) in Lemma 10.

The �∞ bound follows from the following simple estimate: for any i ∈ [n],

|δ(m)
i | � ‖π̂ (m) − π∗‖∞

π∗
i

+ 1

n

n∑
k=1

∣∣∣ π̂ (m)
k − π∗

k

π∗
k

∣∣∣ � √ log n

npL
,

using Lemma 17 in the last inequality. �

Remark 5. In contrast to its counterpart Lemma 4 for the MLE, we do not need to analyze a leave-two-
out version of π̂ here for the spectral estimator. The reason is that in the proof of Lemma 4, we need a
leave-two-out analysis for the control of g(−m,i)(θ∗

i |θ̂ (m)
−i ) therein, which does not appear in the analysis

of the spectral estimator. On the other hand, if we were to perform a leave-k-out analysis to improve the
exponent in the regime (2.2), a corresponding leave-k-out version of π̂ would become necessary for the
spectral method as well.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/2/1073/7017369 by U
niversity of Pennsylvania Library user on 23 M

arch 2023



UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1119

6.3.2 Main proof of Proposition 10

Proof of Proposition 13 Fix m ∈ [n]. Recall the definition of δ in (6.3). Then we have

Δm =
∑

i:i 	=m Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Amiȳim
+ δm

=
∑

i:i 	=m Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Amiψ(θ∗
i − θ∗

m)

(
1 −

∑
i:i 	=m Ami

(
ȳim − ψ(θ∗

i − θ∗
m)
)∑

i:i 	=m Amiȳim

)
+ δm.

Using standard concentration in Lemma 14, we have

max
m∈[n]

∣∣∣∑i:i 	=m Ami

(
ȳim − ψ(θ∗

i − θ∗
m)
)

π∗
m ·∑i:i 	=m Amiȳim

∣∣∣ � √
np log n/L

np
=
√

log n

npL
= o(1).

Hence, it remains to show that ‖δ‖∞ = o(1/
√

npL) with the prescribed probability. To this end, recall
the definition of π̂ (m) in (6.5). Then we have

δm =
∑

i:i 	=m Aimȳmi(π̂i − π∗
i )

π∗
m ·∑i:i 	=m Aimȳim

− 1

n

n∑
k=1

π̂k − π∗
k

π∗
k

=
(∑

i:i 	=m Aimȳmi(π̂i − π̂
(m)
i )

π∗
m ·∑i:i 	=m Aimȳim

− 1

n

n∑
k=1

π̂k − π̂
(m)
k

π∗
k

)

+
(∑

i:i 	=m Aimȳmi(π̂
(m)
i − π∗

i )

π∗
m ·∑i:i 	=m Aimȳim

− 1

n

n∑
k=1

π̂
(m)
k − π∗

k

π∗
k

)
≡ δ1,m + δ2,m.

Using Lemma 17, the two terms inside δ1,m can be bounded as follows:

• The first term satisfies

∣∣∣∑i:i 	=m Aimȳmi(π̂i − π̂
(m)
i )

π∗
m ·∑i:i 	=m Aimȳim

∣∣∣ � 1

p

∑
i:i 	=m

Aim|π̂i − π̂
(m)
i |

≤ 1

p

( ∑
i:i 	=m

Aim

)1/2 · ‖π̂ (m) − π̂‖ � 1

p
· √

np · n−1

√
log n

npL
= o(

1√
npL

).

• Using π∗
m � n−1, the second term satisfies

∣∣∣1
n

n∑
k=1

π̂k − π̂
(m)
k

π∗
k

∣∣∣ � √
n‖π̂ (m) − π̂‖ �

√
log n

n

√
1

npL
= o(

1√
npL

).
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1120 C. GAO ET AL.

We hence conclude ‖δ1‖∞ = o(1/
√

npL). For δ2,m, using the definition of δ(m) in (6.6), we have

(
π∗

m ·
∑

i:i 	=m

Aimȳim

)
δ2,m =

∑
i:i 	=m

Aimȳmi(π̄
(m)
i − π∗

i ) +
∑

i:i 	=m

Aimȳmiπ
∗
i δ

(m)
i +

∑
i:i 	=m

Aim(ȳmiπ
∗
i − ȳimπ∗

m) · 1

n

n∑
k=1

π̂
(m)
k − π∗

k

π∗
k

≡ R(m)
1,m +

∑
i:i 	=m

Aimȳmiπ
∗
i δ

(m)
i + R(m)

2,m.

By analogous arguments as in the proof of Lemma 10, we have

max
m∈[n]

|R(m)
1,m| + |R(m)

2,m|
π∗

m ·∑i:i 	=m Aimȳim
�
√

log n

np
· 1√

npL
= o(

1√
npL

),

under the condition np � log n. Lastly, for the middle term, by Lemma 11 and Bernstein’s inequality
applied conditionally to {Aim}i 	=m (note its independence from δ(m) by construction),

∣∣∣ ∑
i:i 	=m

Aimȳmiπ
∗
i δ

(m)
i

∣∣∣ ≤ ∣∣∣p ·
∑

i:i 	=m

ȳmiπ
∗
i δ(m)

∣∣∣+ ∣∣∣ ∑
i:i 	=m

(Aim − p)ȳmiπ
∗
i δ

(m)
i

∣∣∣
� (p/n)

√
n‖δ(m)‖ +

√
p log n ·

∑
i:i 	=m

(δ
(m)
i π∗

i )2 + log n · n−1‖δ(m)‖∞

= o(

√
p

nL
) +

√
p

nL
· (log n)3/2

np
.

Putting together the pieces, we conclude that ‖δ‖∞ = o(1/
√

npL) under the condition np � (log n)3/2.
The proof is complete. �

6.4 Completion of the proof

Proof of Theorem 3 Fix i ∈ [n]. Recall the definition of Δi in (6.1). Then by definition of θ∗ and the
condition 1�

n θ∗ = 0, we have

θ̃i − θ∗
i = ( log π̂i − log π∗

i

)− ave
(

log π̂ − log π∗)
= log

( π̂i − π∗
i

π∗
i

+ 1
)

− 1

n

n∑
k=1

log
( π̂k − π∗

k

π∗
k

+ 1
)

≡ Δi + Ri.
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1121

Here with h(x) ≡ log(x + 1) − x for x ≥ −1,

Ri = h
( π̂i − π∗

i

π∗
i

)
− 1

n

n∑
k=1

h
( π̂k − π∗

k

π∗
k

)
.

Define the event

A ≡
{

max
k∈[n]

∣∣∣ π̂k − π∗
k

π∗
k

∣∣∣ ≤ 1

4

}
. (6.7)

Then it follows from Lemma 17 that A holds with probability 1 − O(n−10). On the event A, using
|h(x)| ≤ x2 for x ∈ (−1/2, 1/2) and Lemma 17 again, we have

1

n

n∑
k=1

h
( π̂k − π∗

k

π∗
k

)
≤ 1

n

n∑
k=1

( π̂k − π∗
k

π∗
k

)2
� 1

npL
= o(

1√
npL

).

On the other hand, by definition of Δi in (6.1), we have

h
( π̂i − π∗

i

π∗
i

)
≤
( π̂i − π∗

i

π∗
i

)2 = π̂i − π∗
i

π∗
i

·
(
Δi + 1

n

n∑
k=1

π̂k − π∗
k

π∗
k

)
= o(Δi) + o(

1√
npL

)

by the estimates in Lemma 17, and thus, we have |Ri| = o(Δi)+o(1/
√

npL). The proof is now completed
by invoking Proposition 13. �

7. Proofs of Application I

In this section, we provide proofs for the application in Section 4.1.

Proofs of Propositions 4 and 5As the two proofs are similar, we only present the proof for the MLE.
We start by proving the CLT with θ̄ = θ∗. By the expansion in Theorem 2, we have for each i ∈ [n]

ρi(θ
∗)(θ̂i − θ∗

i ) = (1 + ε1,i)fi + ε′
2,i.

Here ε′
2,i = ρi(θ

∗)ε2,i satisfies ‖ε′
2,i‖∞ = o(1) with probability 1−O(n−10) since standard concentration

yields that maxi∈[k] ρi(θ
∗) = O(

√
npL) with the same probability, and the sequence {fi} is given by

fi = ρi(θ
∗)bi

di
=

√
L ·∑j:j 	=i Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)√∑

j:j 	=i Aijψ
′(θ∗

i − θ∗
j )

.
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1122 C. GAO ET AL.

Let Z
d= Nk(0, Ik). By the Cramér–Wold theorem, it suffices to prove that for any fixed a ∈ R

k,

a�( f1, . . . , fk
)
� a�Z.

Let An be the event {A : minm∈[n]
∑

i:i 	=m Amiψ
′(θ∗

m − θ∗
i ) ≥ c0np} for some small enough constant c0

such that A holds with probability 1 − O(n−10) by Lemma 13. We first prove a conditional version of
the above result by verifying the Lindeberg–Feller condition. With

U�i ≡ a�

√
LA�i

(
ȳ�i − ψ(θ∗

� − θ∗
i )
)√∑

m:m	=� A�mψ ′(θ∗
� − θ∗

m)
.

we have

a�( f1, . . . , fm
) =

k∑
�=1

a�

√
L ·∑i:i 	=� A�i

[
ȳ�i − ψ(θ∗

� − θ∗
i )
]√∑

m:m	=� A�mψ ′(θ∗
� − θ∗

m)

≡
k∑

�=1

n∑
i=1,i 	=�

U�i =
k∑

�=1

n∑
i=k+1

U�i +
∑

1≤�<i≤k

(U�i + Ui�)

≡
k∑

�=1

n∑
i=k+1

V�i +
∑

1≤�<i≤k

V�i.

Here {V�i} with index set {� ≤ k, k+1 ≤ i ≤ n}∪{1 ≤ � < i ≤ k} are defined by: if � ≤ k, k+1 ≤ i ≤ n,

V�i = U�i = a�

√
LA�i

(
ȳ�i − ψ(θ∗

� − θ∗
i )
)√∑

m:m	=� A�mψ ′(θ∗
� − θ∗

m)
,

and if 1 ≤ � < i ≤ k,

V�i = √
LA�i

(
ȳ�i − ψ(θ∗

� − θ∗
i )
) ·
( a�√∑

m:m	=� A�mψ ′(θ∗
� − θ∗

m)
− ai√∑

m:m	=i Aimψ ′(θ∗
i − θ∗

m)

)
.

Note that {V�i} are independent across its index set, centered when conditioning on A, and satisfy

( k∑
�=1

n∑
i=k+1

+
∑

1≤�<i≤k

)
E(V2

�i|A)

= ‖a‖2 +
∑

1≤�<i≤k

2aia�√∑
m:m	=� A�mψ ′(θ∗

� − θ∗
m)
√∑

m:m	=i Aimψ ′(θ∗
i − θ∗

m)

→ ‖a‖2 = E(a�Z)2,
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1123

where the convergence holds under the condition minm∈[n]
∑

i:i 	=m Amiψ
′(θ∗

m − θ∗
i ) ≥ c0np on the event

An. On the other hand, the Lindeberg–Feller condition holds trivially since {V�,i} are bounded. Hence,
the Lindeberg–Feller CLT applies to conclude that for any A ∈ An,

a�( f1, . . . , fk
)|A � a�Z.

For the unconditional version, it holds for every t ∈ R that

P(a�( f1, . . . , fk
) ≤ t)

= E

[
P(a�( f1, . . . , fk

) ≤ t|A)IA∈An

]
+ E

[
P(a�( f1, . . . , fk

) ≤ t|A)IA∈Ac
n

]
→ P(a�Z ≤ t) + 0 = P(a�Z ≤ t)

by the dominated convergence theorem. This concludes the claimed CLT for θ̄ = θ∗. The claim for
θ̄ = θ̂ follows from the fact that ρk(θ̂) = (

1 + oP(1)
)
ρk(θ

∗) uniformly over k ∈ [n]. Indeed, using the
lower bound mini∈[n] ρi(θ

∗) ∧ ρi(θ̂) �
√

npL with probability 1 − O(n−10), we have

∣∣ρi(θ
∗) − ρi(θ̂)

∣∣ = ∣∣ρ2
i (θ∗) − ρ2

i (θ̂)
∣∣

ρi(θ
∗) + ρi(θ̂)

�
√

L

np
·
∣∣∣∑

j:j 	=i

Aij

(
ψ ′(θ∗

i − θ∗
j ) − ψ ′(θ̂i − θ̂j)

)∣∣∣
�
√

L

np

(∑
j:j 	=i

Aij

)
· ‖θ̂ − θ∗‖∞ �

√
L

np
· np ·

√
log n

npL

= √log n = o(
√

npL).

The case where {Aij} are replaced by p can be dealt with similar arguments so the proof is complete. �

8. Proofs of Application II

In this section, we provide proofs for the application in Section 4.2.

Proof of Proposition 6 It can be readily verified that the event {r(1) /∈ [n1 + 1, n − n2]} is contained in
the event {θ∗

i /∈ Ci for some i}, whose probability can be bounded by

P

(
{θ∗

i /∈ Ci for some i}
)

≤ P(θ∗
1 /∈ C1) +

∑
i 	=1

P(θ∗
i /∈ Ci).

Since P(θ∗
1 /∈ C1) → α by construction of C1 and the CLT in Proposition 4, it suffices to show the

second probability is vanishing.
Using preliminary estimates in Proposition 1, it is not hard to see that ρi(θ̂) are uniformly close to

their populations: ρi(θ̂) = (1 + o(1))ρi(θ
∗) with probability 1 −O(n−10) and o(1) uniform over i ∈ [n].

Note that ρi(θ
∗) � √

npL. Hence, by the expansion in Theorem 2, for each i 	= 1, we have for large
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1124 C. GAO ET AL.

enough n

P(θ∗
i /∈ Ci) = P

(∣∣∣(1 + ε1,i)
bi

di
+ ε2,i

∣∣∣ ≥ τi

)
≤ P

(∣∣∣bi

di

∣∣∣ ≥ (1 + c0

2

)√
2 log n · ρ−2

i (θ∗)
)

+ O(n−10).

Now note that bi/di =∑j:j 	=i
∑L

�=1 Zij�, where Zij� ≡ Aij(yij�−ψ(θ∗
i −θ∗

j ))/
(
L·∑k:k 	=i Aikψ

′(θ∗
i −θ∗

k )
)

are centered and independent when conditioning on A, and satisfy

∑
j:j 	=i

L∑
�=1

E(Z2
ij�|A) = ρ−2

i (θ∗), max
j:j 	=i

max
1≤�≤L

|Zij�| ≤ 2ρ−2
i (θ∗).

Hence, for large enough n, it follows from Bernstein’s inequality (with the prescribed constants in [2,
Theorem 2.10]) applied conditionally on A that P

(|bi/di| ≥ τ̃i

) ≤ 2n−(1+c0/2). Take the union bound to
complete the proof. �

9. Proofs of Application III

In this section, we provide proofs for the application in Section 4.3.

9.1 Proof of Proposition 5

Proof of Proposition 7 Recall the definition of δ in (5.3), and the terms bi, di in Theorem 2. Then for
any ε > 0, with the prescribed probability, we have

‖θ̂ − θ∗‖2 ≤ (1 + ε)

n∑
m=1

(bm

dm

)2 + (1 + ε−1)‖δ‖2.

By Proposition 11, we have ‖δ‖2 = o((pL)−1). For the main term, let D ≡ diag(d1, . . . , dn) be a
diagonal matrix, which is invertible with the prescribed probability, and when this happens,

n∑
m=1

(bm

dm

)2 = ‖D−1b‖2 = E
(‖D−1b‖2|A)+ (‖D−1b‖2 − E

(‖D−1b‖2|A)). (9.1)

The second term in the above display can be bounded by Lemma 12 as follows. Note that bm =∑
i:i 	=m AmiZmi with Zmi = ȳmi−ψ(θ∗

m−θ∗
i ) therein satisfying the anti-symmetry condition Zmi = −Zim.

Moreover, up to anti-symmetry, Zmi are independent sub-Gaussian variables with variance proxy
bounded by a constant multiple (only depending on κ) of L−1. Hence, with the prescribed probability,
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1125

Lemma 12 implies

(‖D−1b‖2 − E
(‖D−1b‖2|A)) � L−1

√
log n

(
min
i∈[n]

di

)−2√
n
(

max
i∈[n]

∑
j:j 	=i

Aij

)

�
√

log n

√
nnp

(np)2L
= o((pL)−1),

where we use Lemma 13 in the second inequality. Next, for the first term in (9.1), it holds by direct
calculation that

E
(‖D−1b‖2|A) = tr

(
D−1

)
L

(∗)= (
1 + o(1)

) tr
(
(ED)−1

)
L

= (1 + o(1)
) 1

pL

n∑
m=1

1∑
i:i 	=m ψ ′(θ∗

m − θ∗
i )

,

where (∗) follows from the fact that uniformly over i ∈ [n], di � np and ‖D−ED‖op = maxi |di−Edi| �√
np log n by standard concentration. Putting together the two estimates, we have

‖θ̂ − θ∗‖2 ≤ (1 + ε)

pL
(1 + o(1)) ·

n∑
i=1

(∑
j:j 	=i

ψ ′(θ∗
i − θ∗

j )
)−1 + C′

κ(1 + ε−1)o
( 1

pL

)
.

The proof for the upper bound is now complete by choosing ε ↓ 0 slow enough (e.g. ε � (log n/n)1/4)
such that the second term is still o

(
(pL)−1

)
. The proof for the lower bound is analogous by noting that

for any ε > 0,

‖θ̂ − θ∗‖2 ≥ (1 − ε)

n∑
m=1

(bm

dm

)2 − (ε−1 − 1)‖δ‖2,

and then using the same estimates established in the upper bound proof. �

Lemma 12. Let A ∈ {0, 1}n×n be a symmetric matrix and D ∈ R
n×n be a diagonal matrix with positive

diagonal entries d1, . . . , dn. Define b ∈ R
n such that bi = ∑

j:j 	=i AijZij, where {Zij}i,j:i<j are a sequence

of independent sub-Gaussian random variables with variance proxy τ 2 and Zij = −Zji for any i > j.
Then there exists some universal C > 0 such that

|‖D−1b‖2 − E‖D−1b‖2| ≤ Cτ 2
√

log n
(

min
i∈[n]

di

)−2√
n
(

max
i∈[n]

∑
j:j 	=i

Aij

)
,

with probability at least 1 − O(n−10).
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1126 C. GAO ET AL.

Proof. Using the symmetry of A and the anti-symmetry of {Zij}i,j:i<j, we have

‖D−1b‖2 =
n∑

i=1

(bi

di

)2 =
n∑

i=1

d−2
i

(∑
j:j 	=i

AijZij

)2

=
n∑

i=1

d−2
i

(∑
j:j>i

AijZij +
∑
j:j<i

Aji(−Zji)
)2

=
n∑

i=1

d−2
i

( ∑
j,j′:j,j′>i

AijAij′ZijZij′ +
∑

j,j′:j,j′<i

AjiAj′iZjiZj′i −
∑

j,j′:j,j′>i

AijAj′iZijZj′i
)

, (9.2)

which can be written as a quadratic form of {Zij}i,j:i<j. Let I be the set of double indices defined by

I ≡ {(i, j) : i, j ∈ [n], i < j} with N ≡ |I| = (n2). Let Z ≡ (Zij)(i,j)∈I ∈ R
N such that it has independent

sub-Gaussian coordinates with variance proxy τ 2. Then there exists a matrix S = (S(i,j),(i′,j′)) ∈ R
N×N

such that ‖D−1b‖2 = Z�SZ =∑(i,j),(i′,j′)∈I S(i,j),(i′,j′)Z(i,j)Z(i′,j′) where S is defined as

S(i,j),(i′,j′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

AijAi′j′(d
−2
i + d−2

j ), if i′ = i, j′ = j,

AijAi′j′d
−2
i , if i′ = i, j′ 	= j,

AijAi′j′d
−2
j , if i′ 	= i, j′ = j,

−AijAi′j′d
−2
i , if j′ = i,

−AijAi′j′d
−2
j , if i′ = j,

0, otherwise.

That is, the entry in S is zero if the two corresponding edges (i, j), (i′, j′) have no joint vertex, as the
matrix A can be interpreted as an adjacency matrix of a graph. Let hmax = maxi∈[n]

∑
j:j 	=i Aij, which be

understood as the maximum degree of the graph.
To apply the Hanson–Wright inequality (cf., [33, Theorem 1.1]) to control the deviation of Z�SZ,

we now relate the quantities ‖S‖2
F and ‖S‖2

op. We first bound ‖S‖2
F . Denote dmin = mini∈[n] di. We have

‖S‖2
F ≤ 4d−4

min

∑
(i,j),(i′,j′)∈I

AijAi′j′I
{{i, j} ∩ {i′, j′} 	= ∅}

≤ 8d−4
min

∑
(i,j)∈I

Aijhmax ≤ 8d−4
minnh2

max. (9.3)

For ‖S‖op, let v = (v(i,j)) ∈ R
N be any vector such that ‖a‖2 = ∑

i<j a2
(i,j) ≤ 1. Note that S is

symmetric and in the above derivation of S we have (9.2) being equal to Z�SZ, which holds without any
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1127

condition on Z. Hence,

v�Sv =
n∑

i=1

d−2
i

(∑
j:j>i

Aijvij +
∑
j:j<i

Aji(−vji)
)2

≤ 4
n∑

i=1

d−2
i

((∑
j:j>i

Aij

)(∑
j:j>i

v2
ij

)
+
(∑

j:j<i

Aij

)(∑
j:j<i

v2
ij

))

≤ 4d−2
minhmax

n∑
i=1

((∑
j:j>i

v2
ij

)
+
(∑

j:j<i

v2
ij

))
≤ 8d−2

minhmax.

Then we have

‖S‖op ≤ 8d−2
minhmax. (9.4)

Since each Zjk is sub-Gaussian with variance proxy τ 2, the Hanson–Wright inequality now applies
to conclude that for any t ≥ 0,

P
(|Z�SZ� − E(Z�SZ�)| ≥ t

) ≤ 2 exp
(

− C
t2

τ 4‖S‖2
F

∧ t

τ 2‖S‖op

)
for some universal C > 0. So by choosing t = τ 2 · O

(√
log n‖S‖F ∨ (log n)‖S‖op

)
and plugging in the

estimates in (9.3) and (9.4), we obtain

|‖D−1b‖2 − E‖D−1b‖2| � τ 2
(√

log nd−2
min

√
nhmax + (log n)d−2

minhmax

)
≤ 2τ 2

√
log nd−2

min

√
nhmax,

with the prescribed probability. �

9.2 Proof of Proposition 6

Proof of Proposition 8 We work on the event A defined in (6.7), which holds with the prescribed
probability. Using x − x2 ≤ log(1 + x) ≤ x for x ∈ (−1/2, 1/2) and the fact that

θ̃m − θ∗
m = log

( π̂m − π∗
m

π∗
m

+ 1
)

− 1

k

n∑
k=1

log
( π̂k − π∗

k

π∗
k

+ 1
)

,

we have (recall the definition of Δ in (6.1))

Δm −
( π̂m − π∗

m

π∗
m

)2 ≤ θ̃m − θ∗
m ≤ Δm + 1

n

n∑
i=1

( π̂i − π∗
i

π∗
i

)2
.
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1128 C. GAO ET AL.

This implies that for any ε > 0,

‖θ̃ − θ∗‖2 ≤ (1 + ε)‖Δ‖2+

O(ε−1) · max
{ n∑

m=1

( π̂m − π∗
m

π∗
m

)4
, n
(1

n

n∑
m=1

( π̂m − π∗
m

π∗
m

)2)2}

= (1 + ε)‖Δ‖2 + O(ε−1) ·
n∑

m=1

( π̂m − π∗
m

π∗
m

)4
.

Using Lemma 17 and the lower bound minm∈[n] π∗
m � n−1, we have

n∑
m=1

( π̂m − π∗
m

π∗
m

)4 ≤ n4 · ∥∥ π̂ − π∗

π∗
∥∥2

∞ · ∥∥ π̂ − π∗

π∗
∥∥2

� n4 · n−2 log n

npL
· n−2 1

pL
= o(

1

pL
).

Hence, the upper bound follows from Proposition 14 by choosing ε ↓ 0 slow enough, e.g. of the order√
log n/(npL). The lower bound proof is analogous so the proof is complete. �

Proposition 14. Recall the definition of Δ in (6.1). Suppose that κ = O(1) and np � log n. Then the
following holds with probability 1 − O(n−10).

‖Δ‖2 = 1 + o(1)

pL
·

n∑
m=1

∑
i:i 	=m(eθ∗

i + eθ∗
m)2ψ ′(θ∗

i − θ∗
m)(∑

i:i 	=m(eθ∗
i + eθ∗

m)ψ ′(θ∗
i − θ∗

m)
)2

Proof of Proposition 14 Recall the definition of π̄m in (6.2). By (6.3), we have

‖Δ‖2 ≤ (1 + ε)

n∑
m=1

( π̄m − π∗
m

π∗
m

)2 + O(ε−1)‖δ‖2.

By Proposition 12, we have ‖δ‖ = o(1/
√

pL) with the prescribed probability. For the main term, we
can further decompose it as
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1129

π̄m − π∗
m

π∗
m

=
∑

i:i 	=m Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Amiȳim

=
∑

i:i 	=m Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Amiψ(θ∗
i − θ∗

m)
+

∑
i:i 	=m

Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m

( 1∑
i:i 	=m Amiȳim

− 1∑
i:i 	=m Amiψ(θ∗

i − θ∗
m)

)
≡ (I)m + (II)m.

For (II)m in the above display, standard concentration and the lower bound minm∈[n] π∗
m � n−1 yield

that

|(II)m| � n · (np)−2 ·
∣∣∣ ∑

i:i 	=m

Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)∣∣∣ · ∣∣∣ ∑
i:i 	=m

Ami

(
ȳim − ψ(θ∗

i − θ∗
m)
)∣∣∣.

Hence, by Lemma 14,

n∑
m=1

(II)2
m � 1

n2p4 · max
m∈[n]

∣∣∣ ∑
i:i 	=m

Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)∣∣∣2×
n∑

m=1

∣∣∣ ∑
i:i 	=m

Ami

(
ȳim − ψ(θ∗

i − θ∗
m)
)∣∣∣2

� 1

n2p4 · p log n

nL
· n2p

L
= log n

npL
· 1

pL
= o(

1

pL
).

For (I)m, we have by definition of π̄m that

(I)m =
∑

i:i 	=m Ami

(
ȳmiπ

∗
i − ȳimπ∗

m

)
π∗

m ·∑i:i 	=m Amiψ(θ∗
i − θ∗

m)
= (D−1b

)
m,

where D = diag(̃d1, . . . , d̃n) with b̃, d̃ ∈ R
n defined in Theorem 3. This implies

‖D−1̃b‖2 = E(‖D−1̃b‖2|A) + (‖D−1̃b‖2 − E(‖D−1̃b‖2|A)
)
. (9.5)

The second term in the above display can be bounded by Lemma 12 as follows. Note that b̃m =∑
i:i 	=m AmiZmi with Zmi = ȳmiπ

∗
i − ȳimπ∗

m, therein satisfying the anti-symmetry condition Zmi =
−Zim. Moreover, up to anti-symmetry, Zmi are independent sub-Gaussian variables with variance
proxy bounded by a constant multiple (only depending on κ) of (n2L)−1. Hence, with the prescribed
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probability, Lemma 12 implies

(‖D−1̃b‖2 − E
(‖D−1̃b‖2|A)) � 1

n2L

√
log n

(
min
i∈[n]

d̃i

)−2√
n
(

max
i∈[n]

∑
j:j 	=i

Aij

)

�
√

log n

√
nnp

(p)2n2L
= o((pL)−1),

where we use Lemma 13 in the second inequality.
Lastly, by direct calculation, the main term E(‖D−1̃b‖2|A) in (9.5) satisfies

E(‖D−1̃b‖2|A) = 1

L

n∑
m=1

∑
i:i 	=m Aim(π∗

i + π∗
m)2ψ ′(θ∗

i − θ∗
m)(

π∗
m ·∑i:i 	=m Aimψ(θ∗

i − θ∗
m)
)2

= 1

L

n∑
m=1

∑
i:i 	=m Aim(eθ∗

i + eθ∗
m)2ψ ′(θ∗

i − θ∗
m)(∑

i:i 	=m Aim(eθ∗
i + eθ∗

m)ψ ′(θ∗
i − θ∗

m)
)2 .

It remains to show that both the numerator and the denominator concentrate around their mean value
with respect to A. For the denominator, it can be readily verified that E

(∑
i:i 	=m Aim(eθ∗

i + eθ∗
m)ψ ′(θ∗

i −
θ∗

m)
)

� np, and Bernstein’s inequality yields that with the prescribed probability,

∣∣∣ ∑
i:i 	=m

(Aim − p)(eθ∗
i + eθ∗

m)ψ ′(θ∗
i − θ∗

m)

∣∣∣ � √np log n + log n = o(np).

A similar calculation holds for the numerator. In summary, we have for any ε > 0,

‖Δ‖2 ≤ (1 + ε)
(1 + o(1))

pL

n∑
m=1

∑
i:i 	=m(eθ∗

i + eθ∗
m)2ψ ′(θ∗

i − θ∗
m)(∑

i:i 	=m(eθ∗
i + eθ∗

m)ψ ′(θ∗
i − θ∗

m)
)2 + O(ε−1)o(

1

pL
).

A lower bound can be similarly proved, and hence, the proof is complete by choosing ε ↓ 0 slow enough
(e.g. ε � (log n/n)1/4). �

9.3 Proof of Lower bound (Theorem 3)

Proof of Theorem 9 Let rn be a sequence such that (npL)−1/2 � rn � εn ∧ 1. For each i ∈ [n], let πi(·)
be a prior density defined by πi(x) = rnK

(
(x − θ∗

i )/rn

)
, where K(·) is a C∞ kernel function supported

on [−1, 1] such that K(±1) = 0.
By definition of Θ(κ), we have

inf
θ̂

sup
θ∈B(θ∗,εn)∩Θ(κ)

Eθ‖θ̂ − θ‖2 = inf
θ̂

sup
θ∈B(θ∗,εn)∩Θ(κ)

Eθ‖
(
θ̂ − ave(θ̂)1n

)− (θ − ave(θ)1n

)‖2.
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Then using the fact that ‖θ − ave(θ)1n‖2 = n−1 ·∑i<j(θi − θj)
2 for any θ ∈ R

n, we have

inf
θ̂

sup
θ∈B(θ∗,εn)∩Θ(κ)

Eθ‖
(
θ̂ − ave(θ̂)1n

)− (θ − ave(θ)1n

)‖2

= 1

n
inf
θ̂

sup
θ∈B(θ∗,εn)∩Θ(κ)

∑
i<j

Eθ

[(
θ̂i − θ̂j

)− (θi − θj

)]2
(∗)≥ 1

n
inf
θ̂

sup
θ∈B(θ∗,εn/2)∩Θ̃(κ)

∑
i<j

Eθ

[(
θ̂i − θ̂j

)− (θi − θj

)]2
(∗∗)≥ 1

n
inf
θ̂

∫
θ∈[θ∗−rn1n,θ∗+rn1n]

∑
i<j

Eθ

[(
θ̂i − θ̂j

)− (θi − θj

)]2( n∏
i=1

πi(θi)
)( n∏

i=1

dθi

)
= 1

n
inf
θ̂

∑
i<j

∫ ( ∏
k:k 	=i,j

πk(θk)
)( ∏

k:k 	=i,j

dθk

)[ ∫
Eθ

[(
θ̂i − θ̂j

)− (θi − θj

)]2
πi(θi)πj(θj)dθidθj

]
(∗∗∗)≥ 1

n

∑
i<j

∫ ( ∏
k:k 	=i,j

πk(θk)
)( ∏

k:k 	=i,j

dθk

)[
inf
T̃ij

∫
Eθ

[
T̃ij − (θi − θj

)]2
πi(θi)πj(θj)dθidθj

]

≡ 1

n

∑
i<j

∫ ( ∏
k:k 	=i,j

πk(θk)
)
Rij(θ−i,−j)

( ∏
k:k 	=i,j

dθk

)
. (9.6)

Here (∗) holds as follows with Θ̃(κ) ≡ {θ ′ ∈ R
n : maxi θ

′
i − mini θ

′
i ≤ κ} dropping the centering

condition. For any θ̂ , with

θ∗ ≡ argmaxθ∈B(θ∗,εn/2)∩Θ̃(κ)Eθ

[(
θ̂ − ave(θ̂)1n

)− (θ − ave(θ)1n

)]2
and θ̃ ≡ θ∗ − ave(θ∗)1n, we have by the translation invariance of the model

Eθ∗
[(

θ̂ − ave(θ̂)1n

)− (θ∗ − ave(θ∗)1n

)]2 = Eθ̃

[(
θ̂ − ave(θ̂)1n

)− (θ̃ − ave(θ̃)1n

)]
,

and since θ∗ ∈ B(θ∗, εn/2) and θ∗ ∈ Θ(κ),

|ave(θ∗)| = |1

n

n∑
i=1

(θ∗
i − θ∗

i )| ≤ ‖θ∗ − θ∗‖∞ ≤ εn/2.

This entails that ‖θ̃ − θ∗‖∞ ≤ εn, and hence, θ̃ ∈ B(θ∗, εn) ∩ Θ(κ), which concludes the proof of (∗).
Next (∗∗) follows with [θ∗ − rn1n, θ∗ + rn1n] ≡ ×n

i=1[θ∗
i − rn, θ∗

i + rn] by bounding the (local) maximal
risk by the Bayes risk induced by the product prior

∏n
i=1 πi(θi) on [θ∗ − rn1n, θ∗ + rn1n]. Note that in

(∗∗) we have B(θ∗, εn/2) ⊂ Θ̃(κ) for large enough n due to the condition maxi θ
∗
i − mini θ

∗
i ≤ κ/2.

Lastly, the infimum over T̃ij in (∗∗∗) is taken over all estimators of θi − θj with the knowledge of θ−i,−j.
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Let μ ≡ (θi, θj) ∈ R
2 and Tij ≡ Tij(μ) ≡ θi − θj ∈ R. Now by the multivariate van Tree’s inequality

in [13, Equation (11)], each Rij(θ−i, θ−j) can be lower bounded by

Rij(θ−i, θ−j) ≥ 1

n

∫
Jij(μ; θ−i,−j)πi(θi)πj(θj)dθidθj − 1

n2
Ĩij(πi, πj), (9.7)

where with I(μ) being the Fisher information matrix of μ = (θi, θj) defined below:

Jij(μ; θ−i,−j) ≡
(∂Tij

∂μ

)�
I(μ)−1

(∂Tij

∂μ

)
,

and Ĩij(πi, πj) is also defined below after we introduce a few other notations. We now estimate the two
terms on the right side of (9.7).

(First term in (9.7)) The fisher information of the parameter μ can be calculated as

I(μ) ≡ Eμ

[(∂�n(μ; θ−i,−j)

∂μ

)�(∂�n(μ; θ−i,−j)

∂μ

)]
= (pL) ·

[∑
k:k 	=i ψ

′(θi − θk) −ψ ′(θi − θj)

−ψ ′(θi − θj)
∑

k:k 	=j ψ
′(θj − θk)

]
.

This entails that, with Dij ≡∑k:k 	=i,j

(
ψ ′(θi − θk) + ψ ′(θj − θk)

)
,

Jij(μ; θ−i,−j) ≡
(∂Tij

∂μ

)�
I(μ)−1

(∂Tij

∂μ

)
= 1

pL
· Dij(∑

k:k 	=i,j ψ
′(θi − θk)

)(∑
k:k 	=i,j ψ

′(θj − θk)
)+ ψ ′(θi − θj)Dij

= (1 + o(1)) · 1

pL
· Dij(∑

k:k 	=i,j ψ
′(θi − θk)

)(∑
k:k 	=i,j ψ

′(θj − θk)
)

= (1 + o(1)) · 1

pL
·
( 1∑

k:k 	=i,j ψ
′(θi − θk)

+ 1∑
k:k 	=i,j ψ

′(θj − θk)

)
,

where the o(1) term is uniform over all θ ∈ Θ(κ) and i, j. Moreover, by definition of πi(·) and the fact
that rn = o(1), direct calculation yields that

∫
1∑

k:k 	=i,j ψ
′(θi − θk)

πi(θi)πj(θj)dθidθj

=
∫

1∑
k:k 	=i,j ψ

′(θi − θk)
Krn

(
θi − θ∗

i

)
dθi = 1 + o(1)∑

k:k 	=i,j ψ
′(θ∗

i − θk)
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UNCERTAINTY QUANTIFICATION IN THE BTL MODEL 1133

uniformly overall θ ∈ Θ(κ) and i, j. With a similar bound for the term involving index j, we have∫
Jij(μ; θ−i,−j)πi(θi)πj(θj)dθidθj

= (1 + o(1)
) · 1

pL
·
( 1∑

k:k 	=i,j ψ
′(θ∗

i − θk)
+ 1∑

k:k 	=i,j ψ
′(θ∗

j − θk)

)
. (9.8)

Here the o(1) is uniform overall θ ∈ Θ(κ) and i, j.
(Second term in (9.7)) On the other hand, let Δ ≡ det

(
(pL)−1I(μ)

)
. Then

C(μ) ≡
(∂Tij(μ)

∂μ

)�
I−1(μ) = 1

pLΔ

( ∑
k:k 	=i,j

ψ ′(θj − θk), −
∑

k:k 	=i,j

ψ ′(θi − θk)
)

.

Hence, by definition of πi(·) and πj(·), we have

∂
(
C11(μ)πi(θi)πj(θj)

)
∂θi

=
(∑

k:k 	=i,j ψ
′(θj − θk)

) · Krn
(θj − θ∗

j )

pLΔ2
·
[
r−1

n K′
rn

(θi − θ∗
i )Δ − Krn

(θi − θ∗
i )

∂Δ

∂θi

]
.

With a similar bound for ∂
(
C12(μ)πi(θi)πj(θj)

)
/∂θj, and the simple bounds that Δ � n2 and |∂Δ/∂θi|∨

|∂Δ/∂θj| = O(n2) uniformly over all θ ∈ Θ(κ) and i, j, we have

Ĩij(πi, πj) ≡
∫

1

πi(θi)πj(θj)

[∂(C11(μ)πi(θi)πj(θj)
)

∂θi
+ ∂

(
C12(μ)πi(θi)πj(θj)

)
∂θj

]2
dθidθj

� 1

n2p2L2

(
1 ∨ 1

r2
n

∫ (
K′(x)

)2
K(x)

dx
)
� 1

n2p2L2r2
n

. (9.9)

Now apply (9.7) with (9.8) and (9.9) to yield that

Rij(θ−i,−j) ≥ (1 + o(1)
) · 1

pL
·
( 1∑

k:k 	=i,j ψ
′(θ∗

i − θk)
+ 1∑

k:k 	=i,j ψ
′(θ∗

j − θk)

)

under the condition rn � (npL)−1/2. By (9.6) and the above lower bound, the local minimax risk is
lower bounded by

1 + o(1)

npL
·
∑
i<j

∫ ( 1∑
k:k 	=i,j ψ

′(θ∗
i − θk)

+ 1∑
k:k 	=i,j ψ

′(θ∗
j − θk)

)( ∏
k:k 	=i,j

πk(θk)
)
dθ−i,−j,
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where the o(1) is uniform over all i, j. Note that for any θ−i,−j in the support of the product prior, we
have ∑

k:k 	=i,j

ψ ′(θ∗
i − θk) = (1 + o(1)

) ∑
k:k 	=i,j

ψ ′(θ∗
i − θ∗

k ) asrn = o(1),

where the o(1) is uniform over all i, j. Hence, the local minimax risk is further lower bounded by

1 + o(1)

npL
·
∑
i<j

( 1∑
k:k 	=i,j ψ

′(θ∗
i − θ∗

k )
+ 1∑

k:k 	=i,j ψ
′(θ∗

j − θ∗
k )

)

= 1 + o(1)

npL
·
∑
i<j

( 1∑
k:k 	=i ψ

′(θ∗
i − θ∗

k )
+ 1∑

k:k 	=j ψ
′(θ∗

j − θ∗
k )

)

= 1 + o(1)

pL
·

n∑
i=1

1∑
k:k 	=i ψ

′(θ∗
i − θ∗

k )
,

as desired. �
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A. Additional auxiliary results

Lemma 13. Suppose that np � log n. Then there exist some universal positive constants c, C such that
the following hold with probability 1 − O(n−10).

cnp ≤ min
i∈[n]

∑
j:j 	=i

Aij ≤ max
i∈[n]

∑
j:j 	=i

Aij ≤ Cnp,

max
m∈[n]

∑
i,j:i<j,i,j 	=m

AijAmi � C(np)2.

Proof. For any fixed i ∈ [n], we have cnp ≤ ∑
j:j 	=i Aij ≤ Cnp with the prescribe probability by

Hoeffding’s inequality. The first claim now follows by taking the union bound over i ∈ [n]. The second
claim follows since

max
m∈[n]

∑
i,j:i<j,i,j 	=m

AijAmi ≤ max
m∈[n]

∑
i:i 	=m

Ami · max
i∈[n]

∑
j:j 	=i

Aij � (np)2

by the first claim. �
The following lemma gives some standard concentration results in the analysis of both MLE and the

spectral method.

Lemma 14. Assume np ≥ c0 log n for some sufficiently large c0 > 0 and κ = O(1). Then the following
hold with probability 1 − O(n−10) uniformly over θ∗ ∈ Θ(κ).

n∑
i=1

(∑
j:j 	=i

Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
))2 ≤ C

n2p

L
,

max
i∈[n]

∣∣∣∑
j:j 	=i

Aij

(
ȳij − ψ(θ∗

i − θ∗
j )
)∣∣∣2 ≤ C

np log n

L
,

max
m∈[n]

∣∣∣ ∑
i:i 	=m

Aim

(
ȳmiπ

∗
i − ȳimπ∗

m

)∣∣∣2 ≤ C
p log n

nL
.

Here C = C(κ) > 0.

Proof of Lemma 14 The first two claims are proved in [5, Lemma 7.4]. For the third claim, note that the
summands ȳmiπ

∗
i − ȳimπ∗

m are independent, centered, and sub-Gaussian with variance proxy bounded
by L−1‖π∗‖2∞ � (n2L)−1. Hence the claim follows from Hoeffding’s inequality

P

(∣∣∣ ∑
i:i 	=m

Aim

(
ȳmiπ

∗
i − ȳimπ∗

m

)∣∣∣ ≥ t|A
)

≤ 2 exp
(

− Ct2

(n2L)−1 ·∑i:i 	=m Aim

)
,

the bound maxm∈[n]
∑

i:i 	=m Ami � np by Lemma 13, and a union bound. �
The following lemma controls the spectrum of Laplacian matrices corresponding to a weighted

Erdoős-Rényi graph.
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Lemma 15. Let A be the Erdoős-Rényi graph adjacency matrix with connection probability p, and
{wij}i 	=j be a non-negative weight sequence such that wij = wji. Let H be a weighted Laplacian matrix
defined by Hij ≡ −Aijwij for i 	= j and Hii ≡ ∑

j 	=i Aijwij. Assume that p ≥ c0 log n/n for some
sufficiently large c0 > 0 and κ1 ≤ mini 	=j wij ≤ maxi 	=j wij ≤ κ2 for some κ1, κ2 > 0. Then for some
positive c, C only depending on c0,

(cκ1)np ≤ λmin,⊥(H) ≤ λmax,⊥(H) ≤ (Cκ2)np

with probability at least 1 − O(n−10). Here λmin,⊥ stands for the smallest eigenvalue along directions
orthogonal to 1n.

Proof of Lemma 15 Let LA be the graph Laplacian induced by A. For any unit vector c ∈ R
n such that

1�
n c = 0, we have

c�Hc =
∑
i 	=j

1

2
(ci − cj)

2Aijwij ≥ κ1 ·
∑
i 	=j

1

2
(ci − cj)

2Aij ≥ κ1 · λmin,⊥(LA).

The claim now follows from standard results of the Erdoős-Rényi graph [39]. The upper bound proof is
similar. �

The following lemma provides rate-optimal bounds for the global MLE θ̂ and the leave-one-out
MLE θ̂ (m) in (5.9) for each m ∈ [n].

Lemma 16. Suppose that κ = O(1) and np � log n. There exists some C = C(κ) > 0 such that the
following hold with probability 1 − O(n−10) uniformly over all θ∗ ∈ Θ(κ).

1. We have maxm∈[n]‖θ̂ (m) − θ∗−m‖2 ≤ C(pL)−1 and maxm∈[n]‖θ̂ (m) − θ∗−m‖2∞ ≤ C log n/(npL).

2. We have maxm∈[n]‖θ̂ (m) − θ̂−m‖2 ≤ C(npL)−1.

Proof. These are essentially proved in [5, Lemmas 8.6 and 8.7]. Note that there are two differences
between our leave-one-out MLE θ̂ (m) in (5.9) and the one in Equation (57) of [5]: (i) our (5.9) does
not have the �∞ constraint ‖θ−m − θ∗−m‖∞ ≤ 5 in its definition; (ii) our (5.9) satisfies ave(θ−m) =
ave(θ∗−m) by definition. The above bounds continue to hold with the prescribed probability since for (i),
the constraint is satisfied with the prescribed probability by (a leave-one-out version of) [5, Proposition
8.1], and for (ii), Lemmas 8.6 and 8.7 in [5] hold for θ̂ (m) only after the additional centering θ̂ (m) −
ave(θ̂ (m) − θ∗−m), which coincides with the leave-one-out MLE in our definition (5.9). �

The following lemma summarizes some rate-optimal bounds of the spectral estimate π̂ .

Lemma 17. Lemma 9.1 of [5], see also [6]Suppose that κ = O(1) and np � log n. Then the following
hold with probability at least 1 − O(n−10) for some positive C = C(κ).

1. We have maxm∈[n]‖π̂ (m) − π̂‖ ≤ Cn−1
√

log n/(npL).

2. We have maxm∈[n]‖π̂ (m) − π∗‖∞ ≤ Cn−1
√

log n/(npL) and ‖π̂ − π∗‖∞ ≤ Cn−1
√

log n/(npL).

3. We have maxm∈[n]‖π̂ (m) − π∗‖ ≤ Cn−1√1/(pL) and ‖π̂ − π∗‖ ≤ Cn−1√1/(pL).

The following lemma summarizes some useful estimates regarding f (m)(θm|θ−m) and g(m)(θm|θ−m)

defined in (5.1) for each m ∈ [n].
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Lemma 18. Suppose κ = O(1) and np � log n. Then the following hold with probability 1 − O(n−10)

for each m ∈ [n].

1. We have maxm∈[n]

∣∣∣ f (m)(θ∗
m|θ̂−m)

∣∣∣ � √
np log n/L and

∑n
m=1

(
f (m)(θ∗

m|θ̂−m)
)2

� n2p/L.

2. We have maxm∈[n]

∣∣∣ f (m)(θ∗
m|θ̂−m) − f (m)(θ∗

m|θ∗−m)

∣∣∣ � √
np/L +√(log n)3/(npL).

3. We have g(m)(θ∗
m|θ∗−m) � np.

4. We have
∣∣g(m)(θ∗

m|θ̂−m) − g(m)(θ∗
m|θ∗−m)

∣∣ �
√

np/L + √
(log n)3/(npL). Consequently,

g(m)(θ∗
m|θ̂−m) = (

1 + εm

)
g(m)(θ∗

m|θ∗−m) under the condition np � log n for some ε ∈ R
n

such that ‖ε‖∞ = o(1).

Proof of Lemma 18 Claims (1)(3)(4) follow from analogous arguments as in the proof of Lemma 3, and
it remains to prove Claim (2). By definition, we have

f (m)(θ∗
m|θ̂−m) − f (m)(θ∗

m|θ∗−m) =
∑

i:i 	=m

Ami

(
ψ(θ∗

m − θ̂i) − ψ(θ∗
m − θ∗

i )
)
.

Recall that θ̂ (m) is the leave-one-out MLE defined in (5.9). Then we have

∑
i:i 	=m

Ami

(
ψ(θ∗

m − θ̂i) − ψ(θ∗
m − θ∗

i )
)

=
∑

i:i 	=m

Ami

(
ψ(θ∗

m − θ̂
(m)
i ) − ψ(θ∗

m − θ∗
i )
)

+
∑

i:i 	=m

Ami

(
ψ(θ∗

m − θ̂i) − ψ(θ∗
m − θ̂

(m)
i )

) ≡ Δm,1 + Δm,2.

The term Δm,1 is controlled with the prescribed probability by

|Δm,1| ≤ p ·
∣∣∣ ∑

i:i 	=m

(
ψ(θ∗

m − θ∗
i ) − ψ(θ∗

m − θ̂
(m)
i )

)∣∣∣
+
∣∣∣ ∑

i:i 	=m

(Ami − p)
(
ψ(θ∗

m − θ∗
i ) − ψ(θ∗

m − θ̂
(m)
i )

)∣∣∣
(∗)

� p
√

n‖θ̂ (m) − θ∗−m‖ +√p log n‖θ̂ (m) − θ∗−m‖ + log n · ‖θ̂ (m) − θ∗−m‖∞
(∗∗)

� p
√

n ·
√

1

pL
+ log n ·

√
log n

npL
=
√

np

L
+
√

(log n)3

npL
. (A1)

Here (∗) follows from Bernstein’s inequality applied conditioning on data without the mth observation,
and (∗∗) follows from Lemma 16.
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On the other hand, Δm,2 is controlled by

|Δm,2| ≤
∑

i:i 	=m

Ami|θ̂ (m)
i − θ̂j| ≤

( ∑
i:i 	=m

Ami

)1/2‖θ̂ (m) − θ̂−m‖

(∗)

� √
np ·

√
1

npL
=
√

1

L
,

where (∗) follows by Lemma 16. Since both estimates are uniform over m ∈ [n], the proof is
complete. �

Recall θ̄ defined in (5.2) and its motivation of local quadratic expansion in (2.9). The following
lemma quantifies the closeness between θ̄ and θ̂ .

Lemma 19. Suppose that κ = O(1) and np � log n. Then there exists some C = C(κ) > 0 such that
the following holds with probability 1 − O(n−10).∣∣θ̂m − θ̄m

∣∣2 ≤ C
(∣∣ f (m)(θ∗

m|θ̂−m)
∣∣

np

)3
, ∀m ∈ [n].

Proof of Lemma 19 This follows directly from the estimates before Equation (78) of [5]. �
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