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A Novel and Optimal Spectral Method for
Permutation Synchronization

Duc Nguyen and Anderson Ye Zhang

Abstract—Permutation synchronization is an important prob-
lem in computer science that constitutes the key step of many
computer vision tasks. The goal is to recover n latent permuta-
tions from their noisy and incomplete pairwise measurements. In
recent years, spectral methods have gained increasing popularity
thanks to their simplicity and computational efficiency. Spectral
methods utilize the leading eigenspace U of the data matrix and
its block submatrices U1, U2, . . . , Un to recover the permutations.
In this paper, we propose a novel and statistically optimal spectral
algorithm. Unlike the existing methods which use {UjU

>
1 }j≥2,

ours constructs an anchor matrix M by aggregating useful
information from all of the block submatrices and estimates
the latent permutations through {UjM

>}j≥1. This modification
overcomes a crucial limitation of the existing methods caused
by the repetitive use of U1 and leads to an improved numerical
performance. To establish the optimality of the proposed method,
we carry out a fine-grained spectral analysis and obtain a sharp
exponential error bound that matches the minimax rate.

Index Terms—spectral method, permutation synchronization,
spectral perturbation, minimax rate.

I. INTRODUCTION

In permutation synchronization, the objective is to estimate
n latent permutations using noisy and potentially incomplete
pairwise measurements among them. It is an important prob-
lem in computer vision and graphics where finding corre-
spondence between sets of features across multiple images is
a fundamental task with wide-ranging applications including
image registration [1], shape matching [2], multi-view match-
ing [3], [4], detecting structures from motion [5], and so on.
Various methods have been proposed for permutation syn-
chronization including iterative algorithms [6], [7], [8], semi-
definite programming (SDP) [9], [10], and spectral methods
[11], [12], [4], [13]. Compared to other approaches, spectral
methods have gained increasing popularity and have been
widely used in permutation synchronization thanks to their
simplicity, fast computation speed, and impressive numerical
performance. Despite the popularity, it remains unclear how
well spectral methods perform theoretically and whether they
achieve statistical optimality or not. In this paper, we address
these questions by proposing a new and provably optimal
spectral algorithm.
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a) Problem Formulation.: The permutation synchroniza-
tion problem is formulated as follows. Let Z∗1 , . . . , Z

∗
n ∈ Πd

where Πd is the permutation group in d dimension defined as:

Πd :=
{
P ∈ {0, 1}d×d : P>P = PP> = Id

}
. (1)

We introduce missing and noisy data by assuming that, for
each pair 1 ≤ j < k ≤ n, the observation Xjk ∈ Rd×d
satisfies

Xjk :=

{
Z∗j (Z∗k)>+σWjk, if Ajk = 1,

0d×d, otherwise,
(2)

where Ajk ∈ {0, 1} independently follows Bernoulli(p) for
some p ∈ (0, 1]; σ ∈ R+ controls the amount of noise;
Wjk ∈ Rd×d is a random matrix with each entry indepen-
dently distributed according the standard normal distribution;
and 0d×d is the d×d matrix of all zeros. Roughly speaking,
each Xjk block, if not missing, is a noisy measurement of
Z∗j (Z∗k)> which is the ‘difference’ between two permutation
matrices. Denote Z∗ := (Z∗>1 , . . . , Z∗>n )> ∈ Πn

d . The goal
is to estimate Z∗ given {Ajk}1≤j<k≤n and {Xjk}1≤j<k≤n.
Note that Z∗1 , . . . , Z

∗
n are identifiable only up to a global

permutation. For any estimator Ẑ = (Ẑ>1 , . . . , Ẑ
>
j )> ∈ Πn

d ,
its performance can be measured by the following normalized
Hamming loss (modulo a global permutation transformation):

`(Ẑ, Z∗) := min
P∈Πd

1

n

n∑
j=1

I
{
Ẑj 6= Z∗j P

>
}
. (3)

Note that model (2) has a matrix representation. The observa-
tion matrix X ∈ Rnd×nd can be written as

X = (A⊗Jd)◦Z∗(Z∗)>+σ(A⊗Jd)◦W, (4)

where W ∈ Rnd×nd is a block-symmetric matrix with Wjj :=
0,Wkj := W>jk,∀1 ≤ j < k ≤ n; A ∈ {0, 1}n×n is a sym-
metric matrix with Ajj := 0, Akj := Ajk,∀1 ≤ j < k ≤ n;
Jd is the d×d matrix of all ones; ⊗ is the Kronecker product
and ◦ is the Hadamard product.

b) Spectral Methods.: Existing spectral methods [11],
[12], [4], [13] use the eigendecomposition of X followed
by a rounding step to estimate the latent permutations. Let
U = (U>1 , . . . , U

>
n )> ∈ Rnd×d be the matrix composing the

top d eigenvectors of X . That is, the columns of U are the
eigenvectors corresponding to the d largest eigenvalues of X .
Its d×d blocks are denoted as U1, . . . , Un. The first block
U1 ∈ Rd×d is then used as an ‘anchor’ to obtain an estimator
Z̃1, . . . , Z̃n ∈ Πd:

Z̃1 := Id, Z̃j := argmax
P∈Πd

〈
P,UjU

>
1

〉
,∀j = 2, . . . , n, (5)
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where the optimization subproblem serves to round UjU
>
1

into a permutation matrix and can be efficiently solved using
the Kuhn-Munkres algorithm [14] (see Section II-A for an
intuitive description of the innerworking of this algorithm).
To distinguish the existing algorithm from the one proposed
in this paper, we refer to Z̃ := (Z̃>1 , . . . , Z̃

>
n )> as the ‘vanilla

spectral estimator’. It is computationally efficient and has
decent numerical performance.

Despite of all the aforementioned advantages, the vanilla
spectral method suffers from the repeated use of U1 in con-
structing the estimator Z̃j for all j ≥ 2. From a perturbation
theoretical point of view, U (along with its blocks U1, . . . , Un)
are approximations of their population counterparts. By using
UjU

>
1 , the estimation accuracy of Z̃j is determined by the

approximation errors of both Uj and U1. As a result, the
approximation error of U1 is carried forward in {Z̃j}j≥2 and
deteriorates the overall numerical performance.

To overcome this crucial limitation of Z̃, we propose a
new spectral method that avoids the use of U1 as the anchor.
Instead, we construct an anchor matrix M ∈ Rd×d by carefully
aggregating useful information from all of U and estimate the
latent permutations by Ẑ := (Ẑ>1 , . . . , Ẑ

>
n )> where

Ẑj := argmax
P∈Πd

〈
P,UjM

>〉,∀j ∈ [n].

The construction of M is built on an intuition that ‘averaging’
information across all n blocks of U leads to a more accurate
anchor with smaller variance than U1. As a result, the estima-
tion accuracy of Ẑj is mostly determined by the approximation
error of Uj only, which leads to an improved numerical
performance. See Algorithm 1 for the detailed implementation
of the proposed method and Figure 1 for comparisons of
numerical performances between the vanilla spectral estimator
and ours.

c) Statistical Optimality.: By carrying out fine-grained
spectral analysis, we establish a sharp upper bound for the
theoretical performance of the proposed method, summarized
below in Theorem 1. We note that in this paper, p, σ2, d are
not constants but functions of n. This dependence can be more
explicitly represented as pn, σ2

n, dn. However, for simplicity of
notation and readability, we choose to denote them as p, σ2, d
throughout the paper. See Theorem 3 for a non-asymptotic and
refined version where d is also allowed to grow with n.

Theorem 1. Assume np
σ2 → ∞, np

log3 n
→ ∞ and d = O(1).

Then the proposed spectral method Ẑ satisfies

E`(Ẑ, Z∗) ≤ exp
(
−(1−o(1))

np

2σ2

)
+n−8 .

The upper bound in Theorem 1 consists of an exponential
error term and a polynomial error term n−8. Note that by
properties of the normalized Hamming loss `, the polyno-
mial error term is negligible. Considering this, our spec-
tral algorithm achieves the minimax lower bound [6] which
states that if np

σ2 → ∞, then infZ′ supZ∗∈Πn
d
E`(Z ′, Z∗) ≥

exp
(
−(1+o(1)) np2σ2

)
. This establishes the statistical optimal-

ity of the proposed method for the partial recovery of the latent
permutations. Theorem 1 immediately implies the threshold
for exact recovery. When np/(2σ2) > (1+γ) log n for some

constant γ > 0, we have `(Ẑ, Z∗) = 0 holds with high
probability. According to the minimax lower bound, no es-
timator is able to recover Z∗ exactly with vanishing error if
np/(2σ2) < (1−γ) log n. As a result, simple but powerful,
the proposed spectral method Ẑ is an optimal procedure.

Theorem 1 allows the observations {Xjk} to be missing at
random as long as the probability p satisfies np � log3 n.
Note that in order to have a connected comparison graph
A, np needs to be at least of order log n. Compared to
this condition, our assumption np � log3 n requires some
additional logarithm factor. The assumption np � σ2 is
the necessary and sufficient condition to achieve estimation
consistency according to the minimax lower bound. Theorem 1
assumes that d, the dimension of each permutation matrix, is a
constant. To establish Theorem 1, we first provide a block-wise
`∞ perturbation analysis for all block submatrices U1, . . . , Un,
quantifying the maximum deviation between them and their
population counterparts (see Theorem 2). In addition, we give
a theoretical justification for the usage of the anchor M by
showing that it achieves a negligible error (see Proposition
1). With both results, we investigate the tail behavior of each
UjM

> and eventually obtain the upper bound in Theorem
1. We leverage the leave-one-out technique [15], [16] in our
proofs.

d) Related Literature.: Permutation synchronization be-
longs to a broader class of group synchronization problems
where the goal is to identify n group objects based on
pairwise measurements among them. In recent years, spectral
methods have been widely used and studied in group syn-
chronization problems. In [17], spectral methods are proved
to be optimal for phase synchronization and orthogonal group
synchronization in terms of squared `2 losses. To obtain this
result, [17] develops perturbation analysis toolkits to show that
the leading eigenstructures can be well-approximated by its
first-order approximation with a small `2 error. However, the
difference that permutations are discrete-valued while phases
and orthogonal matrices are continuous is critical. For per-
mutation synchronization, instead of `2 perturbation analysis,
we need to develop block-wise analysis in order to obtain
sharp exponential rates. [16] considers a Z2 synchronization
problem where each object is ±1 and assumes that there is no
missing data. It proves that a simple spectral procedure using
signs of coordinates of the first eigenvector of the data matrix
achieves the optimal threshold for the exact recovery of objects
by `∞ analysis of the leading eigenvector. [12] extends [16]’s
`∞ analysis to a permutation synchronization setting where
there is no missing data and each observation is corrupted
with probability q by a random permutation matrix. It shows
that the vanilla spectral method achieves exact recovery when
q satisfies certain conditions. Our work’s novelty relative to
[12] is two-fold. Firstly, we propose a novel spectral algorithm
that addresses a subtle but important limitation of the vanilla
spectral algorithm, leading to a significant improvement in
empirical performance. Secondly, our `∞ analysis is different
from those in [16], [12] as we need to consider the low signal-
to-noise ratio regime where exact recovery is impossible but
partial recovery is possible. We go beyond `∞ analysis and
study the tail behavior of each block of U in order to obtain
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exponential error bounds for partial recovery. In addition,
the presence of missing data in our model complicates the
theoretical analysis as the magnitude and tail behavior of each
block Uj is not only related to the additive Gaussian noises
but also the randomness of the Bernoulli random variables
{Ajk}k 6=j .

e) Notation.: For any positive integer n, define [n] :=
{1, 2, . . . , n}. Let Id denote the d×d identity matrix and Jd
denote the d×d matrix of all ones. Define Od := {O ∈
Rd×d : OO> = O>O = Id} to be the set of all d×d or-
thogonal matrices. Given a, b ∈ R, let a∨b := max{a, b} and
a∧b := min{a, b}. For a matrix B ∈ Rd1×d2 , the Frobenius
norm and the operator norm of B are defined as ‖B‖F :=(∑d1

i=1

∑d2
j=1B

2
ij

)1/2

and ‖B‖op := maxu∈Sd1 ,v∈Sd2 u
>Bv

where Sd := {v ∈ Rd : ‖v‖ = 1} is the unit sphere in d
dimension and ‖.‖ is the Euclidean norm. For two matrices
A,B ∈ Rd1×d2 , let 〈A,B〉 :=

∑
i∈[d1]

∑
j∈[d2]AijBij denote

the matrix inner product (this reduces to the usual vector
inner product when d2 = 1). For some d1, d2 ∈ N, we
use N (µ,Σ) to denote the normal distribution with mean
µ ∈ Rd1 and covariance Σ ∈ Rd1×d1 and MN (S,Σ1,Σ2)
to denote the matrix normal distribution [18] with mean pa-
rameter S ∈ Rd1×d1 and covariance parameters Σ1 ∈ Rd1×d1 ,
Σ2 ∈ Rd2×d2 . Define (a)+ := max{a, 0}. For the rest of the
paper, we will use ei ∈ {0, 1}d to denote the vector with 1 in
the i-th entry and zero everywhere else. For any matrix Y and
any positive integer i, we denote λi(Y ) to be the ith largest
eigenvalue of Y . For two positive sequences {an} and {bn},
bn & an and an = O(bn) both mean an ≤ Cbn for some
constant C > 0 independent of n. We also write an = o(bn)
or bn

an
→ ∞ when lim supn

an
bn

= 0. Lastly, we use I{.} to
denote the indicator function.

II. A NOVEL SPECTRAL ALGORITHM

In this section, we first give a detailed implementation of
the proposed method. In Section II-A, we provide intuitions
to explain why it works and how it improves upon the
existing algorithm. In Section II-B, we compare the numerical
performances of the proposed method with the vanilla spectral
method on synthetic datasets.

Algorithm 1 describes our proposed spectral algorithm. The
first step computes the top d eigenvectors of the observation
matrix X , which can be done using any off-the-shelf numerical
eigendecomposition routine. The output of Step 1 is the
empirical eigenspace U ∈ Rnd×d corresponding to the top d
eigenvectors. Step 2 constructs the anchor M used to recover
the permutations by performing d-means clustering on the nd
rows of U and extracting the estimated cluster centers. Step 3
recovers the underlying permutations via the Kuhn-Munkres
algorithm. Note that (8) in Step 3 can be interpreted as a
projection of UjM> onto Πd. This is because all permutation
matrices in Πd have the same Frobenius norm and (8) can be
equivalently written as

Ẑj = argmin
P∈Πd

∥∥P−UjM>∥∥F
,∀j ∈ [n]. (6)

Algorithm 1: A new spectral method for permutation
synchronization.

Input: Data matrix X ∈ Rnd×nd
Output: n permutation matrices Ẑ1, Ẑ2, . . . , Ẑn ∈ Πd

1 Obtain the top d eigenvectors of X as U ∈ Rnd×d;
2 Denote the rows of U as v1, . . . , vnd ∈ Rd×1 such that

U = (v>1 , . . . , v
>
nd)
>. Run d-means on v1, . . . , vnd

and denote µ̂1, . . . , µ̂d ∈ Rd×1 as the cluster centers:

(µ̂1, . . . , µ̂d) := argmin
µ1,...,µd∈Rd×1

min
z∈[d]nd

nd∑
j=1

∥∥vj−µzj∥∥2
.

(7)

Define M := (
√
nµ̂>1 , . . . ,

√
nµ̂>d )> ∈ Rd×d such

that the rows of M are the d centers multiplied by a√
n scaling;

3 Compute for each j ∈ [n],

Ẑj := argmax
P∈Πd

〈
P,UjM

>〉. (8)

A. Intuition

To understand Algorithm 1, we need to study U through
the lens of spectral perturbation theory. Denote

U∗ := (U∗>1 , . . . U∗>n )> ∈ Rnd×n, (9)

where U∗j := Z∗j /
√
n, ∀j ∈ [n]. Note that the expected value

of the data matrix X is equal to EX = p((Jn−In)⊗Jd)◦
Z∗(Z∗)>. One could verify that (EX)U∗ = (n−1)pU∗. As
a result, U∗ is the leading eigenspace of EX that includes its
top d eigenvectors. Since X is a perturbed version of EX ,
U can also be seen as a perturbed version of U∗. However,
this correspondence only holds with respect to an orthogonal
transformation, as the leading eigenvalue of EX , (n−1)p, has
a multiplicity of d. That is, UO∗ ≈ U∗ for some O∗ ∈ Od
(see Section III-A for the definition of O∗). As a result, the
blocks {Uj} are close to {U∗j } only up to a global orthogonal
transformation, i.e., UjO∗ ≈ U∗j for all j ∈ [n].

To estimate the latent permutation Z∗j , the vanilla
spectral method uses the product UjU

>
1 as UjU

>
1 =

(UjO
∗)(U1O

∗)> ≈ U∗j (U∗1 )> = Z∗j (Z∗1 )>/n. Intuitively, if
UjU

>
1 is very close to Z∗jZ

∗
1/n then by (5), we have Z̃j =

Z∗j (Z∗1 )>. As a result, when the perturbation between UO∗

and U∗ is sufficiently small, the vanilla spectral method is able
to recover Z∗ up to a global permutation Z∗1 . However, as
hinted at before, the use of the product {UjU>1 } in the vanilla
spectral method inevitably leads to a crucial and fundamental
limitation. For each j ∈ [n], write UjO∗ = U∗j +ξj such that
ξj can be interpreted as the approximation ‘noise’ of UjO∗

with respect to U∗j . Then

UjU
>
1 = (UjO

∗)(U1O
∗)> = (U∗j +ξj)(U

∗
1 +ξ1)>

= U∗j (U∗1 )>+ξj(U
∗
1 )>+U∗j ξ

>
1 +ξjξ

>
1 .

That is, UjU>1 is an approximation of U∗j (U∗1 )> with an error
ξj(U

∗
1 )>+U∗j ξ

>
1 (the higher-order term ξjξ

>
1 is ignored). As a
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function of UjU>1 , the estimation accuracy of Z̃j is determined
by both ξj and ξ1. As a result, the error caused by ξ1 is carried
forward in {Z̃j}j≥2 and impairs the numerical performance
of the overall algorithm (see Figure 1). Additionally, using U1

as the anchor makes the performance of the vanilla spectral
algorithm less stable because it highly depends on the accuracy
of U1.

Algorithm 1 overcomes this crucial limitation of the vanilla
spectral method by constructing an anchor that ‘averages’
information across all rows of U instead of just using its first
block U1. The key insight into our construction is to recog-
nize the special structure of the permutation synchronization
problem where the true eigenspace U∗ consists of d unique
rows e>1 /

√
n, . . . , e>d /

√
n, each of cardinality exactly n. The

empirical eigenspace U , being a noisy estimate of U∗O∗>,
thus exhibits clustering structures where the cluster centers are
the transformed rows {e>i O∗

>/
√
n}di=1 Clustering algorithms

such as the d-means algorithm can be used to estimate the
cluster centers, and thereby the rotation matrix O∗, accurately.
With M being an accurate approximation of O∗> (up to a row
permutation), we have

UjM
> ≈ UjO∗ = U∗j +ξj ,

and consequently the estimation accuracy of Ẑj is only related
to ξj where as the accuracy of UjU>1 depends on both ξj and
ξ1. The reduced noise in UjM

> leads to an improved and
more stable numerical performance.

B. Numerical Analysis

To verify our intuitions and showcase the improved perfor-
mance of our spectral method over the vanilla spectral method,
we perform experiments on synthetic data following the model
in (2).

In Figures 1a-1d, we compare the performance of Algorithm
1 against the vanilla spectral algorithm. In each figure, we vary
a single parameter while keeping all of the other parameters
fixed: in Figures 1a-1b, we set d = 2, p = 0.5, n = 2048 and
vary σ; in Figure 1c, we set σ = 1, p = 0.1, d = 3 and vary
n; in Figure 1d, we set n = 200, σ = 2, d = 2 and vary p.
In Figures 1a and 1c-1d, each line shows the average over
100 independent trials. One can see that our spectral method
outperforms the vanilla spectral method across all settings.

The box plot in Figure 1b shows the distribution of the
losses across 100 trials for both methods. The boxes extend
from the first quartile to the third quartile of the observed
losses with colored bolded lines at the medians and dotted
points as the outliers. It is clear that the performance of the
vanilla algorithm is highly variable across trials. On the con-
trary, our method has a smaller variance and is more precise.
Figure 1 reflects our intuition that because the vanilla algo-
rithm repeatedly uses U1 to estimate the latent permutations,
its performance is highly dependent on the approximation error
of a single block U1. On the other hand, because our algorithm
constructs an anchor that averages information across all n
blocks, it is more stable and consistently outperforms the
vanilla algorithm with a much tighter error spread.

III. THEORETICAL GUARANTEES

In this section, we establish theoretical guarantees for Al-
gorithm 1. Similarly to previous analysis [12], without loss of
generality1, we assume that Z∗j = Id for all j ∈ [n]. That is,
all the latent permutations are the identity matrix. In this way,
the population eigenspace U∗ has a simpler expression with

U∗j = Id/
√
n, ∀j ∈ [n]. (10)

We first give a justification for the choice of the anchor
M , the key algorithmic novelty of the proposed algorithm.
We then establish the statistical optimality of the proposed
method in Section III-B. As a preview of our proofs, we then
present an intuitive analysis of the block-wise perturbation
analysis for U which will serve as the starting point of our
detailed proofs. Last, we propose a practical modification
of Algorithm 1 in Section III-D which uses approximate
clustering instead of exact clustering, allowing the algorithm
to remain scalable when d diverges. The modified spectral
algorithm enjoys similar theoretical guarantee as Algorithm 1
under mild additional assumptions.

A. Accuracy of the Anchor M

At a high level, the effectiveness of M as the anchor stems
from the property that UM> is close to U∗ up to a global
permutation. However, this is not obvious at first glance.

Note that there is a close relationship between the empirical
eigenspace U and the population eigenspace U∗, modulo an
appropriate orthogonal transformation. Readers familiar with
spectral analysis literature might anticipate the natural choice
for this transformation to be the sign matrix [19], defined
as O∗ := argminO∈Od

‖UO−U∗‖F. However, our analysis
employs a different approach, using the following matrix [16]:

H := U>U∗ . (11)

This choice is strategic; although H is not orthonormal, it
offers a straightforward and explicit expression that facilitates
easier manipulation than O∗. Additionally, O∗, by definition,
represents the orthogonal matrix that most closely approxi-
mates H , and the distance between them is small. We first
show (see (29) of Lemma 1):

‖UH−U∗‖op = O

(
1+σ
√
d

√
np

)
(12)

holds with high probability. Then following the intuition given
in Section II-A and applying state-of-the-art clustering anal-
ysis, we have the following proposition which states that the
anchor M is in fact an approximation of H> up to some per-
mutation matrix P̂ where P̂ := argminP∈Πd

∥∥M−PH>∥∥
F

.

1This is because for any X as defined in (2) with an arbitrary Z∗ ∈
Πn

d , it can be transformed into X′ ∈ Rnd×nd by letting X′jk :=

(Z∗j )>XjkZ
∗
k , ∀1 ≤ j, k ≤ n. One can show that implementing Algorithm

1 on either X or X′ yields identical results, up to a global permutation. In
addition, it can be shown that X′ also adheres to the definition in (2), where
all latent permutation matrices are the identity matrix Id.
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(a) (b)

(c) (d)

Fig. 1. Comparisons between our method and the vanilla spectra method on synthetic data.

Proposition 1. There exist constants C1, C2, C3 > 0 such
that if np

logn > C1 and np

(
√
d+σd)2

> C2 then the anchor M
constructed in Algorithm 1 satisfies

min
P∈Πd

∥∥M−PH>∥∥
F
≤ C3(

√
d+σd)
√
np

, (13)

with probability at least 1−n−10.

The existence of P̂ is due to the fact that the clusters
are identifiable only up to a permutation in cluster analysis.
More importantly, the exact value P̂ does not affect the final
error bound in (3) because the Hamming loss is defined with
respect to an unknown optimal global permutation. (13) shows
that the estimation error goes to 0 when np

(
√
d+σd)2

grows. As
a comparison, the operator norm of the matrix H is ‘of a
constant order’ as it is close to an orthogonal matrix (see (31)
of Lemma 1). Hence, the error incurred by M as an estimate of
H> is of diminishing proportion. It is also worth mentioning
that Proposition 1 holds under weaker assumptions compared
to Theorem 1. It only requires np & log n and allows d to grow
as long as np & (

√
d+σd)2. With Proposition 1, we can have

a decomposition of the quantity UjM
>, the key quantity in

(8).

UjM
>−U∗j P̂> = Uj(P̂H

>+M−P̂H>)>−U∗j P̂>

=
(
UjH−U∗j

)
P̂>+Uj(M−P̂H>)>

≈
(
UjH−U∗j

)
P̂>. (14)

The approximation (14) is due to (13) as the term Uj(M−
P̂H>)> turns out to be negligible. Hence, the difference
UjM

>−U∗j P̂> is primarily about the perturbation UjH−U∗j .
To analyze our spectral method, we need to have a deep
understanding on the behaviors of the blockwise perturbation
UjH−U∗j .

B. Statistical Optimality

In Theorem 2, we first derive a block-wise `∞ upper bound
for UH−U∗, i.e., an upper bound for ‖UjH−U∗j ‖op that
holds uniformly across all j ∈ [n].

Theorem 2. There exist constants C,C ′, C ′′ > 0 such that if
np

(σ4/3∨1) logn
> C and np

(
√
d+σd)2

≥ C ′, we have

max
j∈[n]

∥∥UjH−U∗j ∥∥op
≤ C ′′√

n

(√
log n

np
+
σ
√
d

√
np

+
σ
√

log n
√
np

)
(15)

with probability at least 1−6dn−9.

The upper bound in (15) is equal to the upper bound of
‖UH−U∗‖op in (12) multiplied by a

√
(log n)/n factor. This

is because UH−U∗ consists of n blocks {UjH−U∗j }j∈[n]

and all blocks behave similarly. The magnitude of each block
is then on average 1/

√
n of that of the whole matrix, and the√

log n factor is due to the use of union bound to control the
supremum. Theorem 2 assumes np

(σ4/3∨1) logn
& 1. A sufficient
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condition is np/log3 n & 1 as np/σ2 & 1 is implied by the
other assumption np/(

√
d+σd)2 & 1.

With the upper bound for each ‖UjH−U∗j ‖op derived, we
further study the tail behavior of each difference UjH−U∗j .
This leads to a sharp theoretical analysis of the performance
of the proposed spectral method. The main theoretical result
of this paper is stated below in Theorem 3.

Theorem 3. There exist constants C̄ ′, C̄ ′′, C̄ ′′′, C̄ ′′′′ > 0 such
that if np

d2 logn > C̄ ′, np
σ2d3 > C̄ ′′ and np

log3 n
> C̄ ′′′′ then the

estimates Ẑ1, . . . , Ẑn of Algorithm 1 satisfy

E`(Ẑ, Z∗)

≤ exp

(
−

(
1−C̄ ′′′′

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
np

2σ2

)
+n−8.

Theorem 3 is a non-asymptotic and refined version of
Theorem 1 stated in the introduction. By letting np/(σ2d3)
and np/(d2 log n) go to infinity, the exponential term in
Theorem 3 takes an asymptotic form of exp

(
−(1−o(1)) np2σ2

)
and matches with the minimax lower bound. In this way, we
establish the statistical optimality of the proposed spectral
method. In Theorem 3, d is allowed to grow with n but
not too fast. [6] considers the full observation setting where
p = 1 and studies an EM-like iterative algorithm, requiring
that n/(σ2d log d) → ∞. Our conditions are more stringent,
reflecting the added complexity introduced by missing data,
which necessitates stronger assumptions to apply concentra-
tion inequalities effectively.

While the proof of Theorem 3 is complicated, one can
still develop an intuition as to why we can achieve the error
bound exp

(
−(1−o(1)) np2σ2

)
. At a high level, we will prove

and use a variant of the linear approximation [16] UH−U∗ ≈
XU∗Λ−1−U∗ where Λ is the diagonal matrix of the leading
eigenvalues of X (see (18)). A further decomposition using
the structure of X reveals that

UjH−U∗j ≈
σ√
n

∑
k 6=j

AjkWjkΛ−1 ≈ 1√
n

σ

np

∑
k 6=j

AjkWjk.

(16)

Recall that U∗j = Id/
√
n according to (10). Then

√
nUjH−

Id ≈ σ
np

∑
k 6=j AjkWjk which follows a Gaussian distribu-

tion conditioned on {Ajk}k 6=j . Since
∑
k 6=j Ajk concentrates

around (n−1)p, roughly speaking,
√
nUjH−Id is a random

matrix with each entry i.i.d. followingN (0, σ
2

np ). The Gaussian
tail is used to characterize the probability of the event when√
nUjH considerably deviates away from Id and eventually

leads to a probability bound of exp
(
−(1−o(1)) np2σ2

)
.

C. Block-wise Decomposition of UH−U∗

In this section, we provide a block-wise decomposition of
UH−U∗. The decomposition is the key towards the block-
wise analysis in Section III-B and provides insights on how
Theorem 2 and Theorem 3 are established. Recall that we let
Z∗j = Id for all j ∈ [n]. Then, (4) becomes

X = (A⊗Id)+σ(A⊗Jd)◦W.

For each j ∈ [n], define Xj := (Xj1, . . . , Xjn) ∈ Rd×nd to be
the j-th block row of X and define Wj ∈ Rd×nd analogously
for W . Then we have

Xj = (Aj⊗Id)+σ(Aj⊗Jd)◦Wj . (17)

As a result, X = (X>1 , . . . , X
>
n )>. Define Λ ∈ Rd×d to be

the diagonal matrix of the leading eigenvalues of X . That is,
Λii := λi(X) and Λik := 0 for all 1 ≤ i 6= k ≤ d. Then we
have

UHΛ−XU∗ = U(HΛ−ΛH)+UΛH−XU∗

= U(HΛ−ΛH)+XUH−XU∗

= U(HΛ−ΛH)+X(UH−U∗).

Multiplying both sides by Λ−1 and rearranging the terms, we
have

UH−U∗ = U(HΛ−ΛH)Λ−1+X(UH−U∗)Λ−1

+XU∗Λ−1−U∗. (18)

The above display involves X(UH−U∗) where X and UH−
U∗ are dependent on each other. To decouple the dependence,
we approximate UH−U∗ by its leave-one-out counterparts.
Consider any j ∈ [n]. Define X(j) ∈ Rnd×nd such that

X
(j)
ik :=

{
Xik, ∀i, k 6= j,

0d×d, otherwise.

In addition, let U (j) ∈ Rnd×d be the matrix including the
leading d eigenvectors of X(j). As a consequence, X(j), U (j)

are independent of {Ajk}k 6=j and {Wjk}k 6=j . Define H(j) :=
U (j)>U∗ ∈ Rd×d. Then

UH−U∗ = UH−U (j)H(j)+U (j)H(j)−U∗

= (UU>−U (j)U (j)>)U∗+U (j)H(j)−U∗.

After plugging it into the right-hand side of (18), we have

UH−U∗

= U(HΛ−ΛH)Λ−1+X(UU>−U (j)U (j)>)U∗Λ−1

+X(U (j)H(j)−U∗)Λ−1+XU∗Λ−1−U∗.

Then, the jth block matrix of UH−U∗ satisfies

UjH−U∗j
= Uj(HΛ−ΛH)Λ−1+Xj(UU

>−U (j)U (j)>)U∗Λ−1︸ ︷︷ ︸
=:Bj

+Xj(U
(j)H(j)−U∗)Λ−1+XjU

∗Λ−1−U∗j . (19)

The last two terms in (19) can be further decomposed. Using
(17), we have

Xj(U
(j)H(j)−U∗)Λ−1

= ((Aj⊗Id)+σ(Aj⊗Jd)◦Wj)(U
(j)H(j)−U∗)Λ−1

=
∑
k 6=j

Ajk(U
(j)
k H(j)−U∗k )Λ−1

︸ ︷︷ ︸
=:Fj1

+σ
∑
k 6=j

AjkWjk(U
(j)
k H(j)−U∗k )Λ−1

︸ ︷︷ ︸
=:Fj2

,
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and

XjU
∗Λ−1−U∗j

= ((Aj⊗Id)+σ(Aj⊗Jd)◦Wj)U
∗Λ−1−U∗j

=

∑
k 6=j

AjkU
∗
k

Λ−1−U∗j +σ
∑
k 6=j

AjkWjkU
∗
kΛ−1

=
1√
n

∑
k 6=j

Ajk

Λ−1−Id


︸ ︷︷ ︸

=:Gj1

+
σ√
n

∑
k 6=j

AjkWjkΛ−1

︸ ︷︷ ︸
=:Gj2

,

where the last equation is due to Lemma 10. As a result, we
have a decomposition of UjH−U∗j

UjH−U∗j = Bj+Fj1+Fj2+Gj1+Gj2, (20)

holds for all j ∈ [n].
The block-wise decomposition (20) of UH−U∗ is the

starting point to establishing both Theorem 2 and Theorem 3.
Note that we have a mutual independence among {Ajk}k 6=i,
{Wjk}k 6=i, and U (j)H(j)−U∗ in the definitions of Fj1 and
Fj2, which is crucial to obtaining sharp bounds and tail
probabilities for them. Theorem 2 is proved by establishing
upper bounds for the operator norm of Bj , Fj1, Fj2, Gj1,
and Gj2. By further analyzing their tail bounds, we establish
Theorem 3. Among these terms, Gj2 is the one contributing
to the exponential error bound in Theorem 3, as we illustrate
in (16).

D. Approximate Clustering

Algorithm 1 involves a d-means clustering (7). There exists
an O(n(O(d2))) algorithm using a weighted Voronoi diagram
[20] that finds the globally optimal solution. In the case where
d is a constant, this algorithm enjoys polynomial time com-
plexity. However, this approach quickly becomes impractical
as d grows. In fact, solving the general d-means optimization
problem exactly is NP-hard [21], [22]. A practical solution is
to use an approximate algorithm which guarantees a (1+ε)-
optimal solution to (7) under a polynomial time constraint.
That is, let µ̌1, . . . , µ̌d ∈ Rd×1 and ž ∈ [d]nd denote a (1+ε)-
approximate solution. That is, they satisfy

nd∑
j=1

∥∥vj−µ̌žj∥∥2

≤ (1+ε) min
µ1,...,µd∈Rd×1

min
z∈[d]nd

nd∑
j=1

∥∥vj−µzj∥∥2
, (21)

Define an approximate anchor as

M̌ :=
(√
nµ̌>1 , . . . ,

√
nµ̌>d

)> ∈ Rd×d. (22)

We will refer to the anchor M used in Algorithm 1 as the exact
anchor. Using the randomized d-means algorithm of [23], we
obtain a (1+ε)-approximate solution to (7) in O(nd2(d/ε)O(1)

)
time, which can be considerably faster than the exact clustering
approach. We also emphasize that the third step of Algorithm
1 is agnostic of the anchor. Therefore, we simply replace M

Algorithm 2: Spectral method with approximate clus-
tering.

Input: Data matrix X ∈ Rnd×nd, approximation factor
ε > 0

Output: n permutation matrices Ž1, Ž2, . . . , Žn ∈ Πd

1 Obtain the top d eigenvectors of X as U ∈ Rnd×d;
2 Denote the rows of U as v1, . . . , vnd ∈ Rd×1. Run

(1+ε)-approximate d-means of clustering on
v1, . . . , vnd and denote µ̌1, . . . , µ̌d ∈ Rd×1 as the
approximate cluster centers which satisfy (21);

3 Compute for each j ∈ [n],

Žj := argmax
P∈Πd

〈
P,UjM̌

>〉, (23)

where M̌ is defined per (22).

by M̌ with no change to the remaining of the algorithm, as
shown in the following.

With a small additional assumption regarding (1+ε), in
Theorem 4, we show that the theoretical guarantee of the
modified spectral algorithm is the same as that of Algorithm
1. The additional assumption np

σ2d(1+ε) & 1 is due to the use
of the approximate anchor M̌ instead of the exact one M . The
proof of Theorem 4 is nearly identical to that of Theorem 3
with minor modifications.

Theorem 4. There exist constants Č1, Č2, Č3, Č4, Č5 > 0
such that if np

d2 logn > Č1, np
σ2d3 > Č2, np

log3 n
> Č3, and

np
σ2d ≥ Č4(1+ε), then the estimates Ž1, . . . , Žn of Algorithm
2 satisfy

E`(Ž, Z∗)

≤ exp

(
−

(
1−Č5

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
np

2σ2

)
+n−8.

IV. PROOFS

A. Preliminaries and Useful Inequalities

We first present a lemma which enumerates a number
of useful intermediate inequalities. Conditioned on certain
inequalities, the statements of many subsequent lemmas and
theorems hold deterministically. This allows us to present the
proofs of the lemmas and theorems in more intuitive ways.
The proof of Lemma 1 is deferred to a later section.

Lemma 1. There exist constants C ′0 > 0, C0 > 7 such that if
np

logn > C ′0, then the following event holds

E =

{
‖A−EA‖op ≤ C0

√
np,

‖(A⊗Jd)◦W‖op ≤ C0

√
npd,

max
j∈[n]

∣∣∣∣∣∣
∑
k 6=j

Ajk−np

∣∣∣∣∣∣ ≤ C0

√
np log n

}
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with probability at least 1−n−10. Under the event E , we have

max

{
‖X−(EA⊗Id)‖op,max

i∈[d]
|λi(X)−(n−1)p|,

max
d+1≤i≤nd

|λi(X)+p|

}
≤ C0

(
1+σ
√
d
)√

np, (24)

max
j∈[n]
‖Xj‖op ≤ p

√
n+C0

(
1+σ
√
d
)√

np. (25)

If np

(1+σ
√
d)2
≥ 64C2

0 is further assumed, under the event E ,
the following hold for Λ, U , and H:

‖Λ‖op = λ1(X) ≤ 9np

8
, (26)∥∥Λ−1

∥∥−1

op
= λd(X) ≥ 7np

8
, (27)

λd(X)−λd+1(X) ≥ 3np

4
, (28)

max

{
min
O∈Od

‖H−O‖op,‖UH−U
∗‖op,

∥∥UU>−U∗U∗>∥∥
op

}
≤

8C0

(
1+σ
√
d
)

7
√
np

, (29)

‖HΛ−ΛH‖op ≤ 2C0

(
1+σ
√
d
)√

np, (30)∥∥H−1
∥∥

op
≤ 4

3
, (31)

the following hold any j ∈ [n]:

‖Gj1‖op ≤
2C0√
n

(√
log n

np
+
σ
√
d

√
np

)
, (32)

‖Uj‖op ≤
4

3

(∥∥UjH−U∗j ∥∥op
+

1√
n

)
,

(33)∥∥∥U (j)(U (j))>−UU>
∥∥∥

op
≤ 6

(∥∥UjH−U∗j ∥∥op
+

1√
n

)
,

(34)∥∥∥U (j)H(j)−U∗
∥∥∥

op
≤ 9C0(1+σ

√
d)

√
np

, (35)∥∥∥U (j)H(j)−U∗(j)
∥∥∥

op,∞
≤ 7

(
‖UH−U∗‖op,∞+

1√
n

)
.

(36)

B. Proof of Proposition 1

We first state and prove a deterministic version of Propo-
sition 1. The proof of Proposition 1 follows from a simple
probabilistic argument.

Lemma 2. Assume that (29) holds. If np

(
√
d+σd)2

≥ 32C2
0 , we

have

min
P∈Πd

∥∥M−PH>∥∥
F
≤

4C0

(√
d+σd

)
√
np

. (37)

Proof. Note that∥∥U−U∗H>∥∥
op

=
∥∥UU>U−U∗U∗>U∥∥

op

≤
∥∥UU>−U∗U∗>∥∥

op
‖U‖op

≤
∥∥UU>−U∗U∗>∥∥

op
.

Since (29) holds, we have∥∥U−U∗H>∥∥
F
≤
√
d
∥∥U−U∗H>∥∥

op

≤
√
d

8C0

(
1+σ
√
d
)

7
√
np

.

Note that
√
nU∗ has only k unique rows e>1 , . . . , e

>
d and

each is of size n. Then
√
nU∗H> also has k unique rows

e>1 H
>, . . . , e>d H

> and each is of size n. From (29), there

exists a matrix O ∈ Od such that ‖H−O‖op ≤
8C0(1+σ

√
d)

7
√
np ≤

1
7 . Then

min
a,b∈[d]

∥∥(ea−eb)>H>
∥∥

≥ min
a,b∈[d]

∥∥(ea−eb)>
(
O>+(H−O)>

)∥∥
≥ min
a,b∈[d]

∥∥(ea−eb)>O>
∥∥−‖H−O‖op

≥
√

2− 1

7

>
6

5
.

That is, the minimum distance among the unique rows of
U∗H>, is at least 6

5
√
n

.
Let ẑ ∈ [d]nd be the minimizer of (7) with {µ̂1, . . . , µ̂d}.

Denote Θ̂ := (µ̂>ẑ1 , . . . , µ̂
>
ẑnd

)> ∈ Rnd×d. According to (7),

we have
∥∥∥Θ̂−U

∥∥∥
F
≤
∥∥U∗H>−U∥∥

F
. Hence,∥∥∥Θ̂−U∗H>

∥∥∥
F
≤
∥∥∥Θ̂−U

∥∥∥
F

+
∥∥U∗H>−U∥∥

F

≤ 2
∥∥U−U∗H>∥∥

F

≤
√
d

16C0

(
1+σ
√
d
)

7
√
np

. (38)

Define z∗ ∈ [d]nd such that the ith row of U∗H> is equal to
e>z∗i H

T /
√
n for each i ∈ [n]. Define the set S as

S :=

{
i ∈ [nd] :

∥∥∥µ̂ẑi−e>z∗i HT /
√
n
∥∥∥ > 3

5
√
n

}
.

Then we have

|S| ≤

∥∥∥Θ̂−U∗H>
∥∥∥2

F

( 3
5
√
n

)2
≤

(
4C0

(√
d+σd

))2

p
.

Under the assumption np

(
√
d+σd)2

≥ 32C2
0 , we have |S| ≤ n/2.

Then by the same argument as in the proof of Proposition
3.1 of [24], there exists a bijection φ : [d] → [d] such that
ẑi = φ(z∗i ) for all i /∈ S. Hence, for each a ∈ [d], we have∥∥µ̂φ(a)−e>aH>/

√
n
∥∥2

=

∑
i∈[nd]:ẑi=φ(a),z∗i =a

∥∥∥µ̂ẑi−e>z∗i H>∥∥∥2

|i ∈ [nd] : ẑi = φ(a), z∗i = a|
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≤

∑
i∈[nd]:ẑi=φ(a)

∥∥∥µ̂ẑi−e>z∗i H>∥∥∥2

n−|S|

≤

∑
i∈[nd]:ẑi=φ(a)

∥∥∥µ̂ẑi−e>z∗i H>∥∥∥2

n/2
.

Hence,

∑
a∈[d]

∥∥µ̂φ(a)−e>aH>/
√
n
∥∥2 ≤

∑
i∈[nd]

∥∥∥µ̂ẑi−e>z∗i H>∥∥∥2

n/2

=

∥∥∥Θ̂−U∗H>
∥∥∥2

F

n/2

≤

(
4C0

(√
d+σd

))2

n2p
.

That is, there exists a permutation matrix P such that

∥∥M−PH>∥∥2

F
≤

(
4C0

(√
d+σd

))2

np
,

since rows of M are
√
nµ̂1, . . . ,

√
nµ̂d.

Proof of Proposition 1. According to Lemma 1, there exist
constants C,C0 > 0 such that if np

logn > C and np

(1+σ
√
d)2
≥

64C2
0 , we have (29) hold with probability at least 1−n−10.

The proof is complete by Lemma 2.

The following lemma establishes the accuracy of the anchor
constructed using approximate clustering in Algorithm 2. It
serves as a counterpart of Lemma 2 and will be used in the
proof of Theorem 4. Its proof is nearly identical to that of
Lemma 2 with minor modifications.

Lemma 3. Assume that (29) holds. If np

(
√
d+σd)2

≥ 32(1+

ε)C2
0 , we have

min
P∈Πd

∥∥M̌−PH>∥∥
F
≤

4C0

√
1+ε

(√
d+σd

)
√
np

. (39)

Proof. We follow a similar argument to that in the proof of
Lemma 2. The difference starts from the derivation of (38).
Define Θ̌ =

(
µ̌>ž1 , . . . , µ̌

>
z̃nd

)>
to be the assigned centers given

by the approximate clustering algorithm. Then, by (21), we
have

∥∥Θ̌−U
∥∥2

F
≤ (1+ε)

∥∥U∗H>−U∥∥2

F
. Hence,∥∥Θ̌−U∗H>

∥∥
F
≤
√

1+ε
∥∥∥Θ̂−U

∥∥∥
F

+
∥∥U∗H>−U∥∥

F

≤ 2
√

1+ε
∥∥U−U∗H>∥∥

F

≤
√

1+ε
16C0

√
d
(

1+σ
√
d
)

7
√
np

.

The rest of the proof proceeds similarly, with a minor mod-
ification of the condition np

(
√
d+σd)

2 ≥ 32C2
0 to np

(
√
d+σd)

2 ≥
32C2

0 (1+ε).

C. Proof of Theorem 2

We first give a deterministic upper bound for
‖UjH−U∗j ‖op, using the decomposition (20).

Lemma 4. Assume (24)-(35) hold. Under the assumption
np

(1+σ
√
d)2
≥ 222C2

0 , for each j ∈ [n], we have

∥∥UjH−U∗j ∥∥op
≤ 22C0√

n

(
1+σ
√
d

√
np

)
+2‖Fj1‖op

+2‖Fj2‖op+2‖Gj1‖op+2‖Gj2‖op, (40)

and

‖Bj‖op ≤ 22C0

(
1+σ
√
d

√
np

)

×
(

1√
n

+‖Fj1‖op+‖Fj2‖op+‖Gj1‖op+‖Gj2‖op

)
.

(41)

Proof. Consider any j ∈ [n]. We have

‖Bj‖op

≤ ‖Uj‖op‖HΛ−ΛH‖op

∥∥Λ−1
∥∥

op

+‖Xj‖op

∥∥∥UU>−U (j)U (j)>
∥∥∥

op

∥∥Λ−1
∥∥

op

≤ 4

3

(∥∥UjH−U∗j ∥∥op
+

1√
n

)(
2C0

(
1+σ
√
d
)√

np
) 8

7np

+
(
p
√
n+C0

(
1+σ
√
d
)√

np
)

×
(

6

(∥∥UjH−U∗j ∥∥op
+

1√
n

))
8

7np

≤ 8

7np

(∥∥UjH−U∗j ∥∥op
+

1√
n

)
×
(

6p
√
n+

26

3
C0

(
1+σ
√
d
)√

np

)
≤ 11C0

(∥∥UjH−U∗j ∥∥op
+

1√
n

)(
1+σ
√
d

√
np

)
,

where the second inequality is by (24)-(35) and the last
inequality is by C0 > 7. From (20), we also have∥∥UjH−U∗j ∥∥op

≤ ‖Bj‖op+‖Fj1‖op+‖Fj2‖op

+‖Gj1‖op+‖Gj2‖op.

Plug the upper bound (41) of ‖Bj‖op into the above display.
After rearrangement, we have(

1−11C0

(
1+σ
√
d

√
np

))∥∥UjH−U∗j ∥∥op

≤ 11C0√
n

(
1+σ
√
d

√
np

)
+‖Fj1‖op+‖Fj2‖op

+‖Gj1‖op+‖Gj2‖op.

Under the assumption np

(1+σ
√
d)2
≥ 222C2

0 , we have

∥∥UjH−U∗j ∥∥op
≤ 22C0√

n

(
1+σ
√
d

√
np

)
+2‖Fj1‖op
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+2‖Fj2‖op+2‖Gj1‖op+2‖Gj2‖op.

Plugging it into the upper bound of ‖Bj‖op, we have

‖Bj‖op

≤ 11C0

((
22C0√
n

(
1+σ
√
d

√
np

)
+2‖Fj1‖op+2‖Fj2‖op

+2‖Gj1‖op+2‖Gj2‖op

)
+

1√
n

)(
1+σ
√
d

√
np

)

≤ 22C0

(
1√
n

+‖Fj1‖op+‖Fj2‖op+‖Gj1‖op

+‖Gj2‖op

)(
1+σ
√
d

√
np

)
.

a) Useful short-hand notations.: In our proofs, some
key quantities are repeated and some are lexicographically
cumbersome. In order to declutter the presentation, wherever
convenient without sacrificing clarity, we will use the follow-
ing shorthand notations. Define

∆ := UH−U∗ ∈ Rnd×d,
∆(j) := U (j)H(j)−U∗ ∈ Rnd×d,∀j ∈ [n], (42)

where H(j) = U (j)>U∗, such that block submatrices ∆k =
UkH−U∗k and ∆

(j)
k = U

(j)
k H(j)−U∗k for each j, k ∈ [n]. We

further introduce ‖·‖op,∞ norm such that

‖∆‖op,∞ := max
k∈[n]
‖∆k‖op,

∥∥∥∆(j)
∥∥∥

op,∞
:= max

k∈[n]

∥∥∥∆
(j)
k

∥∥∥
op
.

(43)

b) Helper Tail Bound Inequalities and Proof Sketch.: As
a preview, the terms ‖Fj1‖op, ‖Fj2‖op, ‖Gj1‖op and ‖Gj2‖op
in (40) and (41) can be bounded using the helper Lemma 5,
Lemma 6, Lemma 7 and Lemma 8 below. We defer the proof
of these helper lemmas to a later section. Note that all of
these inequalities require

∥∥∆(j)
∥∥

op,∞ which in turn can be
bounded in terms of ‖∆‖op,∞ using (36). The key strategy
is to construct an inequality in which ‖∆‖op,∞ appears on
both the left and the right side of the inequality. After some
manipulation and under appropriate assumptions, we reduce
this to an inequality where the left side of the inequality
consists of only ‖∆‖op,∞.

Lemma 5. For any j ∈ [n], both of the following tail bounds
hold for any t > 0.

P

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ p
√
n
∥∥∥∆(j)

∥∥∥
op

+t

∣∣∣∣∣∆(j)

 ≤ 2d

×exp

(
− t2/2

p
√
nd
∥∥∆(j)

∥∥
op

∥∥∆(j)
∥∥

op,∞+
∥∥∆(j)

∥∥
op,∞t/3

)
,

(44)

and

P

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ p
√
n
∥∥∥∆(j)

∥∥∥
op

+t

∣∣∣∣∣∆(j)



≤ 2d exp

− t2/2

np
∥∥∆(j)

∥∥2

op,∞+
∥∥∆(j)

∥∥
op,∞t/3

. (45)

Lemma 6. For any j ∈ [n], we have

P

∥∥∥∥∥∥
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥∥∥∥
op

≥ p
∥∥∥∆(j)

∥∥∥2

op
+t

∣∣∣∣∣∆(j)


≤ 2d exp

− t2/2

p
∥∥∆(j)

∥∥2

op,∞

∥∥∆(j)
∥∥2

op
+
∥∥∆(j)

∥∥2

op,∞t/3

,
for any t ≥ 0.

Lemma 7. There exists some constant c > 0, such that for

any t ≥ 4
√
d
∥∥∥∑k 6=j Ajk(∆

(j)
k )>∆

(j)
k

∥∥∥ 1
2

op
and for any j ∈ [n],

we have

P

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ t

∣∣∣∣∣{Ajk}k 6=j ,∆(j)


≤ 2 exp

− ct2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op

.
Lemma 8. [Corollary 7.3.3 of [25]] Let W be a d×d matrix
with independent N (0, 1) entries. Then there exists some
constant c > 0 such that for every t ≥ 0, we have

P
(
‖W‖op ≥ 2

√
d+t

)
≤ 2 exp

(
−ct2

)
.

We are now ready to prove Theorem 2.

Proof of Theorem 2. From Lemma 1, there exist constants
C ′0, C0 > 0 such that if np

logn > C ′0, then the event E holds with
probability at least 1−n−10. Assume E holds and np

(
√
d+σd)2

≥
222C2

0 . Then according to Lemma 1, we have (24)-(36) hold.
As a consequence, by Lemma 4, we have (40) hold as well.

Consider any j ∈ [n]. Note that (40) can be written as

‖∆j‖op ≤
22C0√
n

(
1+σ
√
d

√
np

)
+2‖Fj1‖op

+2‖Fj2‖op+2‖Gj1‖op+2‖Gj2‖op. (46)

Hence, to upper bound ‖∆j‖op, we need to study ‖Fj1‖op,
‖Fj2‖op, ‖Gj1‖op, and ‖Gj2‖op.

Bounding ‖Fj1‖op. By (45) of Lemma 5, the following holds
with probability at least 1−2dn−10∥∥∥∥∥∥

∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≤ p
√
n
∥∥∥∆(j)

∥∥∥
op

+
√

40np
∥∥∆(j)

∥∥2

op,∞ log n

+
40

3
log n

∥∥∥∆(j)
∥∥∥

op,∞

≤ p
√
n
∥∥∥∆(j)

∥∥∥
op
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+

(√
40np log n+

40

3
log n

)∥∥∥∆(j)
∥∥∥

op,∞
.

Then with (27), we have

‖Fj1‖op ≤

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

∥∥Λ−1
∥∥

op

≤ 8

7np

(
p
√
n
∥∥∥∆(j)

∥∥∥
op

+

(√
40np log n+

40

3
log n

)∥∥∥∆(j)
∥∥∥

op,∞

)
≤ C1√

n

∥∥∥∆(j)
∥∥∥

op
+C1

√
log n

np

∥∥∥∆(j)
∥∥∥

op,∞
, (47)

for some constant C1 > 0.

Bounding ‖Fj2‖op. By Lemma 7, we have∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≤ C2

√
log n

∥∥∥∥∥∥
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥∥∥∥
1
2

op

holds with probability at least 1−n−10 for some constant
C2 > 0. In addition, by Lemma 6, we have∥∥∥∥∥∥

∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥∥∥∥
op

≤ p
∥∥∥∆(j)

∥∥∥2

op
+
√

40p
∥∥∆(j)

∥∥2

op

∥∥∆(j)
∥∥2

op,∞ log n

+
40

3
log n

∥∥∥∆(j)
∥∥∥2

op,∞

≤ p
∥∥∥∆(j)

∥∥∥2

op
+
√

40np
∥∥∆(j)

∥∥4

op,∞ log n

+
40

3
log n

∥∥∥∆(j)
∥∥∥2

op,∞

≤ p
∥∥∥∆(j)

∥∥∥2

op
+

(√
40np log n+

40

3
log n

)∥∥∥∆(j)
∥∥∥2

op,∞

holds with probability at least 1−2dn−10. Then with (27), we
have

‖Fj2‖op

≤ σ

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

∥∥Λ−1
∥∥

op

≤ 8σ

7np
C2

√
log n

(
p
∥∥∥∆(j)

∥∥∥2

op

+

(√
40np log n+

40

3
log n

)∥∥∥∆(j)
∥∥∥2

op,∞

) 1
2

≤ 8σ

7np
C2

√
log n

(
√
p
∥∥∥∆(j)

∥∥∥
op

+

√√
40np log n+

40

3
log n

∥∥∥∆(j)
∥∥∥

op,∞

)

≤ C3σ√
n

√
log n

np

∥∥∥∆(j)
∥∥∥

op
+C3σ

(
log n

np

) 3
4 ∥∥∥∆(j)

∥∥∥
op,∞

,

(48)

for some constant C3 > 0.

For ‖Gj1‖, its upper bound is given in (32).

Bounding ‖Gj2‖op. By Lemma 8, using the fact that
{Ajk}k 6=j and {Wjk}k 6=j are independent, we have∥∥∥∥∥∥

∑
k 6=j

AjkWjk

∥∥∥∥∥∥
op

≤
√∑
k 6=j

Ajk

(
2
√
d+C4

√
log n

)
,

with probability at least 1−n−10, for some constant C4 > 0.
Then

‖Gj2‖op ≤
σ√
n

∥∥∥∥∥∥
∑
k 6=j

AjkWjk

∥∥∥∥∥∥
op

∥∥Λ−1
∥∥

op

≤ σ√
n

√∑
k 6=j

Ajk

(
2
√
d+C4

√
log n

)∥∥Λ−1
∥∥

op

≤ C5
σ√
n

(√
d

np
+

√
log n

np

)
, (49)

for some constant C5 > 0, where the last inequality is by E
and (27).

Putting things together. Plugging (47), (48), (32), and (49)
into (46), we have

‖∆j‖op ≤
22C0√
n

(
1+σ
√
d

√
np

)

+2

(
C1√
n

∥∥∥∆(j)
∥∥∥

op
+C1

√
log n

np

∥∥∥∆(j)
∥∥∥

op,∞

)

+2

(
C3σ√
n

√
log n

np

∥∥∥∆(j)
∥∥∥

op

+C3σ

(
log n

np

) 3
4 ∥∥∥∆(j)

∥∥∥
op,∞

)

+
4C0√
n

(√
log n

np
+
σ
√
d

√
np

)

+2C5
σ√
n

(√
d

np
+

√
log n

np

)

≤ 2√
n

(
C1+C3σ

√
log n

np

)∥∥∥∆(j)
∥∥∥

op

+2

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

)∥∥∥∆(j)
∥∥∥

op,∞

+
26C0+2C5√

n

√
log n+σ

√
d+σ

√
log n

√
np

.
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By (36) and (35), we can replace the terms
∥∥∆(j)

∥∥
op

,∥∥∆(j)
∥∥

op,∞ with their respective upper bounds and have

‖∆j‖op ≤
2√
n

(
C1+C3σ

√
log n

np

)
9C0(1+σ

√
d)

√
np

+14

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

)

×
(
‖∆‖op,∞+

1√
n

)
+

26C0+2C5√
n

√
log n+σ

√
d+σ

√
log n

√
np

.

By a union bound, with probability at least 1−6dn−9, the
above inequality holds for all j ∈ [n]. Then

‖∆‖op,∞ ≤
2√
n

(
C1+C3σ

√
log n

np

)
9C0(1+σ

√
d)

√
np

+14

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

)

×
(
‖∆‖op,∞+

1√
n

)
+

26C0+2C5√
n

√
log n+σ

√
d+σ

√
log n

√
np

.

After a rearrangement so that ‖∆‖op,∞ only appears on the
left side, we have(

1−14

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

))
‖∆‖op,∞

≤ 2√
n

(
C1+C3σ

√
log n

np

)
9C0(1+σ

√
d)

√
np

+
14√
n

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

)

+
26C0+2C5√

n

√
log n+σ

√
d+σ

√
log n

√
np

.

Then, there exists a constant C > 0 such that if
np

(σ4/3∨1) logn
> C, we have

14

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

)
≤ 1

2
.

Consequently, we have

‖∆‖op,∞ ≤
4√
n

(
C1+C3σ

√
log n

np

)
9C0(1+σ

√
d)

√
np

+
28√
n

(
C1

√
log n

np
+C3σ

(
log n

np

) 3
4

)

+
52C0+4C5√

n

√
log n+σ

√
d+σ

√
log n

√
np

≤ C6√
n

(√
log n

np
+
σ
√
d

√
np

+
σ
√

log n
√
np

)
,

for some constant C6 > 0.

D. Proofs of Theorem 3 and Theorem 4

For the proof of Theorem 3, we start with a proof sketch in
Section IV-D1. This sketch illustrates that the proof can be di-
vided into four distinct steps. Subsequent detailed discussions
of each step are elaborated upon in four separate sections, from
Section IV-D2 to Section IV-D5, with each section dedicated to
one specific step of the proof. Following these, Section IV-D6
presents the proof of Theorem 4.

1) Proof Sketch: In the previous section, the proof of
Theorem 2 boils down to obtaining the operator norm bound
on the terms Bj , Fj1, Fj2, Gj1, Gj2. In the proof of Theorem
3, we go further by showing an exponential tail bound on the
operator norm of these terms.

The proof of Theorem 3 is quite involved but can be broken
down into the following key steps:

Step 1. Let F (to be defined in (53)) be a high-probability event
such that the expected value of the normalized Hamming loss
E`(Ẑ, Z∗) ≈ E`(Ẑ, Z∗)I{F}. We first show an upper bound
on E`(Ẑ, Z∗)I{F} as a sum of n terms, one for each block
of U :

E`(Ẑ, Z∗)I{F} ≤ 1

n

∑
j∈[n]

∑
R∈Πd:R 6=Id

EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F},

(50)

where we recall the definition P̂ :=
argminP∈Πd

∥∥M−PH>∥∥
F

. To understand it, note that
each Ẑj is obtained by finding a permutation matrix closest
to UjM

> as in (6). If
√
nU∗j P̂

> is the closest permutation
matrix to UjM>, which can equivalently be stated as∥∥∥UjM>−U∗j P̂>∥∥∥

F
<

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

, (51)

∀R ∈ Πd s.t. R 6= Id, then according to (10), Ẑj =√
nU∗j P̂

> = P̂>. If the event (51) holds for all j ∈ [n],
then all Ẑj are P̂>, and consequently Ẑ is equal to Z∗ up to
a global permutation P̂>. Hence, the distance between Ẑ and
Z∗ essentially depends on the number of j ∈ [n] for which
(51) is not satisfied, which can be further upper bounded and
leads to (50).

Step 2. From (51), upper bounding E`(Ẑ, Z∗)I{F} is about
upper bounding each individual term on its right-hand side. It
turn out each error term can be further decomposed into four
tail probabilities. Consider any j ∈ [n] and any R ∈ Πd such
that R 6= Id, we are able to show

EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}

≤ a tail probability of ‖Fj1‖op

+ a tail probability of ‖Fj2‖op
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+ a tail probability of ‖Gj2‖op

+ a tail probability of

〈∑
k 6=j

AjkWjk, R−Id

〉
. (52)

This step is summarized in Lemma 9 and explicit expressions
of tail probabilities are shown in (57). Among the four tail
probabilities, the last one that involves

∑
k 6=j AjkWjk will

lead to the exponential error rate. There is a variable ρ that
trade-offs the contributions between the four terms which will
be determined in the last step.

Step 3. In this step, we leverage Lemma 5-8 to obtain expo-
nential bound on each of the four tail probabilities of (52).
Despite ‖Fj1‖op, ‖Fj2‖op, and ‖Gj2‖op have been analyzed
in the proof of Theorem 2, results established there can not
directly applied here. In fact, to derive sharp tail bounds here,
we need leverage the obtained blockwise maximum deviation
in Theorem 2. The final tail bounds are given in (64), (66),
(69), and (71), respectively.

Step 4. In the last step, we combine the four upper bounds in
Step 3 to obtain a tight upper bound on (52), and consequently
on E`(Ẑ, Z∗)I{F}. At this point, we will select the variable
ρ introduced in Step 2 to ensure the tail probability involving∑
k 6=j AjkWjk dominates the other three, and consequently

the final error bound matches the desired form.
2) Step 1. Decomposition of The Hamming Loss: From

Lemma 1, there exist constants C ′0, C0 > 0 such that if np
logn >

C ′0, then the event E holds with probability at least 1−n−10.
By Theorem 2, there exist some constants C,C ′, C ′′ > 0 such
that if np

(σ4/3∨1) logn
> C and np

(
√
d+σd)2

≥ C ′, we have (15)
holds with probability at least 1−6dn−9. Denote F to be the
event that both E and (15) hold. That is,

F := {E , (15) holds} . (53)

By union bound, we have

P(F) ≥ 1−7dn−9. (54)

Assume F holds and np

(
√
d+σd)2

≥ 222C2
0 . Then according

to Lemma 1, we have (24)-(36) hold. As a consequence, by
Lemma 4 and Lemma 2, we have (40)-(41) and (37) all hold
as well. Note that

E`(Ẑ, Z∗) ≤ E`(Ẑ, Z∗)I{F}+P(Fc)

≤ E`(Ẑ, Z∗)I{F}+7dn−9 . (55)

We will later show that the 7dn−9 is dominated by
E`(Ẑ, Z∗)I{F}. Define

P̂ := argmin
P∈Πd

∥∥M−PH>∥∥
F
.

Since we let Z∗j = Id for all j ∈ [n], we have

E`(Ẑ, Z∗)I{F}

≤ E

 1

n

∑
j∈[n]

I
{
Ẑj 6= Z∗j P̂

>
}
I{F}



=
1

n

∑
j∈[n]

EI
{
Ẑj 6= Z∗j P̂

>
}
I{F}

≤ 1

n

∑
j∈[n]

EI

{
∃R ∈ Πd s.t. R 6= Id and

∥∥∥√nUjM>−RP̂>∥∥∥2

F
≤
∥∥∥√nUjM>−Z∗j P̂>∥∥∥2

F

}
I{F}

=
1

n

∑
j∈[n]

EI

{
∃R ∈ Πd s.t. R 6= Id and

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

2

F

≤
∥∥∥UjM>−U∗j P̂>∥∥∥2

F

}
I{F}.

It can be further upper bounded by

E`(Ẑ, Z∗)I{F}

≤ 1

n

∑
j∈[n]

∑
R∈Πd:R 6=Id

EI


∥∥∥∥∥UjM>−RP̂>√n

∥∥∥∥∥
2

F

≤
∥∥∥UjM>−U∗j P̂>∥∥∥2

F

I{F}

=
1

n

∑
j∈[n]

∑
R∈Πd:R 6=Id

EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F},

(56)

where the second inequity is by the definition of Ẑj in (6) and
the second equation is by that we let Z∗j = Id.

3) Step 2. Decomposition of Each Individual Error:
The reader can see that the key to obtaining our fi-
nal error bound is to obtain a tight upper bound on
(56), which is all about analyzing each individual er-
ror EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥
∥∥∥UjM>−RP̂>√

n

∥∥∥
F

}
I{F}. The

next step is the following inequality which shows an upper
bound on it consists in four terms. Note that we introduce a ρ
parameter which trades off the contribution among the three
terms. ρ will be carefully chosen in the third step. Recall the
decomposition (20).

Lemma 9. Consider any j ∈ [n] and any R ∈ Πd such that
R 6= Id. Define

hR := ‖R−Id‖2F/2.

Suppose that (32), (33), (37), (41), and np

(1+σ
√
d)2
≥ 222C2

0

hold. Then there exists some C2 > 0 such that for any ρ > 0,
the following inequality holds deterministically:

EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}

≤ EI
{

4
√

2dhR‖Fj1‖op ≥ ρ
hR√
n

}
I{F}

+EI
{

4
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F}
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+EI

{
46C0

(
1+σ
√
d

√
np

)√
2dhR‖Gj2‖op ≥ ρ

hR√
n

}
I{F}

+EI

{
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
≥(

1−3ρ−C2

√
d

(√
log n+σ

√
d

√
np

))
hR√
n

}
I{F}. (57)

Proof. By the definition of hR, we have 2 ≤ hR ≤ d. We
have

I

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}

= I

{〈
UjM

>−U∗j P̂>,
RP̂>√
n
−U∗j P̂>

〉

≥ 1

2

∥∥∥∥∥RP̂>√n −U∗j P̂>
∥∥∥∥∥

2

F

}
I{F}

= I

{〈
UjM

>P̂−U∗j ,
R√
n
−U∗j

〉

≥ 1

2

∥∥∥∥ R√n−U∗j
∥∥∥∥2

F

}
I{F}

= I
{〈

UjM
>P̂−U∗j , R−Id

〉
≥ hR√

n

}
I{F}

= I

{〈
UjH−U∗j , R−Id

〉
+

〈
Uj

(
M−P̂H>

)>
P̂ , R−Id

〉
≥ hR√

n

}
I{F}. (58)

We have to obtain a more refined decomposition of both
inner products in (58). For the second inner product of (58)
we have〈

Uj

(
M−P̂H>

)>
P̂ , R−Id

〉
≤
∥∥∥∥Uj(M−P̂H>)>∥∥∥∥

F

‖R−Id‖F

≤ ‖Uj‖op

∥∥∥M−P̂H>∥∥∥
F
‖R−Id‖F

≤ 4

3

(∥∥UjH−U∗j ∥∥op
+

1√
n

)4C0

(√
d+σd

)
√
np

√2hR

≤ 4

3

(
‖Bj‖op+‖Fj1‖op+‖Fj2‖op+‖Gj1‖op+‖Gj2‖op

+
1√
n

)4C0

(√
d+σd

)
√
np

√2hR, (59)

where the third inequality is by (33) and (37) and the fourth
inequality is by (20).

For the first inner product of (58), by (20), we have〈
UjH−U∗j , R−Id

〉
= 〈Bj+Fj1+Fj2+Gj1, R−Id〉+〈Gj2, R−Id〉
≤ ‖Bj+Fj1+Fj2+Gj1‖F‖R−Id‖F+〈Gj2, R−Id〉

≤
√
d‖Bj+Fj1+Fj2+Gj1‖op

√
2hR+〈Gj2, R−Id〉

≤
(
‖Bj‖op+‖Fj1‖op+‖Fj2‖op+‖Gj1‖op

)√
2dhR

+〈Gj2, R−Id〉.

From (41), since np

(1+σ
√
d)2
≥ 222C2

0 , we have

‖Bj‖op ≤
22C0√
n

(
1+σ
√
d

√
np

)
+‖Fj1‖op+‖Fj2‖op

+‖Gj1‖op+22C0

(
1+σ
√
d

√
np

)
‖Gj2‖op. (60)

The reader can see that thanks to this upper bound, we
only have to contend with establishing upper bounds on the
operator norm of Fj1, Fj2, Gj1, Gj2. From the above three
displays, we proceed with a series of inequalities where we
use the established upper bound results obtained previously
to obtain an upper bound that can be written in terms of
‖Fj1‖op, ‖Fj2‖op, ‖Gj1‖op and 〈Gj2, R−Id〉.〈

UjH−U∗j , R−Id
〉
+

〈
Uj

(
M−P̂H>

)>
P̂ , R−Id

〉
≤

(
1+

16C0(1+σ
√
d)

3
√
np

)
×
(
‖Bj‖op+‖Fj1‖op+‖Fj2‖op+‖Gj1‖op

)√
2dhR

+
16C0(1+σ

√
d)

3
√
np

√
2dhR‖Gj2‖op+〈Gj2, R−Id〉

+
16C0(1+σ

√
d)

3
√
np

√
2dhR√
n

≤ 2

(
1+

16C0(1+σ
√
d)

3
√
np

)
×
(
‖Fj1‖op+‖Fj2‖op+‖Gj1‖op

)√
2dhR

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
22C0

(
1+σ
√
d

√
np

)
×‖Gj2‖op

√
2dhR+〈Gj2, R−Id〉

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
22C0

(
1+σ
√
d

√
np

)√
2dhR√
n

.

where the second inequality is by the upper bound on ‖Bj‖op
from (60). We then have〈

UjH−U∗j , R−Id
〉
+

〈
Uj

(
M−P̂H>

)>
P̂ , R−Id

〉
≤ 2

(
1+

16C0(1+σ
√
d)

3
√
np

)(
‖Fj1‖op+‖Fj2‖op

)√
2dhR

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
22C0

(
1+σ
√
d

√
np

)
×‖Gj2‖op

√
2dhR+〈Gj2, R−Id〉

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
22C0

(
1+σ
√
d

√
np

)√
2dhR√
n
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(
1+

16C0(1+σ
√
d)

3
√
np

)
C0

(√
log n+σ

√
d

√
np

)

×
√

2dhR√
n

≤ 2

(
1+

16C0(1+σ
√
d)

3
√
np

)(
‖Fj1‖op+‖Fj2‖op

)√
2dhR

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
22C0

(
1+σ
√
d

√
np

)
×‖Gj2‖op

√
2dhR+〈Gj2, R−Id〉

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
26C0

(√
log n+σ

√
d

√
np

)

×
√

2dhR√
n

,

where the first inequality is by the upper bound on ‖Gj1‖op
in (32) and the last inequality is obtained by combining the
two terms containing

√
2dhR√
n

.
In addition to ‖Fj1‖op, ‖Fj2‖op, and ‖Gj1‖op, the above

display involves 〈Gj2, R−Id〉 which must be analyzed closely
in order to achieve the optimal error bound. Note the following
decomposition.

〈Gj2, R−Id〉

=
σ√
n

〈∑
k 6=j

AjkWjkΛ−1, R−Id

〉

=
σ√
n

〈∑
k 6=j

AjkWjk
1

np
,R−Id

〉

+
σ√
n

〈∑
k 6=j

AjkWjk

(
Λ−1− 1

np
Id

)
, R−Id

〉

=
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉

+
σ√
n

〈∑
k 6=j

AjkWjkΛ−1(npId−Λ)
1

np
,R−Id

〉

=
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉

+
1

np
〈Gj2(npId−Λ), R−Id〉.

It can be further upper bounded by

〈Gj2, R−Id〉

≤ σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉

+

√
d

np
‖Gj2(npId−Λ)‖op‖R−Id‖F

≤ σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉

+

√
d

np
‖Gj2‖op max

i∈[n]
|λi(X)−np|

√
2hR

≤ σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉

+
C0

√
2dhR(1+σ

√
d)

√
np

‖Gj2‖op.

Hence, plugging the above inequality into the display for〈
UjH−U∗j , R−Id

〉
+

〈
Uj

(
M−P̂H>

)>
P̂ , R−Id

〉
gives

〈
UjH−U∗j , R−Id

〉
+

〈
Uj

(
M−P̂H>

)>
P̂ , R−Id

〉
≤ 2

(
1+

16C0(1+σ
√
d)

3
√
np

)(
‖Fj1‖op+‖Fj2‖op

)√
2dhR

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
23C0

(
1+σ
√
d

√
np

)
×‖Gj2‖op

√
2dhR

+

(
41

33
+

16C0(1+σ
√
d)

3
√
np

)
26C0

(√
log n+σ

√
d

√
np

)

×
√

2dhR√
n

+
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
≤ 4
(
‖Fj1‖op+‖Fj2‖op

)√
2dhR

+46C0

(
1+σ
√
d

√
np

)
‖Gj2‖op

√
2dhR

+52C0

(√
log n+σ

√
d

√
np

)√
2dhR√
n

+
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
, (61)

where the last inequality holds when
√
np

1+σ
√
d
> 176

25 C0.
As a result, by (61), (58) becomes

I

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}

≤ I

{
4
√

2dhR

(
‖Fj1‖op+‖Fj2‖op

)
+46C0

(
1+σ
√
d

√
np

)√
2dhR‖Gj2‖op

+
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
≥(

1−C2

√
d

(√
log n+σ

√
d

√
np

))
hR√
n

}
I{F},

for some constant C2 > 0. Let ρ > 0 be some quantity whose
value will be determined later. We have

I

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}
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≤ I
{

4
√

2dhR‖Fj1‖op ≥ ρ
hR√
n

}
I{F}

+I
{

4
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F}

+I

{
46C0

(
1+σ
√
d

√
np

)√
2dhR‖Gj2‖op ≥ ρ

hR√
n

}
I{F}

+I

{
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
≥(

1−3ρ−C2

√
d

(√
log n+σ

√
d

√
np

))
hR√
n

}
I{F}.

Taking expected values on both sides, we complete the proof.

4) Step 3. Bounding The Four Tail Probabilities: In the
following, we are going to establish upper bounds for each
of the four tail probabilities in (57). Recall the definitions of
∆,∆(j) in (42) and those of ‖∆‖op,∞,

∥∥∆(j)
∥∥

op,∞ in (43).
For the first term in (57), by (27), we have

EI
{

4
√

2dhR‖Fj1‖op ≥ ρ
hR√
n

}
I{F}

≤ EI

4
√

2dhR

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

∥∥Λ−1
∥∥

op
≥ ρ hR√

n

I{F}

≤ EI

32
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

I{F}.

Define an event

Fj :=

I

{∥∥∥∆(j)
∥∥∥

op
≤ 9C0(1+σ

√
d)

√
np

,
∥∥∥∆(j)

∥∥∥
op,∞

≤

7

(
C ′′√
n

(√
log n

np
+
σ
√
d

√
np

+
σ
√

log n
√
np

)
+

1√
n

)}
.

Note that the upper bound for
∥∥∆(j)

∥∥
op,∞ in Fj is a direct

consequence of (36) and (15). Together with (35), we have
F ⊂ Fj . The event Fj has an equivalent expression. Define
a set

Y :=

{
Y = (Y >1 , Y >2 , . . . , Y >n )> ∈ Rnd×d :

‖Y ‖op ≤
9C0(1+σ

√
d)

√
np

,max
i∈[n]
‖Yi‖op ≤

7

(
C ′′√
n

(√
log n

np
+
σ
√
d

√
np

+
σ
√

log n
√
np

)
+

1√
n

)}
.

Then Fj = I
{

∆(j) ∈ Y
}

. Using that ∆(j) is independent of
{Ajk}k 6=j , we have

EI
{

4
√

2dhR‖Fj1‖op ≥ ρ
hR√
n

}
I{F}

≤ EI

32
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

I{Fj}

= P

32
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n
,Fj


= E

P

32
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
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≥ ρ hR√
n
,Fj

∣∣∣∣∣∆(j)


= E

(
P

32
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

∣∣∣∣∣∆(j)


×I
{

∆(j) ∈ Fj
})

≤ sup
∆(j)∈Y

P

32
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

∣∣∣∣∣∆(j)


≤ sup

∆(j)∈Y
P

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ7
√
np

32
√
d

∣∣∣∣∣∆(j)

, (62)

where in the last inequality, we use the fact that hR ≥ 2.
Assume ρ satisfies

ρ
7
√
np

64
√
d
≥ 9C0(1+σ

√
d)
√
dp . (63)

Then by Lemma 5, we have

EI
{

4
√

2dhR‖Fj1‖op ≥ ρ
hR√
n

}
I{F}

≤ sup
∆(j)∈Y

P

(∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥

p
√
n
∥∥∥∆(j)

∥∥∥
op

+ρ
7
√
np

64
√
d

∣∣∣∣∣∆(j)

)

≤ 2d sup
∆(j)∈Y

exp

(
− 1

2

(
ρ

7
√
np

64
√
d

)2(
p
√
nd

×
∥∥∥∆(j)

∥∥∥
op

∥∥∥∆(j)
∥∥∥

op,∞
+ρ

7
√
np

32
√
d

∥∥∥∆(j)
∥∥∥

op,∞

1

3

)−1
)

≤ 2d sup
∆(j)∈Y

exp

−3

8

ρ 7
√
np

64
√
d∥∥∆(j)

∥∥
op,∞


≤ 2d exp

(
− 3

512
ρ
√
np

(√
d×(

C ′′√
n

(√
log n

np
+
σ
√
d

√
np

+
σ
√

log n
√
np

)
+

1√
n

))−1
)
, (64)

where in the first and third inequality, we have used (63) and
the upper bound on

∥∥∆(j)
∥∥

op
per Y , and in the last inequality,

we have used the upper bound on
∥∥∆(j)

∥∥
op,∞ per Y .

For the second term in (57), by (27), we have

EI
{

4
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F}
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≤ EI

4σ
√

2dhR

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

∥∥Λ−1
∥∥

op
≥ ρ hR√

n


×I{F}

≤ EI

32σ
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

I{F}

≤ EI

32σ
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

I{Fj}.

By the independence among {Ajk}k 6=j , {Wjk}k 6=j , and ∆(j),
following the same argument as used in (62), we have

EI
{

4
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F}

= E

(
P

(
32σ
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n
,Fj

∣∣∣∣∣{Ajk}k 6=j ,∆(j)

))

= E

(
P

(
32σ
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

∣∣∣∣∣{Ajk}k 6=j ,∆(j)

)
I
{

∆(j) ∈ Fj
})

≤ E

(
P

(
32σ
√

2dhR
7np

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ ρ hR√
n

∣∣∣∣∣{Ajk}k 6=j ,∆(j)

)
I
{

∆(j) ∈ Fj
})

≤ E

(
P

(∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
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≥ ρ 7
√
np

32σ
√
d

∣∣∣∣∣{Ajk}k 6=j ,∆(j)

)
I
{

∆(j) ∈ Fj
})

≤ E

((
2 exp

− c
(
ρ 7
√
np

32σ
√
d

)2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op



+I


ρ 7
√
np

32σ
√
d∥∥∥∑k 6=j Ajk(∆

(j)
k )>∆

(j)
k

∥∥∥ 1
2

op

< 4
√
d


)

×I
{

∆(j) ∈ Fj
})

,

for some constant c > 0, where the second to last inequality
is by the fact that hR ≥ 2 and the last inequality is by Lemma
7. Since

exp

− c
(
ρ 7
√
np

32σ
√
d

)2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op

 ≤ exp
(
−np
σ2

)

+I


c
(
ρ 7
√
np

32σ
√
d

)2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op

≤ np

σ2

,
we have

EI
{

2
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F}

≤ E

((
2 exp

(
−np
σ2

)

+3I


(
ρ 7
√
np

32σ
√
d

)2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op

≤ np

cσ2
∧16d


)

×I
{

∆(j) ∈ Fj
})

≤ 2 exp
(
−np
σ2

)
+3EI


(
ρ 7
√
np

32σ
√
d

)2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op

≤ np

cσ2


×I
{

∆(j) ∈ Fj
}
,

where the last inequality holds as long as np
σ2d ≥ 16c. Then

characterizing the above display is about controlling the tail
probabilities of ‖

∑
k 6=j Ajk(∆

(j)
k )>∆

(j)
k ‖op. Similar to the

establishment of (62), we have

EI
{

4
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F} ≤ 2 exp

(
−np
σ2

)
+3 sup

∆(j)∈Y
P

∥∥∥∥∥∥
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥∥∥∥
op

≥ 72ρ2cp

322d

∣∣∣∣∣∆(j)

.
Assume ρ satisfies

1

2

72ρ2cp

322d
≥ p

(
9C0(1+σ

√
d)

√
np

)2

. (65)

By Lemma 6, we have

EI
{

4
√

2dhR‖Fj2‖op ≥ ρ
hR√
n

}
I{F}

≤ 2 exp
(
−np
σ2

)
+6d sup

∆(j)∈Y
exp

(∥∥∥∥∥∥
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥∥∥∥
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∥∥∥∆(j)

∥∥∥2
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+

1

2

72ρ2cp

322d

)
≤ 2 exp

(
−np
σ2

)
+6d sup

∆(j)∈Y
exp

(
− 1

2

(
1

2

72ρ2cp

322d

)2(
p
∥∥∥∆(j)

∥∥∥2

op,∞

×
∥∥∥∆(j)

∥∥∥2

op
+
∥∥∥∆(j)

∥∥∥2

op,∞

1

2

72ρ2cp

162d

1

3

)−1
)
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≤ 2 exp
(
−np
σ2

)
+6d sup

∆(j)∈Y
exp

−3

8

1
2

72ρ2cp
322d∥∥∆(j)
∥∥2

op,∞


≤ 2 exp

(
−np
σ2

)
+6d exp

(
− 3

8
× 1

2

72ρ2cp

322d

(
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(
C ′′√
n

(√
log n

np

+
σ
√
d

√
np

+
σ
√

log n
√
np

)+
1√
n

)2

)−1

)
≤ 2 exp

(
−np
σ2

)
+6d exp

(
− 3c

16×322

(
ρ
√
p

(
√
d

(
C ′′√
n

(√
log n

np

+
σ
√
d

√
np

+
σ
√

log n
√
np

)
+

1√
n

))−1)2)
. (66)

For the third term in (57), using (27) and the fact that
hR ≥ 2, we have

EI

{
46C0

(
1+σ
√
d

√
np

)√
2dhR‖Gj2‖op ≥ ρ

hR√
n

}
I{F}

≤ EI

{
46C0

(
1+σ
√
d

√
np

)√
2dhR

σ√
n

∥∥Λ−1
∥∥

op

×

∥∥∥∥∥∥
∑
k 6=j

AjkWjk

∥∥∥∥∥∥
op

≥ ρ hR√
n

}

≤ EI


∥∥∥∥∥∥
∑
k 6=j

AjkWjk

∥∥∥∥∥∥
op

≥ 7

8×46C0

√
d
(

1+σ
√
d√

np

) ρnp
σ


= E

(
P

(∥∥∥∥∥∥
∑
k 6=j

AjkWjk

∥∥∥∥∥∥
op

≥

7

8×46C0

√
d
(

1+σ
√
d√

np

) ρnp
σ

∣∣∣∣∣{Ajk}k 6=j
))

.

By the independence between {Ajk}k 6=j and {Wjk}k 6=j , we
have

∑
k 6=j AjkWjk|{Ajk}k 6=j

d
=
√
{Ajk}k 6=jξ for some ξ ∼

MN (0, Id, Id) that is independent of {Ajk}k 6=j Using Lemma
8, we have

EI

{
46C0

(
1+σ
√
d

√
np

)√
2dhR‖Gj2‖op ≥ ρ

hR√
n

}
I{F}

≤ E

(
2 exp

(
−c

1

2

7

8×46C0

√
d
(

1+σ
√
d√

np

) ρnp
σ

2

× 1∑
k 6=j Ajk

)
+I

{
1

2

7

8×46C0

√
d
(

1+σ
√
d√

np

) ρnp
σ

× 1√∑
k 6=j Ajk

< 2
√
d

})
,

for some constant c′ > 0. Note that by Bernstein’s inequality,
there exists some constant C3 > 0 such that

P

∑
k 6=j

Ajk ≥ np+C3

√
np log n

 ≤ n−10. (67)

We assume np
logn ≥ C2

3 such that 2np ≥ np+C3

√
np log n

and consequently P
(∑

k 6=j Ajk ≥ 2np
)
≤ n−10. Assume ρ

satisfies

1√
2np

1

2

7

8×46C0

√
d
(

1+σ
√
d√
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) ρnp
σ

 ≥ (c′)−
1
2 ∨
(

2
√
d
)
.

(68)

We have

EI

{
46C0

(
1+σ
√
d

√
np

)√
2dhR‖Gj2‖op ≥ ρ

hR√
n

}
I{F}

≤ 2 exp
(
−np
σ2

)
+2P

∑
k 6=j

Ajk ≥ 2np


≤ 2 exp

(
−np
σ2

)
+2n−10. (69)

For the fourth and last term in (57), by prop-
erties of the Gaussian distribution, one can verify that〈∑

k 6=j AjkWjk, R−Id
〉∣∣∣{Ajk}k 6=j ∼ N (0, 4

∑
k 6=j Ajk).

Assume ρ satisfies

3ρ+C2

√
d

(√
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√
d

√
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)
≤ 1

2
. (70)

By the fact hR ≥ 2, we then have
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√
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× (np)2
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√
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+P

∑
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+
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(
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np

2σ2

)
+n−10, (71)

where the last inequality is by (67).
5) Step 4. Selecting ρ and Putting Things Together:

Plugging (64), (66), (69), and (71) into (57), we have
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. (72)

We will now pick ρ such that we can substantially simplify

the exponential terms. Specifically, we let ρ =
(
σ2d3

np

) 1
4

+(
d2 logn
np

) 1
4

. Suppose that np
d2 logn ,

np
σ2d3 ≥ C3 for some large

enough constant C3 > 0, we can make sure that conditions
(63), (65), (68), and (70) are all satisfied. Next, we are going
to show that with this choice of ρ, the last two terms in (72)
are small. We can show the exponent in the second to last
term is bounded below by log n, up to a constant factor, as
follows.

log n
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(
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√
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√
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np + C′′σ√
np+1

)
≥ 10 log n.

In the first line, we simply multiply and divide the same
quantity by log n. The second and third lines are by expanding
and re-arranging the terms. In the second inequality, we

use ρ ≥
(
d2 logn
np

) 1
4

. The last inequality holds so long as
np

d logn ,
np

log5/3 n
, npσ2d ≥ C

′
3 for some sufficiently large constant

C ′3.
Similarly, we can also simplify the term inside the square

root of the last term in (72) as
√

log n√
log n

·
√

3c

4×32

·
ρ
√
p

√
d
(
C′′√
n

(√
logn
np + σ

√
d√
np+ σ

√
logn√
np

)
+ 1√

n

)
=
√

log n·
√

3c

4×32

· ρ
√
d logn√
np

(
C ′′
√

logn
np +C ′′ σ

√
d√
np+C ′′ σ

√
logn√
np +1

)
≥
√

log n·
√

3c

4×32

· ρ
√
d logn√
np

(
C ′′
√

logn
np +C ′′ σ

√
d√
np+C ′′ σ√

np+1
)

≥
√

log n·
√

3c

4×32

·

(
d2 logn
np

) 1
4

√
d logn√
np

(
C ′′
√

logn
np +C ′′ σ

√
d√
np+C ′′ σ√

np+1
)

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3545377

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2025 at 03:25:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ?, NO. ?, ? 20

≥
√

log n·
√

3c

4×32

· 1

(logn)3/4

(np)1/4

(
C ′′
√

logn
np +C ′′ σ

√
d√
np+C ′′ σ√

np+1
)

≥
√

10
√

log n.

In the first line, we multiply and divide the same quan-
tity by

√
log n. The last inequality holds so long as

np
d logn ,

np
log3 n

, npσ2d ≥ C ′′3 for some sufficiently large constant
C ′′3 .

Putting things together into (72), we have

EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}

≤ exp

(
−

(
1−3

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

)

−C2

√
d

(√
log n+σ

√
d

√
np

))2

+

×

(
1+C3

√
log n

np

)−1

np

2σ2

)
+4 exp

(
−np
σ2

)
+3n−10

+2d exp(−10 log n)+6d exp(−10 log n)︸ ︷︷ ︸
≤9dn−10

,

By combining the two exponential terms together and the three
polynomial terms together, we see that there exists a constant
C4 > 0 such that

EI

{∥∥∥UjM>−U∗j P̂>∥∥∥
F
≥

∥∥∥∥∥UjM>−RP̂>√n
∥∥∥∥∥

F

}
I{F}

≤ exp

(
−

(
1−C4

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
+

np

2σ2

)
+12dn−10. (73)

Combining (54), (55), (56) and (73) we have

E`(Ẑ, Z∗)

≤ 1

n

∑
j∈[n]

∑
R∈Πd:R 6=Id

(
exp

(
−

(
1−C4

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
+

np

2σ2

)
+12dn−10

)
+P(Fc)

≤ dd
(

exp

(
−

(
1−C4

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
+

np

2σ2

)
+12dn−10

)
+7dn−9

≤ exp

(
−

(
1−C5

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
+

np

2σ2

)
+8dn−9

≤ exp

(
−

(
1−C5

((
σ2d3

np

) 1
4

+

(
d2 log n

np

) 1
4

))
np

2σ2
)+8dn−9,

for some constant C5 > 0, where the last inequality holds
when np

σ2d3 ,
np

d2 logn exceed a sufficiently large constant. The
proof of Theorem 3 is complete.

6) Proof of Theorem 4.: The proof closely parallels that of
Theorem 3, with substitutions where Ẑ and M are replaced by
Ž and M̌ , respectively, and incorporates two minor modifica-
tions. Firstly, it is important to note that the error in the anchor
affects only the second inner product in (58). Specifically, this
influence introduces an additional factor of (1+ε), leading to
a modified formulation in (59) for the scenario involving M̌ :〈

Uj

(
M̌−P̂H>

)>
P̂ , R−Id

〉
≤
∥∥∥∥Uj(M̌−P̂H>)>∥∥∥∥

F

‖R−Id‖F

≤ ‖Uj‖op

∥∥∥M̌−P̂H>∥∥∥
F
‖R−Id‖F

≤ 4

3

(∥∥UjH−U∗j ∥∥op
+

1√
n

)

×

4C0

√
1+ε

(√
d+σd

)
√
np

√2hR

≤ 4

3

(
‖Bj‖op+‖Fj1‖op+‖Fj2‖op+‖Gj1‖op

+‖Gj2‖op+
1√
n

)4C0

√
1+ε

(√
d+σd

)
√
np

√2hR,

where in the second inequality, we use (39) from Lemma 3
instead (37) from Lemma 2. We can then follow the same
argument in the proof leading up to (61) where we make the
second modification:〈

UjH−U∗j , R−Id
〉
+

〈
Uj

(
M̌−P̂H>

)>
P̂ , R−Id

〉
≤ 2

(
1+

16C0

√
1+ε(1+σ

√
d)

3
√
np

)
×
(
‖Fj1‖op+‖Fj2‖op

)√
2dhR

+

(
41

33
+

16
√

1+εC0(1+σ
√
d)

3
√
np

)

×23C0

(
1+σ
√
d

√
np

)
‖Gj2‖op

√
2dhR

+

(
41

33
+

16
√

1+εC0(1+σ
√
d)

3
√
np

)

×26C0

(√
log n+σ

√
d

√
np

)√
2dhR√
n

+
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
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≤ 4
(
‖Fj1‖op+‖Fj2‖op

)√
2dhR

+46C0

(
1+σ
√
d

√
np

)
‖Gj2‖op

√
2dhR

+52C0

(√
log n+σ

√
d

√
np

)√
2dhR√
n

+
σ√
n

1

np

〈∑
k 6=j

AjkWjk, R−Id

〉
,

where the last inequality holds under the assumption that√
np

1+σ
√
d
> 176

25 C0

√
1+ε. In the way, we obtain the exact same

upper bound as (61). There is no change to the rest of the
proof.

E. Helper Lemmas and Proofs

Lemma 10. We have λi(EA⊗Id) = (n−1)p for all i ≤ d
and λi(EA⊗Id) = −p for all d+1 ≤ i ≤ nd.

Proof. Recall that EA = pJn−pIn. The eigenvalues of the
matrix EA are characterized as follows.

λ1(EA) = (n−1)p ,

λ2(EA) = . . . = λn(EA) = −p .

Therefore the eigenvalues of EA⊗Id are as follows.

λ1(EA⊗Id) = . . . = λd(EA⊗Id) = (n−1)p ,

λd+1(EA⊗Id) = . . . = λdn(EA⊗Id) = −p .

Proof of Lemma 1. The probability of E is from Lemma
9 of [17] (for ‖(A⊗Jd)◦W‖op), Theorem 5.2 of
[26] (for ‖A−EA‖op), and Bernstein’s inequality (for
maxj∈[n] |

∑
k 6=j Ajk−np|). Note that

‖X−(EA⊗Id)‖op

= ‖(A⊗Id)+σ(A⊗Jd)◦W−(EA⊗Id)‖op

≤ ‖(A−EA)⊗Id‖op+σ‖(A⊗Jd)◦W‖op

= ‖A−EA‖op+σ‖(A⊗Jd)◦W‖op.

By Weyl’s inequality, we have
maxi∈[nd]|λi(X)−λi(EA⊗Id)| ≤ ‖X−(EA⊗Jd)‖op.
Together with Lemma 10, (24) holds under the event E . For
(25), we have

max
j
‖Xj‖op = max

j
‖(EAj⊗Id)+(Xj−(EAj⊗Id))‖op

≤ max
j
‖(EAj⊗Id)‖op+‖X−(EA⊗Id)‖op

≤ p
√
n+C0

(
1+σ
√
d
)√

np.

If np

(1+σ
√
d)2

≥ 64C2
0 is further assumed, we have

C0(1+σ
√
d)
√
np ≤ np/8. Then (24), together with the fact∥∥Λ−1

∥∥
op

= 1/λd(X) and ‖Λ‖op = λ1(X), leads to (26)-(28).
Since λd(EA⊗Id)−λd+1(EA⊗Id) = np according to

Lemma 10, we have ‖X−(EA⊗Id)‖op ≤ (λd(EA⊗Id)−
λd+1(EA⊗Id))/8. By Lemma 2 of [16], we have

min
O∈Od

‖H−O‖op ≤
∥∥UU>−U∗U∗>∥∥

op

≤
‖X−(EA⊗Id)‖op(

1− 1
8

)
np

≤
8C0

(
1+σ
√
d
)

7
√
np

,

and

‖HΛ−ΛH‖op ≤ 2‖X−(EA⊗Id)‖op

≤ 2C0

(
1+σ
√
d
)√

np,

and
∥∥H−1

∥∥
op
≤ 4/3. Note that

‖UH−U∗‖op =
∥∥UU>U∗−U∗U∗>U∗∥∥

op

≤
∥∥UU>−U∗U∗>∥∥

op
‖U∗‖op ≤

∥∥UU>−U∗U∗>∥∥
op
.

Hence, (29)-(31) hold. Consider any j ∈ [n]. By (31), we
have

‖Uj‖op ≤ ‖UjH‖op

∥∥H−1
∥∥

op

≤
(∥∥UjH−U∗j ∥∥op

+
∥∥U∗j ∥∥op

)∥∥H−1
∥∥

op

=
4

3

(∥∥UjH−U∗j ∥∥op
+

1√
n

)
.

From (25), (28) and that C0 > 7, we have
∥∥X−X(j)

∥∥
op
≤

2‖Xj‖op ≤ (λd(X)−λd+1(X))/2. By Davis-Kahan theorem,
we have ∥∥∥U (j)(U (j))>−UU>

∥∥∥
op

≤
2
∥∥(X−X(j)

)
U
∥∥

op

λd(X)−λd+1(X)

≤
2
(
‖XjU‖op+‖Xj‖op‖Uj‖op

)
λd(X)−λd+1(X)

=
2
(
‖UjΛ‖op+‖Xj‖op‖Uj‖op

)
λd(X)−λd+1(X)

≤
2
(
‖Uj‖op‖Λ‖op+‖Xj‖op‖Uj‖op

)
λd(X)−λd+1(X)

≤ 4‖Uj‖op

≤ 6

(∥∥UjH−U∗j ∥∥op
+

1√
n

)
,

where the second to last inequality is due to (25), (26), and
(28), and the last inequality is due to (33).

Together with (29) and that C0 > 7 we have∥∥∥U (j)(U (j))>−UU>
∥∥∥

op
≤ 6

(
‖UH−U∗‖op+

1√
n

)
≤ 48C0(1+σ

√
d)

7
√
np

+
6
√
np

≤ 7C0(1+σ
√
d)

√
np

.

Then, ∥∥∥U (j)H(j)−U∗
∥∥∥

op

=
∥∥∥(U (j)U (j)>−UU>

)
U∗+UH−U∗

∥∥∥
op

≤
∥∥∥U (j)U (j)>−UU>

∥∥∥
op

+‖UH−U∗‖op
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≤ 9C0(1+σ
√
d)

√
np

.

For ‖Gj1‖op, we have
√
n‖Gj1‖op

=

∥∥∥∥∥∥
∑
k 6=j

AjkΛ−1−Id

∥∥∥∥∥∥
op

≤
∥∥npΛ−1−Id

∥∥
op

+

∥∥∥∥∥∥
∑
k 6=j

Ajk−np

Λ−1

∥∥∥∥∥∥
op

≤ ‖np−Λ‖op

∥∥Λ−1
∥∥

op
+

∣∣∣∣∣∣
∑
k 6=j

Ajk−np

∣∣∣∣∣∣∥∥Λ−1
∥∥

op

≤ max
i∈[d]
|np−λi(X)|

∥∥Λ−1
∥∥

op
+

∣∣∣∣∣∣
∑
k 6=j

Ajk−np

∣∣∣∣∣∣∥∥Λ−1
∥∥

op

≤ 2C0

(√
log n

np
+
σ
√
d

√
np

)
,

where the last inequality is due to E , (24), and (27).
For (36), consider any j ∈ [n], we have∥∥∥U (j)H(j)−U∗

∥∥∥
op,∞

≤ ‖UH−U∗‖op,∞

+
∥∥∥(UH−U∗)−

(
U (j)H(j)−U∗

)∥∥∥
op,∞

≤ ‖UH−U∗‖op,∞

+
∥∥∥(UH−U∗)−

(
U (j)H(j)−U∗

)∥∥∥
op

= ‖UH−U∗‖op,∞+
∥∥∥UH−U (j)H(j)

∥∥∥
op

= ‖UH−U∗‖op,∞+
∥∥∥UU>U∗−U (j)U (j)>U∗

∥∥∥
op

≤ ‖UH−U∗‖op,∞+
∥∥∥UU>−U (j)U (j)>

∥∥∥
op

≤ ‖UH−U∗‖op,∞+6

(∥∥UjH−U∗j ∥∥op
+

1√
n

)
≤ 7

(
‖UH−U∗‖op,∞+

1√
n

)
,

where the second to last inequality is due to (34).

Proof of Lemma 5. Consider any j ∈ [n]. Then∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥
∑
k 6=j

(Ajk−p)∆(j)
k

∥∥∥∥∥∥
op

+p

∥∥∥∥∥∥
∑
k 6=j

∆
(j)
k

∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥
∑
k 6=j

(Ajk−p)∆(j)
k

∥∥∥∥∥∥
op

+p
√
n
∥∥∥∆(j)

∥∥∥
op
.

Since {Ajk−p}k 6=j is independent of ∆(j), we use the
matrix Bernstein’s inequality (Lemma 11) for the opera-
tor norm of

∑
k 6=j(Ajk−p)∆

(j)
k . For each k ∈ [n], note

that E
(

(Ajk−p)∆(j)
k |∆

(j)
k

)
= 0 and

∥∥∥(Ajk−p)∆(j)
k

∥∥∥
op
≤∥∥∥∆

(j)
k

∥∥∥
op
≤
∥∥∆(j)

∥∥
op,∞. For the matrix variance term, we

have

max

{∥∥∥∥∥∥E
∑
k 6=j

(Ajk−p)2∆
(j)
k

>
∆

(j)
k

∣∣∣∣∣∆(j)

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥E
∑
k 6=j

(Ajk−p)2∆
(j)
k ∆

(j)
k

>
∣∣∣∣∣∆(j)

∥∥∥∥∥∥
op

}
= p(1−p)

×max


∥∥∥∥∥∥
∑
k 6=j

∆
(j)
k

>
∆

(j)
k

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
∑
k 6=j

∆
(j)
k ∆

(j)
k

>

∥∥∥∥∥∥
op


= p(1−p)·max

{∥∥∥∆(j)
∥∥∥2

op
,

∥∥∥∥(∆1
(j), . . . ,∆n

(j)
)>∥∥∥∥2

op

}
.

(74)

To obtain the two different tail bounds in the lemma
statement, we will show two different upper bounds on (74).
For the first tail bound (44) of Lemma 5, note that

∥∥∆(j)
∥∥2

op
≤

√
n
∥∥∆(j)

∥∥
op

∥∥∆(j)
∥∥

op,∞. We have

p(1−p)
∥∥∥∆(j)

∥∥∥2

op
≤ p
√
n
∥∥∥∆(j)

∥∥∥
op,∞

∥∥∥∆(j)
∥∥∥

op

≤ p
√
n
∥∥∥∆(j)

∥∥∥
op,∞

∥∥∥∆(j)
∥∥∥

op
.

On the other hand,

p(1−p)
∥∥∥∥(∆1

(j), . . . ,∆n
(j)
)>∥∥∥∥2

op

≤ p
√
n

∥∥∥∥(∆1
(j), . . . ,∆n

(j)
)>∥∥∥∥

op

∥∥∥∆(j)
∥∥∥

op,∞

≤ p
√
n
∥∥∥(∆1

(j)>, . . . ,∆n
(j)>

)∥∥∥
F

∥∥∥∆(j)
∥∥∥

op,∞

= p
√
n
∥∥∥∆(j)

∥∥∥
F

∥∥∥∆(j)
∥∥∥

op,∞

≤ p
√
nd
∥∥∥∆(j)

∥∥∥
op

∥∥∥∆(j)
∥∥∥

op,∞
.

Then (74) can be upper bounded by
p
√
nd
∥∥∆(j)

∥∥
op

∥∥∆(j)
∥∥

op,∞. Invoking Lemma 11, we
have

P

∥∥∥∥∥∥
∑
k 6=j

(Ajk−p)∆(j)
k

∥∥∥∥∥∥
op

≥ t

∣∣∣∣∣∆(j)

 ≤ 2d×

exp

(
− t2/2

p
√
nd
∥∥∆(j)

∥∥
op

∥∥∆(j)
∥∥

op,∞+
∥∥∆(j)

∥∥
op,∞t/3

)
.

Then, by triangle inequality,

P

∥∥∥∥∥∥
∑
k 6=j

Ajk∆
(j)
k

∥∥∥∥∥∥
op

≥ p
√
n
∥∥∥∆(j)

∥∥∥
op

+t

∣∣∣∣∣∆(j)

 ≤ 2d
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For the second tail bound (45) of Lemma 5, one can see that
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We then follow the same steps as shown above to obtain (45).

Proof of Lemma 6. We follow the proof of Lemma 5. We first
have∥∥∥∥∥∥
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Note that for each k ∈ [n], E
(

(Ajk−p)(∆(j)
k )>∆

(j)
k |∆(j)

)
=

0 and
∥∥∥(Ajk−p)(∆(j)

k )>∆
(j)
k

∥∥∥
op
≤
∥∥∥∆

(j)
k

∥∥∥2

op
≤
∥∥∆(j)

∥∥2

op,∞.

In addition,∥∥∥∥∥∥E
∑
k 6=j

(Ajk−p)2(∆
(j)
k )>∆

(j)
k (∆

(j)
k )>∆

(j)
k

∣∣∣∣∣∆(j)

∥∥∥∥∥∥
op

= p(1−p)

∥∥∥∥∥∥
∑
k 6=j

(∆
(j)
k )>∆

(j)
k (∆

(j)
k )>∆

(j)
k

∥∥∥∥∥∥
op

≤ p(1−p)

∥∥∥∥∥
[
∆

(j)
1

>
· · · ∆(j)

n

>
]

×

∆
(j)
1 ∆

(j)
1

>

· · ·
∆

(j)
n ∆

(j)
n

>




∆
(j)
1
...

∆
(j)
n


∥∥∥∥∥

op

≤ p(1−p)

∥∥∥∥∥∥∥
∆

(j)
1 ∆

(j)
1

>

· · ·
∆

(j)
n ∆

(j)
n

>


∥∥∥∥∥∥∥

op

∥∥∥∆(j)
∥∥∥2

op

= p(1−p)

(
max
k∈[n]

∥∥∥∥∆
(j)
k ∆

(j)
k

>
∥∥∥∥

op

)∥∥∥∆(j)
∥∥∥2

op

≤ p(1−p)
∥∥∥∆(j)

∥∥∥2

op,∞

∥∥∥∆(j)
∥∥∥2

op
≤ p
∥∥∥∆(j)

∥∥∥2

op,∞

∥∥∥∆(j)
∥∥∥2

op
.

Hence, by Lemma 11,
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Proof of Lemma 7. Consider any j ∈ [n]. Note that
{Ajk}k 6=j , {Wjk}k 6=j , and {∆(j)

k }k 6=j are mutually indepen-
dent of each other. By Lemma 12, we have∑
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where E ∼ MN (0, Id, Id) and is independent of {Ajk}k 6=j
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and positive semi-definite, its square root is well-defined. By
Lemma 8, there exists some constant c > 0, such that for any

t ≥ 4
√
d
∥∥∥∑k 6=j Ajk(∆

(j)
k )>∆

(j)
k

∥∥∥ 1
2

op
, we have

P

∥∥∥∥∥∥
∑
k 6=j

AjkWjk∆
(j)
k

∥∥∥∥∥∥
op

≥ t

∣∣∣∣∣{Ajk}k 6=j ,∆(j)


= P


∥∥∥∥∥∥∥E
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

 1
2

∥∥∥∥∥∥∥
op

≥ t

∣∣∣∣∣{Ajk}k 6=j ,∆(j)


≤ P

(
‖E‖op

∥∥∥∥∥∥∥
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

 1
2

∥∥∥∥∥∥∥
op

≥ t

∣∣∣∣∣{Ajk}k 6=j ,∆(j)

)

= P

‖E‖op

∥∥∥∥∥∥
∑
k 6=j

Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥∥∥∥
1
2

op

≥ t

∣∣∣∣∣{Ajk}k 6=j ,∆(j)


≤ 2 exp

− ct2∥∥∥∑k 6=j Ajk(∆
(j)
k )>∆

(j)
k

∥∥∥
op

.

Lemma 11. [Theorem 1.6 of [27]] Consider a finite sequence
{Sk}nk=1 of independent random square matrices with dimen-
sion d×d. Assume that each random matrix satisfies

ESk = 0 and ‖Sk−ESk‖op ≤ L, ∀k ∈ [n] .

Define
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for any t ≥ 0.

Lemma 12. Consider any W,W ′,∆ ∈ Rd×d such that
W,W ′

iid∼ MN (0, Id, Id) and ∆ is a fixed matrix. We have

W∆ ∼MN (0, Id,∆
>∆)

and
W+W ′ ∼MN (0, Id,Σ1+Σ2) .

Proof. The first result in the lemma is a property of the matrix
normal distribution. To prove the second statement, note that
Z ∼ MN (0,Σ0,Σ1) is equivalent to vec(Z) ∼ N (0,Σ1⊗
Σ0). Since vec(W ) ∼ N (0,Σ1⊗Id) and vec(W ′) ∼
N (0,Σ2⊗Id), we have vec(W )+vec(W ′) ∼ N (0, (Σ1+
Σ2)⊗Id).
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