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APPENDIX A: PROOF OF THEOREM 2.3

The proof idea is similar to that of Theorem 2.2 but with more involved calculation as r is
not necessarily . Consider any i 2 [n]. Define

⇢̃�i :=
�̂�i,r � �̂�i,r+1���

⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
Xi

���
.

We need to verify ⇢̃�i > 2 first in order to apply Theorem 2.1. Recall the definition of P�i in
(36) and E�i in (38). Let the SVD of P�i be

P�i =

p^(n�1)X

j=1

��i,ju�i,jv
T
�i,j ,

where ��i,1 � ��i,2 � . . .� ��i,p^(n�1). Denote U�i,1:r = (u�i,1, u�i,2, . . . , u�i,r) 2O
p⇥r .

Then by Weyl’s inequality, we have

|�̂�i,r � ��i,r|, |�̂�i,r+1 � ��i,r+1| kE�ik  kEk .(48)

Then the numerator

�̂�i,r � �̂�i,r+1 � ��i,r � ��i,r+1 � 2kEk .(49)

In the following, we are going to connect ��i,r � ��i,r+1 with �r � �r+1.
To bridge the gap between ��i,r,��i,r+1 and �r,�r+1, define

P̃�i := (✓⇤z⇤
1
, . . . ,✓

⇤
z⇤
i�1

,U�i,1:rU
T
�i,1:r✓

⇤
z⇤
i
,✓

⇤
z⇤
i+1

, . . . ,✓
⇤
z⇤
n
) 2R

p⇥n
.

Let �̃�i,1 � �̃�i,2 � . . . � �̃�i,p^n be its singular values. Note that U�i,1:rU
T
�i,1:rP̃�i is the

best rank-r approximation of P̃�i. This is because for any rank-r projection matrix M 2

R
p⇥p such that M2 =M , we have

���P̃�i �MM
T
P̃�i

���
2

F
=
��(I �MM

T )P�i

��2
F
+
���(I �MM

T )U�i,1:rU
T
�i,1:r✓

⇤
z⇤
i

���
2

F

�

��(I �U�i,1:rU
T
�i,1:r)P�i

��2
F
+ 0

=
���P̃�i �U�i,1:rU

T
�i,1:rP̃�i

���
2

F
,

where we use the fact U�i,1:rU
T
�i,1:rP�i is the best rank-r approximation of P�i. Hence,

span(U�i,1:r) is exactly the leading r left singular space of P̃�i. It immediately implies:

• �̃�i,j = ��i,j for any j � r+ 1, including

�̃�i,r+1 = ��i,r+1.(50)
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• Since U�i,1:rU
T
�i,1:rP̃�i and U�i,1:rU

T
�i,1:rP�i only differ by one column where the lat-

ter one can be seen as the leave-one-out counterpart of the former one, using the same
argument as in (37), we have

�
2
�i,r �

✓
1�

k

�n

◆
�̃
2
�i,r.(51)

Then from (49), we have

�̂�i,r � �̂�i,r+1 �

s

1�
k

�n
�̃�i,r � �̃�i,r+1 � 2kEk .(52)

For the difference between �̃�i,r, �̃�i,r+1 and �r,�r+1, we use the Weyl’s inequality again:

max
j2[k]

����̃�i,j � �j

���
���P � P̃�i

���=
���✓⇤z⇤

i
�U�i,1:rU

T
�i,1:r✓

⇤
z⇤
i

��� .

In the proof of Theorem 2.2, we show u�i,j 2 span({✓⇤a}a2[k]) for each j 2 []. Then
���✓⇤z⇤

i
�U�i,1:rU

T
�i,1:r✓

⇤
z⇤
i

���=
���(u�i,r+1, . . . , u�i,) (u�i,r+1, . . . , u�i,)

T
✓
⇤
z⇤
i

���

=

vuut
X

a2[]:a�r+1

⇣
uT�i,a✓

⇤
z⇤
i

⌘2
.

For any a 2 [] such a� r+ 1, we have
⇣
u
T
�i,a✓

⇤
z⇤
i

⌘2


1���
n
j 2 [n] : z⇤j = z⇤i

o���� 1

X

j2[n]:j 6=i,z⇤
j=z⇤

i

⇣
u
T
�i,a✓

⇤
z⇤
j

⌘2


1
�n
k � 1

(uT�i,aP�i)
2


�
2
�i,a

�n
k � 1


�
2
�i,r+1
�n
k � 1

.

Hence, we obtain k✓
⇤
z⇤
i
�U�i,1:rU

T
�i,1:r✓

⇤
z⇤
i
k 

p
��i,a/

p
�n/k� 1 and consequently,

max
j2[k]

����̃�i,j � �j

���
p
��i,r+1q
�n
k � 1

.(53)

Then together with (50), we have |��i,r+1 � �r+1|
p
��i,r+1/

p
�n/k� 1 and hence

��i,r+1 
�r+1

1�
p


p
�n
k
�1

.(54)

Denote d := �n/k. With (52), we have

�̂�i,r � �̂�i,r+1 �

r
d� 1

d

✓
�r �

��i,r+1
p
d� 1

◆
�

✓
�r+1 +

��i,r+1
p
d� 1

◆
� 2kEk

�

r
d� 1

d
�r � �r+1

0

@1 +

✓
1
p
d
+

1
p
d� 1

◆
1

1�
p
p

d�1

1

A� 2kEk

�

r
d� 1

d

✓
�r � �r+1 �

4
p
d
�r+1

◆
� 2kEk

�
3

4

✓
�r � �r+1 �

4
p
d
�r+1

◆
� 2kEk ,(55)
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where in the last two inequalities we use the assumption that d/k � 10. As a consequence,
we have

⇢̃�i �
�̂�i,r � �̂�i,r+1���

⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
Xi

���
�

3
4

⇣
�r � �r+1 �

4p
d
�r+1

⌘
� 2kEk

���
⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
Xi

���
.

Next, we are going to simplify the denominator of the above display. Using the orthogo-
nality of the singular vectors, we have

���
⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
✓
⇤
z⇤
i

���



���
⇣
I � Û�i,1:Û

T
�i,1:

⌘
✓
⇤
z⇤
i

���+
���(û�i,r+1, . . . , û�i,) (û�i,r+1, . . . , û�i,)

T
✓
⇤
z⇤
i

���

=
���
⇣
I � Û�i,1:Û

T
�i,1:

⌘
✓
⇤
z⇤
i

���+

vuut
X

j=r+1

⇣
ûT�i,j✓

⇤
z⇤
i

⌘2


3
p
kEkq
�n
k � 1

+

vuuut
X

j=r+1

0

@ �̂�i,jq
�n
k � 1

+
kEkq
�n
k � 1

1

A
2


3
p
kEkq
�n
k � 1

+
p


0

@ �̂�i,r+1q
�n
k � 1

+
kEkq
�n
k � 1

1

A ,

where the second to the inequality is due to (41) and (44). By (54) and the Weyl’s inequality,
we have

�̂�i,r+1  ��i,r+1 + kEk 
1

1�
p


p
�n
k
�1

�r+1 + kEk .

Then, with the assumption �n/k2 � 10, we have

���
⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
✓
⇤
z⇤
i

���
3
p
kEkq
�n
k � 1

+
p


0

@ �r+1q
�n
k � 1�

p


+
2kEkq
�n
k � 1

1

A



p
k

p
�n

(6kEk+ 2�r+1).

Hence,
���
⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
Xi

���
���
⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
✓
⇤
z⇤
i

���+
���
⇣
I � Û�i,1:rÛ

T
�i,1:r

⌘
✏i

���



p
k

p
�n

(6kEk+ 2�r+1) + kEk .

As a result,

⇢̃�i �

3
4

✓
�r � �r+1 �

4p
�n/k

�r+1

◆
� 2kEk

p
kp
�n

(6kEk+ 2�r+1) + kEk

�
⇢̃0

8
> 2,

under the assumption that �n/(k2)� 10 and (11).
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The remaining part of the proof is to study {û
T
�i,aXi}a2[r] and then apply Theorem 2.1.

Following the exact argument as in the proof of Theorem 2.2, we have
vuutX

a2r

 
ûT�i,aXi

�̂�i,a

!2



p
rq

�n
k � 1

+
1

�̂�i,r

kEk
p
rq

�n
k � 1

+
1

�̂�i,r

���Û�i,1:rÛ
T
�i,1:r✏i

��� .

Under the assumption that �n/(k2)� 10 and (11), (55) is lower bounded by �r/2. This also
implies �̂�i,r � �r/2. Then a direct application of Theorem 2.1 leads to
���Û1:rÛ

T
1:r � Û�i,1:rÛ

T
�i,1:r

���
F


4
p
2

⇢̃�i

 p
rp

�n/k� 1
+

1

�̂�i,r

 p
r kEkp

�n/k� 1
+
���Û�i,1:rÛ

T
�i,1:r✏i

���

!!


128

⇢̃0

0

@
p
kr

p
�n

+

���Û�i,1:rÛ
T
�i,1:r✏i

���
�r

1

A .

APPENDIX B: PROOFS OF RESULTS IN SECTION 3.4

Before presenting the proof of Lemma 3.3, we first show r̂ defined in (23) always exists.
In addition, since r̂ 2 [k] is a random variable, we are going to associate it with some deter-
ministic set in [k]. Recall �1 � �2 � . . . � �p^n are singular values of the signal matrix P

and  is the its rank. Let its SVD be P =
P

i2[p^n] �iuiv
T
i with {uj}j2[p^n] 2 R

p being its
left singular vectors.

LEMMA B.1. Under the same conditions as stated in Lemma 3.3, r̂ always exists. Fur-
thermore, we have r̂ 2R where

R := {a 2 [k] : �a � �a+1 � (⇢̃� 2)kEk and �a+1  (k⇢̃+ 1)kEk} .(56)

PROOF. The existence of r̂ can be proved by contradiction. If r̂ does not exist, it means
that {a 2 [k] : �̂a � �̂a+1 � T} is empty, which implies �̂1 < �̂k+1 + kT = �̂k+1 + k⇢̃kEk.
By Weyl’s inequality, we have |�̂a � �a| kEk for all singular values of X and P . Then we
have �1 < (k⇢̃+ 1)kEk. On the other hand, we have

�
2
1 = max

w2Rp:kwk=1

��wT
P
��2 � max

a,b2[k]:a 6=b
max

w2Rp:kwk=1

�n

k

⇣��wT
✓
⇤
a

��2 +
��wT

✓
⇤
b

��2
⌘

� max
a,b2[k]:a 6=b

max
w2Rp:kwk=1

�n

2k

��wT
✓
⇤
a �w

T
✓
⇤
b

��2 = �n

2k
�2

,

where the first inequality is due to the mixture model structure in P and the second in-
equality is due to 2(x1 + x2)2 � (x1 � x2)2 for any two scalars x1, x2. Then we have
�1 �

p
�n/(2k)� = ( ̃0/

p
2)k1.5 kEk by (25). Since ⇢̃ <  ̃0/64 is assumed, we have

(k⇢̃+ 1)kEk< ( ̃0/
p
2)k1.5 kEk, which is a contradiction.

To prove the second statement, note that we have �̂r̂ � �̂r̂+1 � ⇢̃kEk and �̂r̂+1  k⇢̃kEk.
Since |�̂a � �a| kEk for all singular values of X and P , we have �r̂��r̂+1 � (⇢̃�2)kEk

and �r̂+1  (k⇢̃+ 1)kEk. Hence, r̂ 2R.

PROOF OF LEMMA 3.3. From Lemma B.1, we know r̂ exists and r̂ 2 R. Consider an
arbitrary r 2R and define Û1:r := (û1, . . . , ûr) 2R

p⇥r . Perform k-means on the columns of
Û1:rÛ

T
1:rX and let the output be

⇣
ž(r),

�
✓̌j(r)

 k
j=1

⌘
= argmin

z2[k]n,{✓j}k
j=12Rp

X

i2[n]

���Û1:rÛ
T
1:rX � ✓zi

���
2
.



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 5

In the following, we are going to establish statistical properties for ž(r) and eventually obtain
a desired upper bound for `(ž(r), z⇤). Since performing k-means on the columns of ÛT

1:rX

is equivalent to k-means on the columns of Û1:rÛ
T
1:rX , and since r̂ 2R, we have z̃ = ž(r̂)

and thus the desired upper bound also holds for `(z̃, z⇤).
In the rest of the proof we are going to analyze ž(r) for any r 2R. For simplicity, we use

the notation ž,{✓̌j}j2[n] instead of ž(r),{✓̌j(r)}j2[n]. The remaining proof can be decom-
posed into several parts.

(Preliminary Results for ž,{✓̌j}j2[n]). We are going to use Proposition 3.1 to have some
preliminary results. Define U1:r := (u1, . . . , ur) and U(r+1):k := (ur+1, . . . , uk). Instead of
the decomposition (6), we can write

Xi = U1:rU
T
1:r✓

⇤
z⇤
i
+U(r+1):kU

T
(r+1):k✓

⇤
z⇤
i
+ ✏i = U1:rU

T
1:r✓

⇤
z⇤
i
+ ✏̌i,

where ✏̌i := U(r+1):kU
T
(r+1):k✓

⇤
z⇤
i
+ ✏i. In this way, we have a new mixture model with the

centers being {U1:rU
T
1:r✓

⇤
a}a2[k] and the additive noises being {✏̌i}. Define Ě := (✏̌1, . . . , ✏̌n).

Then
��Ě

�� kEk+
���
⇣
U(r+1):kU

T
(r+1):k✓

⇤
z⇤
1
, . . . ,U(r+1):kU

T
(r+1):k✓

⇤
z⇤
n

⌘���

= kEk+
���U(r+1):kU

T
(r+1):kP

���= kEk+ �r+1

 (k⇢̃+ 2)kEk .(57)

The separation among the new centers is no longer �. Define

�̌ := min
a,b2[k]:a 6=b

��U1:rU
T
1:r✓

⇤
a �U1:rU

T
1:r✓

⇤
b

�� .

For any a, b 2 [k], U1:rU
T
1:r✓

⇤
a�U1:rU

T
1:r✓

⇤
b = (✓⇤a�✓

⇤
b )�U(r+1):kU

T
(r+1):k✓

⇤
a+U(r+1):kU

T
(r+1):k✓

⇤
b .

Also,

max
a2[k]

���U(r+1):kU
T
(r+1):k✓

⇤
a

���=max
a2[k]

vuut
P

i2[n]:z⇤
i =a

���U(r+1):kU
T
(r+1):k✓

⇤
a

���
2

|{i 2 [n] : z⇤i = a}|


���U(r+1):kU
T
(r+1):kP

���
Fp

�n/k


2
p
k�r+1p
�n/k



p
k(k⇢̃+ 1)kEkp

�n/k
.(58)

Hence, we have

�̌� min
a,b2[k]:a 6=b

k✓
⇤
a � ✓

⇤
bk � 2max

a2[k]

���U(r+1):kU
T
(r+1):k✓

⇤
a

������
2
p
k(k⇢̃+ 1)kEkp

�n/k
.(59)

Then from Proposition 3.1, as long as (which will be verified later)

 ̌0 :=
�̌

��0.5kn�0.5
��Ě

�� � 16,(60)

we have

`(ž, z⇤) =
1

n
|i 2 [n] : ži 6= �(z⇤i )|

C0k
��Ě

��2

n�̌2
,

and

max
a2[k]

��✓̌�(z) �U1:rU
T
1:r✓

⇤
a

��C0�
�0.5

kn
�0.5

��Ě
�� .
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where C0 = 128.

(Entrywise Decomposition for ž). Next, we are going to have an entrywise decomposition for
I{ẑi 6= �(z⇤i )} that is analogous to that of Lemma 3.2. When (60) is satisfied, from Lemma
3.1, we have

I{ži 6= �(z⇤i )} I

n�
1�C0 ̌

�1
0

�
�̌ 2

���Û1:rÛ
T
1:r ✏̌i

���
o
.

By the definition of ✏̌i and (58), we have
���Û1:rÛ

T
1:r ✏̌i

���
���Û1:rÛ

T
1:r✏i

���+
���Û1:rÛ

T
1:rU(r+1):kU

T
(r+1):k✓

⇤
z⇤
i

���



���Û1:rÛ
T
1:r✏i

���+
���U(r+1):kU

T
(r+1):k✓

⇤
z⇤
i

���



���Û1:rÛ
T
1:r✏i

���+
p
k(k⇢̃+ 1)kEkp

�n/k
.

Then, we have

I{ži 6= �(z⇤i )} I

(
�
1�C0 ̌

�1
0

�
�̌ 2

 ���Û1:rÛ
T
1:r✏i

���+
p
k(k⇢̃+ 1)kEkp

�n/k

!)

= I

( 
1�C0 ̌

�1
0 �

2
p
k(k⇢̃+ 1)kEkp
�n/k�̌

!
�̌ 2

���Û1:rÛ
T
1:r✏i

���

)
.

From (56), under the assumption that ⇢̃ > 4 and �n/k4 > 400, we have ⇢̃0 defined as in
(11) to satisfy

⇢̃0 �
(⇢̃� 1)kEk

max
n
kEk ,

q
k2

�n(k⇢̃+ 1)kEk

o � 2.

Then Theorem 2.3 can be applied, with which we have

���Û1:rÛ
T
1:r � Û�i,1:rÛ

T
�i,1:r

���
F


256
p
rk

p
n�

+
256

���Û�i,1:rÛ
T
�i,1:r✏i

���
�r

.

Then following the proof of Lemma 3.2, we have

I{ži 6= �(z⇤i )}

 I

( 
1�C0 ̌

�1
0 �

2
p
k(k⇢̃+ 1)kEkp
�n/k�̌

!
�̌ 2

⇣���Û�i,1:rÛ
T
�i,1:r✏i

���+
���Û1:rÛ

T
1:r � Û�i,1:rÛ

T
�i,1:r

���
F
kEk

⌘)

 I

( 
1�C0 ̌

�1
0 �

2
p
k(k⇢̃+ 1)kEkp
�n/k�̌

!
�̌ 2

 
256

p
rk kEk

p
n�

+

✓
1 +

256kEk

�r

◆���Û�i,1:rÛ
T
�i,1:r✏i

���

!)

 I

( 
1�C0 ̌

�1
0 �

2
p
k(k⇢̃+ 257)kEkp

�n/k�̌

!
�̌ 2

✓
1 +

256kEk

�r

◆���Û�i,1:rÛ
T
�i,1:r✏i

���

)

 I

( 
1�C0 ̌

�1
0 �

2
p
k(k⇢̃+ 257)kEkp

�n/k�̌

!
�̌ 2

✓
1 +

256

⇢̃� 2

◆���Û�i,1:rÛ
T
�i,1:r✏i

���

)
,

where in the last inequality we use �r � (⇢̃� 2)kEk> 0 (as long as ⇢̃> 2) from (56).
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The last step of the proof is to simplify the above display using � instead of �̌. Then,
under the assumption that ⇢̃> 256, we have (1 + 256/(⇢̃� 2))�1

 (1� 512/⇢̃). Recall the
definition of  ̃0 in (25). Under the assumption that ⇢̃  ̃0/64, we have

�̌��

✓
1�

4��0.5
k
2
n
�0.5

⇢̃kEk

�

◆
=�

✓
1�

4⇢̃

 ̃0

◆
�

�

2
,(61)

according to (59). Then together with (57), we can verify (60) holds due to

 ̌0 �
�/2

��0.5kn�0.5(k⇢̃+ 2)kEk
�

�

4��0.5k2n�0.5⇢̃kEk
=
 ̃0

4⇢̃
� 16.

Rearranging all the terms with the help of (61), we can simplify I{ži 6= �(z⇤i )} into

I{ži 6= �(z⇤i )}

 I

⇢✓
1� 4C0⇢̃ ̃0 �

4��0.5
k
2
n
�0.5

⇢̃kEk

�/2

◆✓
1�

256

⇢̃

◆✓
1�

4⇢̃

 ̃0

◆
� 2

���Û�i,1:rÛ
T
�i,1:r✏i

���
�

 I

n⇣
1� 5C0⇢̃ ̃

�1
0 � 256⇢̃�1

⌘
� 2

���Û�i,1:rÛ
T
�i,1:r✏i

���
o
.

PROOF OF THEOREM 3.2. Recall the definition of F in (46). Then if F holds, by appro-
priate choices of C1,C2, we can verify the assumptions needed in Lemma 3.3 hold, which
lead to

I{z̃i 6= �(z⇤i )}I{F} I

n�
1�C

00(⇢2 
�1
2 + ⇢

�1
2 )

�
� 2

���Û�i,1:r̂Û
T
�i,1:r̂✏i

���
o
I{F},

for some constant C 00
> 0. Though r̂ is random, the proof of Lemma 3.3 shows that r̂ 2R⇢

[k] where R is defined in (56). Note that for any r 2 [k], we can follow the proof of Theorem
3.1 to show

EI

n�
1�C

00(⇢2 
�1
2 + ⇢

�1
2 )

�
� 2

���Û�i,1:rÛ
T
�i,1:r✏i

���
o
 exp

✓
�(1�C

000(⇢2 
�1
2 + ⇢

�1
2 ))

�2

8�2

◆
,

for some constant C 000
> 0. Hence, the same upper bound holds for EI{(1 � C

00(⇢2 
�1
2 +

⇢
�1
2 ))�  2kÛ�i,1:r̂Û

T
�i,1:r̂✏ik}. The rest of the proof follows that of Theorem 3.1 and is

omitted here.

APPENDIX C: PROOF OF THEOREM 3.3

Define F =
�
kEk 

p
2(
p
n+

p
p)�

 
. Then by Lemma B.1 of [27], we have P (F) �

1� e
�0.08n. Then under the event F , the assumption (26) implies (16) holds, and hence (17)

and (18) hold. For simplicity, and without loss of generality, we can let � in (17)-(18) to be
the identity, and we get

`(ẑ, z⇤) =
1

n
|{i 2 [n] : ẑi 6= z

⇤
i }|

C0k
�
1 +

p p
n

�2
�
2

�2
,

and

max
a2[k]

���✓̂a � ✓
⇤
a

���C0�
�0.5

k

✓
1 +

r
p

n

◆
�,

where C0 > 0 is some constant.
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Denote P̂ = Û1:kÛ
T
1:kX and let P̂·,i be its ith column so that P̂·,i = Û1:kÛ

T
1:kXi. We define

r 2 [k] as (with �k+1 := 0)

r =max
�
j 2 [k] : �j � �j+1 � ⌧

p
n+ p�

 
,(62)

for a sequence ⌧ !1 to be determined later. We note that if �/(k
3
2 ⌧�

1
2 (1 + p/n)

1
2 �)!

1, the set {j 2 [k] : �j � �j+1 � ⌧
p
n+ p�} is not empty. Otherwise, this would imply �1 

k⌧
p
n+ p� which would contradict with the fact �1 �

p
�n/k�/(2�) (see Proposition A.1

of [27]). By the definition of r in (62), we immediately have

�r � �r+1 � ⌧
p
n+ p�,(63)

and �r+1  k⌧
p
n+ p�.(64)

We split Û1:k into (Û1:r, Û(r+1):k) where Û1:r := (û1, . . . , ûr) and Û(r+1):k := (ûr+1, . . . , ûk).
We decompose P̂·,i = P̂

(1)
·,i +P̂

(2)
·,i , where P̂ (1)

·,i := Û1:rÛ
T
1:rP̂·,i and P̂

(2)
·,i := Û(r+1):kÛ

T
(r+1):kP̂·,i.

Similarly, for each a 2 [k], we decompose ✓̂a = ✓̂
(1)
a + ✓̂

(2)
a , where ✓̂(1)a := Û1:rÛ

T
1:r✓̂a and

✓̂
(2)
a := Û(r+1):kÛ

T
(r+1):k✓̂a. Due to the orthogonality of {ûl}l2[k], we obtain that for any

i 2 [n] and any a 2 [k] such that a 6= z
⇤
i ,

I{ẑi = a} I

⇢���P̂ (1)
·,i + P̂

(2)
·,i � ✓̂

(1)
a � ✓̂

(2)
a

���
2


���P̂ (1)
·,i + P̂

(2)
·,i � ✓̂

(1)
z⇤
i
� ✓̂

(2)
z⇤
i

���
2
�

= I

⇢
2
D
P̂

(1)
·,i � ✓̂

(1)
z⇤
i
, ✓̂

(1)
z⇤
i
� ✓̂

(1)
a

E
+
���✓̂(1)z⇤

i
� ✓̂

(1)
a

���
2
 2

D
P̂

(2)
·,i , ✓̂

(2)
a � ✓̂

(2)
z⇤
i

E
�

���✓̂(2)a

���
2
+
���✓̂(2)z⇤

i

���
2
�

We denote ⌧ 00 = o(1) to be another sequence which we will specify later. Then the above
display can be decomposed and upper bounded by

I{ẑi = a}I

8
><

>:

���✓̂(1)z⇤
i
� ✓̂

(1)
a

����
⌧
00�2 +

���✓̂(2)z⇤
i

���
2

���✓̂(1)z⇤
i
� ✓̂

(1)
a

���
 2

���P̂ (1)
·,i � ✓̂

(1)
z⇤
i

���

9
>=

>;

+ I

n
⌧
00�2

 2
D
P̂

(2)
·,i , ✓̂

(2)
a � ✓̂

(2)
z⇤
i

Eo
=:Ai,a +Bi,a.

Then

E`(ẑ, z⇤)
1

n

X

i2[n]

X

a2[k]:a 6=z⇤
i

EI{ẑi = a}

 P

⇣
F

{
⌘
+

1

n

X

i2[n]

X

a2[k]:a 6=z⇤
i

EAi,aI{F}+
1

n

X

i2[n]

X

a2[k]:a 6=z⇤
i

EBi,aI{F}.(65)

We are going to establish upper bounds first for n�1
P

i2[n]
P

a2[k]:a 6=z⇤
i
EBi,aI{F} and then

for n�1
P

i2[n]
P

a2[k]:a 6=z⇤
i
EAi,aI{F}.

(Analysis on n
�1

P
i2[n]

P
a 6=z⇤

i
EBi,aI{F}). For

P
i2[n]

P
a 6=z⇤

i
EBi,aI{F}, we can di-
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rectly use upper bounds established in Section 4.4.3 of [27]1. It proves that for any i 2 [n],

X

a2[k]:a 6=z⇤
i

Bi,aI{F \ T } 2exp

0

@�
1

2

 
c4

⌧
00�

k
7
2 ⌧2�

� 1
2 (1 + p

n)�

r
n� k

3n

!2
�2

�2

1

A ,

where c4 > 0 is some constant, and T is some high-probability event in the sense that

P (T )� 1� nk exp

✓
�
(n� k)

9

◆
.

Hence,
1

n

X

i2[n]

X

a2[k]:a 6=z⇤
i

EBi,aI{F}
1

n

X

i2[n]

X

a2[k]:a 6=z⇤
i

EBi,aI{F \ T }+ P

⇣
T

{
⌘

 2exp

0

@�
1

2

 
c4

⌧
00�

k
7
2 ⌧2�

� 1
2 (1 + p

n)�

r
n� k

3n

!2
�2

�2

1

A+ nk exp

✓
�
(n� k)

9

◆
.

(Analysis on n
�1

P
i2[n]

P
a 6=z⇤

i
EAi,aI{F}). We first follow some algebra as in Section

4.4.2 of [27] to simplify Ai,aI{F}. For any i 2 [n] and a 6= z
⇤
i , it proves

Ai,aI{F} I

( 
1� c1⌧

00
�

c1k
2
⌧�

� 1
2

p
1 + p

n�

�

!
� 2

���P̂ (1)
·,i � ✓̂

(1)
z⇤
i

���

)
I{F},(66)

for some constant c1 > 0. Still working on the event F , it also proves
���P̂ (1)

·,i � ✓̂
(1)
z⇤
i

���
���P̂ (1)

·,i � Û1:rÛ
T
1:r✓

⇤
z⇤
i

���+ 8
p

2

r
��1k2

⇣
1 +

p

n

⌘
�.(67)

Our following analysis on Ai,aI{F} is different from the rest proof in Section 4.4.2 of
[27]. Note that P̂ (1)

·,i � Û1:rÛ
T
1:r✓

⇤
z⇤
i
= Û1:rÛ

T
1:rXi � Û1:rÛ

T
1:r✓

⇤
z⇤
i
= Û1:rÛ

T
1:r✏i. Then (66) and

(67) give

Ai,aI{F} I

( 
1� c2⌧

00
�

c2k
2
⌧�

� 1
2

�
1 +

p p
n

�
�

�

!
� 2

���Û1:rÛ
T
1:r✏i

���

)
I{F},(68)

where we use ⌧ !1 and the fact that 1 +
p

p/n,
p

1 + p/n are of the same order.
Recall the definition of X�i in (8) and Û�i,1:rÛ

T
�i,1:r is the leave-one-out counterpart of

Û1:rÛ
T
1:r . For (68), we can decompose kÛ1:rÛ

T
1:r✏ik into

���Û1:rÛ
T
1:r✏i

���
���Û�i,1:rÛ

T
�i,1:r✏i

���+
���Û1:rÛ

T
1:r � Û�i,1:rÛ

T
�i,1:r

���
F
k✏ik .

To upper bound kÛ1:rÛ
T
1:r � Û�i,1:rÛ

T
�i,1:rkF, we are going to use Theorem 2.3. Since (63)-

(64) hold, under the assumption �n/k4 � 100, we have

�r � �r+1

max
n
kEk ,

q
k2

n��r+1

o �
⌧

2
.

1The model in [27] assumes {✏j}
iid⇠ N (0, I) while in this paper we assume {✏j}

iid⇠ N (0,�2I). To directly
use results from [27], we can re-scale our data to have X 0

j =Xj/� for all j 2 [n]. Then {X 0
j} has N (0, I) noise

and the separation between their centers becomes �/�. Then all the results from [27] can be used here with �
replaced by �/�.
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Applying Theorem 2.3, we have

���Û1:rÛ
T
1:r � Û�i,1:rÛ

T
�i,1:r

���
F


256
p
rk

p
n�

+
256

���Û�i,1:rÛ
T
�i.1:r✏i

���
�r

.

Hence,

���Û1:rÛ
T
1:r✏i

���
���Û�i,1:rÛ

T
�i,1:r✏i

���+

0

@256
p
rk

p
n�

+
256

���Û�i,1:rÛ
T
�i.1:r✏i

���
�r

1

AkEk

=
256k kEk
p
n�

+

✓
1 +

256kEk

�r

◆���Û�i,1:rÛ
T
�i.1:r✏i

���


256

p
2k(

p
n+

p
p)�

p
n�

+

 
1 +

256
p
2(
p
n+

p
p)�

⌧
p
n+ p�

!���Û�i,1:rÛ
T
�i.1:r✏i

���

 512k��0.5

✓
1 +

r
p

n

◆
�+

�
1 + 512⌧�1

����Û�i,1:rÛ
T
�i.1:r✏i

��� ,

where in the second to the last inequality, we use (63) for �r and the event F for kEk. Then
(68) leads to

Ai,aI{F} I

( 
1� c3⌧

00
�

c3k
2
⌧�

� 1
2

�
1 +

p p
n

�
�

�

!
� 2

�
1 + 512⌧�1

����Û�i,1:rÛ
T
�i.1:r✏i

���

)
I{F}

 I

( 
1� c4

 
k
2
⌧�

� 1
2

�
1 +

p p
n

�
�

�
+ ⌧

�1

!!
� 2

���Û�i,1:rÛ
T
�i,1:r✏i

���

)
,

where c3, c4 > 0 are some constants. As long as 1� c4(k2⌧��0.5(1+
p

p/n)�/�+ ⌧
�1)>

1/2, we can use Lemma E.2 to calculate the tail probability of kÛ�i,1:rÛ
T
�i,1:r✏ik. Following

the proof of Theorem 3.1, we have

EAi,aI{F} exp

 
�

 
1� c5

 
k
2
⌧�

� 1
2

�
1 +

p p
n

�
�

�
+ ⌧

�1

!!
�2

8�2

!
,

for some constant c5 > 0. Then we have,

n
�1

X

i2[n]

X

a2[k]:a 6=z⇤
i

EAi,aI{F} k exp

 
�

 
1� c5

 
k
2
⌧�

� 1
2

�
1 +

p p
n

�
�

�
+ ⌧

�1

!!
�2

8�2

!
.

(Obtaining the Final Result.) From (65) and the above upper bounds on n
�1

P
i2[n]

P
a2[k]:a 6=z⇤

i
EBi,aI{F}

and n
�1

P
i2[n]

P
a2[k]:a 6=z⇤

i
EAi,aI{F}, we have

E`(ẑ, z⇤) e
�0.08n + 2exp

0

@�
1

2

 
c4

⌧
00�

k
7
2 ⌧2�

� 1
2 (1 + p

n)�

r
n� k

3n

!2
�2

�2

1

A+ nk exp

✓
�
(n� k)

9

◆

+ k exp

 
�

 
1� c5

 
k
2
⌧�

� 1
2

�
1 +

p p
n

�
�

�
+ ⌧

�1

!!
�2

8�2

!
.



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 11

Since we assume �n/k4 � 100, we have (n � k)/n > 0.99. Hence, under the assumption
that �/(k3.5��0.5(1 + p

n)�)!1, we can take ⌧, ⌧ 00 to be

⌧ = ⌧
00�1 :=

 
�

k3.5��0.5
�
1 + p

n

�
�

!0.25

such that ⌧ !1 and ⌧ 00 = o(1). Then for some constant c6 > 0, we have

E`(ẑ, z⇤) e
�0.08n + 2exp

0

@�
c
2
4

12

 
�

k3.5��0.5
�
1 + p

n

�
�

!0.5
�2

�2

1

A+ nke
�0.1n

+ k exp

0

@�

0

@1� 2c5

 
�

k3.5��0.5
�
1 + p

n

�
�

!�0.25
1

A �2

8�2

1

A

 exp

0

@�

0

@1� c6

 
�

k3.5��0.5
�
1 + p

n

�
�

!�0.25
1

A �2

8�2

1

A+ 2e�0.08n
.

APPENDIX D: PROOFS OF RESULTS IN SECTION 3.6

D.1. Proof of Theorem 3.4. The proof of Theorem 3.4 relies on the following entrywise
decomposition that is analogous to Lemma 3.2 but in an opposite direction. Note the the
singular vectors û1, and {û1,�i}i2[n] are all identifiable up to sign. Without loss of generality,
we assume hû1, u1i � 0 and hû1,�i, u1i � 0 for all i 2 [n].

LEMMA D.1. Consider the model (28). Let � 2� be the permutation such that `(ž, z⇤) =
1
n |{i 2 [n] : ži 6= �(z⇤i )}|. Then there exists a constants C,C1 > 0 such that if

�

��0.5n�0.5 kEk
�C,(69)

then for any i 2 [n],

I{ži 6= �(z⇤i )}� I

⇢✓
1 +

C1�
�0.5

n
�0.5

kEk

�

◆
��2(ûT1,�i✏i)sign(uT1 ✓�(z⇤

i ))

�
.(70)

PROOF. The proof mainly follows the proofs of Lemma 3.1 and Lemma 3.2 with some
modifications such as adding a negative term instead of a positive term in order to obtain a
lower bound.

We first write ž equivalently as
⇣
ž,
�
✓̌j
 2
j=1

⌘
= argmin

z2[2]n,{✓j}2
j=12Rp

X

i2[n]

��û1ûT1 Xi � ✓zi

��2 ,

where ✓̌a = û1ča for each a 2 [2]. Note that k = 2. From Proposition 3.1, we have

1

n
|{i 2 [n] : ži 6= �(z⇤i )}|

C0k kEk
2

n�2
,

and

max
a2[2]

��✓̌�(a) � ✓
⇤
a

��C0�
�0.5

kn
�0.5

kEk ,(71)
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for some permutation � : [2] ! [2] and some constant C0 > 0. Without loss of generality,
assume �= Id.

Recall that ✓
⇤
1 = �✓

⇤
2 = �1p, u1 = 1/

p
p1p, �1 = �

p
np = �

p
n

2 , and |u
T
1 (✓

⇤
z⇤
i
�

(�✓⇤z⇤
i
))|= 2�

p
p=�. By Davis-Kahan Theorem, we have

min
s2±1

kû1 � su1k 
kEk

�1
=

2kEk
p
n�

 1/16,

where the last inequality is due to the assumption (16). Since we assume hû1, u1i � 0, we
have kû1 � su1k=mins2±1 kû1 � su1k.

Consider any i 2 [n] and any a 2 [2] such that a 6= z
⇤
i . Note that for any scalars x, y,w,

if |x� y|  |x�w|, we have equivalently sign(w � y)(y + w)/2 � sign(w � y)x. Since
(y +w)/2 = (y �w)/2 +w, a sufficient condition is |w� y|/2 + |w| (�sign(w � y))x.
Hence, we have

I
���û1ûT1 Xi � ✓̌a

��
��û1ûT1 Xi � ✓̌z⇤

i

�� 

= I
���ûT1 Xi � û

T
1 ✓̌a

��
��ûT1 Xi � û

T
1 ✓̌z⇤

i

�� 

= I

n���ûT1 ✏i � û
T
1

⇣
✓̌a � ✓

⇤
z⇤
i

⌘���
���ûT1 ✏i � û

T
1

⇣
✓̌z⇤

i
� ✓

⇤
z⇤
i

⌘���
o

� I

⇢
1

2

��ûT1 (✓̌z⇤
i
� ✓̌a)

��+
���ûT1

⇣
✓̌z⇤

i
� ✓

⇤
z⇤
i

⌘����(ûT1 ✏i)sign(ûT1 (✓̌z⇤
i
� ✓̌a))

�

� I

n��✓̌z⇤
i
� ✓̌a

��+ 2
���✓̌z⇤

i
� ✓

⇤
z⇤
i

����2(ûT1 ✏i)sign(ûT1 (✓̌z⇤
i
� ✓̌a))

o
.

We are going to show sign(ûT1 (✓̌z⇤
i
� ✓̌a)) = sign(uT1 (✓⇤z⇤

i
� ✓

⇤
a)). By (71), we have

D
✓̌z⇤

i
� ✓̌a,✓

⇤
z⇤
i
� ✓

⇤
a

E
=
���✓⇤z⇤

i
� ✓

⇤
a

���
2
+
D
✓̌z⇤

i
� ✓

⇤
z⇤
i
,✓

⇤
z⇤
i
� ✓

⇤
a

E
+
D
✓̌a � ✓

⇤
a,✓

⇤
z⇤
i
� ✓

⇤
a

E

��2

✓
1�

2C0k�
�0.5

n
�0.5

kEk

�

◆

> 0,

where the last inequality holds as long as � > 2C0�
�0.5

kn
�0.5

kEk. Due to the fact
✓
⇤
z⇤
i
� ✓

⇤
a 2 span(u1), ✓̌z⇤

i
� ✓̌

⇤
a 2 span(û1), and hû1, u1i � 0, if u1,✓⇤z⇤

i
� ✓

⇤
a are in the same

direction, then û1, ✓̌z⇤
i
� ✓̌

⇤
a must also be in the same direction, and vice versa. Hence, we

have sign(ûT1 (✓̌z⇤
i
� ✓̌a)) = sign(uT1 (✓⇤z⇤

i
� ✓

⇤
a)). Thus,

I
���û1ûT1 Xi � ✓̌a

��
��û1ûT1 Xi � ✓̌z⇤

i

�� 

� I

n��✓̌z⇤
i
� ✓̌a

��+ 2
���✓̌z⇤

i
� ✓

⇤
z⇤
i

����2(ûT1 ✏i)sign(uT1 (✓
⇤
z⇤
i
� ✓

⇤
a))

o
.

Following the same analysis as in the proof of Lemma 3.1, we can get the following result
that is analogous to (45):

I
���û1ûT1 Xi � ✓̌a

��
��û1ûT1 Xi � ✓̌z⇤

i

�� 

� I

⇢✓
1 +

4C0�
�0.5

kn
�0.5

kEk

�

◆
��2(ûT1 ✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

�
.

Next, we are going to decompose û
T
1 ✏i following the proof of Lemma 3.2. Denote û1,�i

be the leave-one-out counterpart of û1, i.e., û1,�i is the leading left singular vector of X�i.
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Since we assume hû1,�i, u1i � 0, we have kû1,�i � u1k  2kEk/(
p
n� 1�). As a result,

we have kû1,�i � û1k  4kEk/(
p
n� 1�) which leads to

hû1,�i, û1i � 1� 4kEk/(
p
n� 1�)> 0.(72)

We have the following decomposition:

(ûT1 ✏i)sign(uT1 (✓
⇤
z⇤
i
� ✓

⇤
a))

=
⌦
û1, û1û

T
1 ✏i

↵
sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

=
⌦
û1, (û1,�iû

T
1,�i)✏i

↵
sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a)) +

⌦
û1, (û1û

T
1 � û1,�iû

T
1,�i)✏i

↵
sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

= hû1, û1,�ii (û
T
1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a)) +

⌦
û1, (û1û

T
1 � û1,�iû

T
1,�i)✏i

↵
sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

 hû1, û1,�ii (û
T
1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a)) +

��û1ûT1 � û1,�iû
T
1,�i

��k✏ik .

Note that �1/kEk=�
p
n/(2kEk) is greater than 16 under the assumption (69) holds for a

large constant C . From Theorem 2.2 we have

��û1ûT1 � û1,�iû
T
1,�i

�� 128

�1/kEk

0

@ k
p
�n

+

���û1,�iû
T
1,�i✏i

���
�1

1

A .

Then,

(ûT1 ✏i)sign(uT1 (✓
⇤
z⇤
i
� ✓

⇤
a))

 hû1, û1,�ii (û
T
1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a)) +

0

@ 128k
p
n�(�1/kEk)

+
128

���û1,�iû
T
1,�i✏i

���
�21/kEk

1

AkEk

= hû1, û1,�ii (û
T
1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a)) +

256n�0.5
k�

�0.5
kEk

2

�
+

512
���ûT1,�i✏i

���n�1
kEk

2

�2
.

So far we have obtained

I
���û1ûT1 Xi � ✓̌a

��
��û1ûT1 Xi � ✓̌z⇤

i

�� 

� I

(✓
1 +

4C0�
�0.5

kn
�0.5

kEk

�

◆
��2 hû1, û1,�ii (û

T
1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

�
256n�0.5

k�
�0.5

kEk
2

�
�

512
���ûT1,�i✏i

���n�1
kEk

2

�2

)

= I

( 
1 +

4C0�
�0.5

kn
�0.5

kEk

�
+

256n�0.5
k�

�0.5
kEk

2

�2

!
�

�2 hû1, û1,�ii (û
T
1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))�

512
���ûT1,�i✏i

���n�1
kEk

2

�2

)
.

From (72) we have

hû1,�i, û1i �
512n�1

kEk
2

�2
� 1� 4

kEk (n� 1)�0.5

�
�

512n�1
kEk

2

�2

� 1�
16n�0.5

kEk

�
�

1

2
,
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assuming �
n�0.5kEk � 64. For any x, y, z,w 2R such that x� 0, 1� z � 0, and z |y|>w � 0,

we have I{x zy�w}� I{x (z �w/|y|)y}. We then have,

I
���û1ûT1 Xi � ✓̌a

��
��û1ûT1 Xi � ✓̌z⇤

i

�� 

� I

  
1 +

4C0�
�0.5

kn
�0.5

kEk

�
+

256n�0.5
k�

�0.5
kEk

2

�2

!
�

�2

✓
1�

16n�0.5
kEk

�

◆
(ûT1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

!

� I

⇢✓
1 +

C1�
�0.5

n
�0.5

kEk

�

◆
��2(ûT1,�i✏i)sign(uT1 (✓

⇤
z⇤
i
� ✓

⇤
a))

�
.

Since ✓⇤a =�✓
⇤
z⇤
i
, we have sign(uT1 (✓⇤z⇤

i
� ✓

⇤
a)) = sign(uT1 ✓⇤z⇤

i
). The proof is complete.

PROOF OF THEOREM 3.4. Recall that �1 =�
p
n/2. Same as the proof of Theorem 3.1,

we work on the high-probability event (46).
For the upper bound, from Lemma 3.2, there exists some � 2� such that for any i 2 [n],

I{ẑi 6= �(z⇤i )} I
��

1�C1 
�1
3

�
� 2

��û1,�iû
T
�i✏i

�� = I
��

1�C1 
�1
3

�
� 2

��ûT1,�i✏i

�� ,
for some C1 > 0, where the last inequality is due to that  3 is large. By Davis-Kahan Theo-
rem, we know there exists some si 2 {�1,1} such that kû1,�i � siu1k  2kEk/(

p
n� 1�)

4 �1
3 . Since hû1,�i, u1i � 0 is assumed, we have si = 1 for all i 2 [n]. Then

I{ẑi 6= �(z⇤i )} I

n�
1�C1 

�1
3

�
� 2

��uT1 ✏i
��+ 2

���(û1,�i � siu1)
T
✏i

���
o

 I
��

1� (C1 +C2) 
�1
3

�
� 2

��uT1 ✏i
�� + I

n
C2 

�1
3 � 2

���(û1,�i � siu1)
T
✏i

���
o
,

where C2 > 0 is a constant whose value will be determined later. Due to the independence of
û1,�i � siu1 and ✏i, we have (û1,�i � siu1)

T
✏i ⇠ SG(16 �2

3 �
2) and then

EI

n
C2� 2

���(û1,�i � siu1)
T
✏i

���
o
 2exp

✓
�
C

2
2�

2

128�2

◆
.

On the other hand, uT1 ✏i = p
� 1

2

Pp
j=1 ✏i,j where {✏i,j}j2[p] are i.i.d. with variance �̄2, which

can be approximated by a normal distribution. Since the distribution F is sub-Gaussian, its
moment generating function exists. Then we can use the following KMT quantile inequality
(see Proposition [KMT] of [30]). Let Y d

= �̄
�1

p
� 1

2

Pp
j=1 ✏i,j . There exist some constants

D,⌘ > 0 and Z ⇠N (0,1), such that whenever |Y | ⌘
p
p, we have

|Y �Z|
DY

2

p
p

+
D
p
p
.

Then,

EI
��

1� (C1 +C2) 
�1
3

�
� 2

��uT1 ✏i
�� 

= EI

⇢�
1� (C1 +C2) 

�1
3

��
�̄

 2 |Y |

�

 EI

⇢�
1� (C1 +C2) 

�1
3

��
�̄

 2 |Z|+
2DY

2

p
p

+
2D
p
p

�
+EI{|Y |> ⌘

p
p}

 EI

⇢�
1� (C1 +C2 +C3 + 2D) �1

3

��
�̄

 2 |Z|

�
+EI

⇢
2DY

2

p
p

�C3

�
+EI{|Y |> ⌘

p
p},
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where C3 > 0 is a constant. Using the fact that Y ⇠ SG(1) with zero mean, we have

EI
��

1� (C1 +C2) 
�1
3

�
� 2

��uT1 ✏i
�� 

 2exp

 
�

�
1� (C1 +C2 +C3 + 2D) �1

3

�2
�2

8�̄2

!
+ 2exp

✓
�
C3

p
p

4D

◆
+ 2exp

✓
�
⌘
2
p

2

◆
.

Then we have

E`(ž, z⇤)


1

n

nX

i=1

EI
��

1� (C1 +C2) 
�1
3

�
� 2

��uT1 ✏i
�� +

1

n

nX

i=1

EI

n
C2� 2

���(û1,�i � siu1)
T
✏i

���
o
+ e

�0.5n

 2exp

 
�

�
1� (C1 +C2 +C3 + 2D) �1

3

�2
�2

8�̄2

!

+ 2exp

✓
�
C

2
2�

2

128�2

◆
+ 2exp

✓
�
C3

p
p

4D

◆
+ 2exp

✓
�
⌘
2
p

2

◆
+ e

�0.5n
,

where e
�0.5n is the probability that (46) does not hold. Since � C�̄, when C2 is chosen to

satisfy C
2
2/(128C

2)� 16, we have

E`(ž, z⇤) 2exp

 
�

�
1�C

00
 
�1
3

�2
�2

8�̄2

!
+ exp

�
�C

00p
p
�
+ e

�0.5n
,

for some constant C 00
> 0.

For the lower bound, from (70) we know

I{ži 6= �(z⇤i )}� I
��

1 +C4 
�1
3

�
��2(ûT1,�i✏i)sign(uT1 (✓�(z⇤

i ) � ✓3��(z⇤
i )))

 
,

for some constant C4 > 0 assuming  3 is large. Using the same argument as in the upper
bound, we are going to decompose û

T
1,�i✏i into u

T
1 ✏i and (û1,�i � y1)T ✏i. Hence,

I{ži 6= �(z⇤i )}� I
��

1 +C4 
�1
3

�
��2(uT1 ✏i)sign(uT1 (✓�(z⇤

i ) � ✓3��(z⇤
i )))� 2

��(û1,�i � siu1)
T
✏i

�� 

� I
��

1 + (C4 +C5) 
�1
3

�
��2(uT1 ✏i)sign(uT1 (✓�(z⇤

i ) � ✓3��(z⇤
i )))

 

� I
�
C5 

�1
3 � 2

��(û1,�i � siu1)
T
✏i

�� ,
for some constant C5 > 0 whose value to be chosen. Let

Y
0 d
= �̄

�1(uT1 ✏i)sign(uT1 (✓�(z⇤
i ) � ✓3��(z⇤

i ))) = sign(uT1 (✓�(z⇤
i ) � ✓3��(z⇤

i )))�̄
�1

p
� 1

2

pX

j=1

✏i,j .

Then using the same argument above, there exists some Z
0
⇠ N (0,1) such that whenever

Y
0
 ⌘

0p
p, we have |Y

0
�Z

0
|

D0Y 02
p
p + D0

p
p where D

0
,⌘

0
> 0 are constants. Then

EI
��

1 + (C4 +C5) 
�1
3

�
��2(uT1 ✏i)sign(uT1 (✓�(z⇤

i ) � ✓3��(z⇤
i )))

 

= EI

⇢�
1 + (C4 +C5) 

�1
3

��
�̄

�2Y 0
�

� EI

⇢�
1 + (C4 +C5) 

�1
3

��
�̄

�2Z 0
�

2DY
02

p
p

�
2d
p
p

�
I
�
Y

0
 ⌘

0p
p
 

� EI

⇢�
1 + (C4 +C5 + 2D+C6) 

�1
3

��
�̄

�2Z 0
�
�EI

⇢
2DY

02
p
p

�C6

�
�EI

�
Y

0
> ⌘

0p
p
 
,
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where C6 > 0 is a constant. Then following the proof of the upper bound, and by a proper
choice of C5, we have

E`(ž, z⇤)� 2exp

 
�

�
1 +C

000
 
�1
3

�2
�2

8�̄2

!
� exp

�
�C

000p
p
�
� e

�0.5n
,

for some constant C 000
> 0.

D.2. Proofs of Lemma 3.4 and Theorem 3.5.

PROOF OF LEMMA 3.4. For the upper bound, we consider the following likelihood ratio
test. For any x 2R

p, define the two log-likelihood functions as

l1(x) =
pX

j=1

log f(xj � �), and l2(x) =
pX

j=1

log f(xj + �).

Then for each i 2 [n], define the likelihood ratio test as

ẑ
LRT
i =

(
1, if l1(Xi)� l2(Xi),

2, otherwise.

Then for any i 2 [n] such that z⇤i = 1, we have

EI
�
ẑ

LRT
i = 2

 
= P (l2(Xi)> l1(Xi)) = P

0

@
pX

j=1

log
f(2�+ ✏i,j)

f(✏i,j)
> 0

1

A= P

0

@
pX

j=1

log
f �p

p
(✏i,j)

f0(✏i,j)
> 0

1

A ,

where we use the fact 2� = �p
p . Since � is a constant, by local asymptotic normality (c.f.,

Chapter 7, [41]), we have
pX

j=1

log
f �p

p
(✏i,j)

f0(✏i,j)
d
!N

✓
�
I�2

2
,I�2

◆
.

Then, limp!1EI
�
ẑ

LRT
i = 2

 
 C1 exp

�
�I�2

/8
�

for some constant C1 > 0. We have the
same upper bound if z⇤i = 2 instead. Hence,

lim
p!1

inf
z

sup
z⇤2[2]n

E`(z, z⇤) lim
p!1

sup
z⇤2[2]n

E`(ẑLRT
, z

⇤) exp

✓
�
I�2

8

◆
.

For the lower bound, instead of allowing z
⇤
2 [2]n, we consider a slightly smaller pa-

rameter space. Define Z = {z 2 [2]n : zi = 1,81 i n/3, zi = 2,8n/3 + 1 i 2n/3}.
Then for any z, z

0
2 Z we have `(z, z0) = n

�1
Pn

i=1 I{zi 6= z
0
i}  1/3 due to the fact

n
�1

Pn
i=1 I{�(zi) 6= z

0
i}� 1/3 if � 6= Id. Hence,

inf
z

sup
z⇤2[2]n

E`(z, z⇤)� inf
z

sup
z⇤2Z

E`(z, z⇤)� n
�1 inf

z
sup
z⇤2Z

E

X

i2[n]

I{zi 6= z
⇤
i }

� n
�1

X

i>2n/3

inf
zi

sup
z⇤
i 2[2]

EI{zi 6= z
⇤
i }=

1

3
inf
zn

sup
z⇤
n2[2]

EI{zn 6= z
⇤
n},

where it is reduced into a testing problem on whether Xn has mean ✓⇤1 or ✓⇤2 . According to
the Neyman-Pearson Lemma, the optimal procedure is the likelihood ratio test ẑLRT

n defined
above. By the same argument, we have

lim
p!

inf
z

sup
z⇤2[2]n

E`(z, z⇤)�
1

3
lim
p!

inf
zn

sup
z⇤
n2[2]

EI{zn 6= z
⇤
n}�C2 exp

✓
�
I�2

8

◆
,

for some constant C2 > 0.
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PROOF OF THEOREM 3.5. First, we have the following connection between the Fisher
information I and the variance �̄2:

I�̄
2 =

 Z ✓
f
0

f

◆2

fdx

!✓Z
x
2
fdx

◆
�

✓Z
f
0

f
xfdx

◆2

=

✓Z
xf

0dx

◆2

= 1,

where we use Cauchy-Schwarz inequality and the integral by part
R
xf

0dx =
R
xfdx �R

fdx = 0 � 1 = �1. The equation holds if and only if f
0
/f / x, which is equivalent to

F being normally distributed.

APPENDIX E: AUXILIARY LEMMAS AND PROPOSITIONS AND THEIR PROOFS

PROPOSITION E.1. For Y and Ŷ defined in (1), we have (2) holds assuming �r��r+1 >

2
��(I �UrU

T
r )yn

��.

PROOF. Recall the augmented matrix Y
0 is defined as (Y,UrU

T
r yn). Note that UrU

T
r Y is

the best rank-r approximation of Y . Since
���I �UrU

T
r

�
Y

0��
F
=
����I �UrU

T
r

�
Y,0

���
F
=
���I �UrU

T
r

�
Y
��
F
,

we have UrU
T
r Y

0 also being the best rank-r approximation of Y 0. This proves that span(Ur)
and UrU

T
r are also the leading r left singular subspace and projection matrix of Y 0. Then

ÛrÛ
T
r �UrU

T
r is about the perturbation between Ŷ and Y

0.
Let �0r,�0r+1 be the rth and (r+1)th largest singular values of Y 0, respectively. By Wedin’s

Thereom (see Section 2.3 of [9]), if �0r � �̂r+1 > 0, then we have

ksin ⇥(Ûr,Ur)kF 

���Ŷ � Y
0
���
F

�0r � �̂r+1
=

��(I �UrU
T
r )yn

��
�0r � �̂r+1

.(73)

Regarding the values of �0r and �0r+1, first we have �0r � �r . This is because

�
0
r = inf

x2span(Ur)

��xTY 0��= inf
x2span(Ur)

���xTY,xT yn
���� inf

x2span(Ur)

��xTY
��� �r.

In addition, we have �0r+1 = �r+1, due to the fact that (I � UrU
T
r )Y

0 = ((I � UrU
T
r )Y,0).

By Weyl’s inequality, we have

|�̂r+1 � �
0
r+1|

��Y � Y
0��=

��(I �UrU
T
r )yn

�� .

Hence, if �r � �r+1 > 2
��(I �UrU

T
r )yn

�� is further assumed, we have

�
0
r � �̂r+1 � �r � �r+1 �

��(I �UrU
T
r )yn

��� 1

2
(�r � �r+1) .(74)

With (73), (74), and the fact kÛrÛ
T
r � UrU

T
r kF =

p
2ksin ⇥(Ûr,Ur)kF (see Lemma 1 of

[9]), the proof is complete.

LEMMA E.1. Let E = (✏1, . . . , ✏n) 2 R
p⇥n be a random matrix with each column ✏i ⇠

SGp(�2),8i 2 [n] independently. Then

P
�
kEk � 4t�(

p
n+

p
p)
�
 exp

✓
�
(t2 � 3)n

2

◆
,

for any t� 2.
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PROOF. We follow a standard ✏-net argument. Let U and V be a 1/4 covering set of the
unit sphere in R

p and in R
n, respectively. That is, for any u 2 R

p such that kuk = 1, there
exists a u

0
2 U such that ku0k = 1 and ku� u

0
k  1/4. Similarly, for any v 2 R

n such that
kvk= 1, there exists a v

0
2 V such that kv0k= 1 and kv� v

0
k  1/4. Then

��uTEv
��=

���u
0T
Ev

0 + u
0T
E(v� v

0) + (u� u
0)TEv

0 + (u� u
0)TE(v� v

0)
���



���u
0T
Ev

0
���+

���u
0T
E(v� v

0)
���+

��(u� u
0)TEv

0��+
��(u� u

0)TE(v� v
0)
�� .

Maximizing over u, v on both sides, we have

kEk= max
u2Rp,v2Rn:kuk=kvk=1

��uTEv
�� max

u02U ,v02V

���u
0T
Ev

0
���+

1

4
kEk+

1

4
kEk+

1

16
kEk .

Hence,

kEk  4 max
u02U ,v02V

���u
0T
Ev

0
��� .

For any u
0
2 U , v

0
2 V , we have each u

0T
✏i being an independent SG(�2) and then u

0T
Ev

0
⇠

SG(�2). Note |U |  9p  e
3p and similarly |V |  e

3n. Then by the tail probability of sub-
Gaussian random variable and by the union bound, we have

P
�
kEk  4t�(

p
n+

p
p)
�
 P

✓
max

u02U ,v02V

��u0TEv
0�� t�(

p
n+

p
p)

◆

 |U | |V | exp

 
�
t
2
�p

n+
p
p
�2

2

!

 exp

✓
�
(t2 � 3)n

2

◆
,

for any t� 2.

LEMMA E.2. Let X ⇠ SGd(�2). Consider any k  d. For any matrix U = (u1, . . . , uk) 2
R
d⇥k that is independent of X and is with orthogonal columns {ui}i2[k]. We have

P

⇣��UU
T
X
��2 � �

2(k+ 2
p

kt+ 2t)
⌘
 e

�t
.

PROOF. Note that tr(UU
T ) = tr((UU

T )2) = k and
��UU

T
�� = 1. This is a direct conse-

quence of Theorem 1 in [18] for concentration of quadratic forms of sub-Gaussian random
vectors.

PROOF OF PROPOSITION 3.1. Define P̂ =
P

i2[r] �̂iûiv̂
T
i . Due to the fact that P̂ is the

best rank-r approximation of X in spectral norm and P is rank-, under the assumption that
 r, we have that

���P̂ �X

��� kP �Xk= kEk.

Since r  k is assumed, the rank of P̂ � P his at most 2k, and we have
���P̂ � P

���
F


p

2k
���P̂ � P

���
p

2k
⇣���P̂ �X

���+ kP �Xk

⌘
 2

p

2k kEk(75)
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Now, denote ⇥̂ := (✓̂ẑ1 , ✓̂ẑ2 , . . . , ✓̂ẑn). Since ⇥̂ is the solution to the k-means objective (15),
we have that ���⇥̂� P̂

���
F


���P � P̂

���
F
.

Hence, by the triangle inequality, we obtain that
���⇥̂� P

���
F
 2

���P̂ � P

���
F
 4

p

2k kEk .

Now, define the set S as

S =

⇢
i 2 [n] :

���✓̂ẑi � ✓
⇤
z⇤
i

���>
�

2

�
.

Since
n
✓̂ẑi � ✓

⇤
z⇤
i

o

i2[n]
are exactly the columns of ⇥̂� P , we have that

|S|

���⇥̂� P

���
2

F

(�/2)2


128k kEk
2

�2
.

Under the assumption (16) we have

��2
n

k2 kEk
2 � 256,

which implies

|S|
�n

2k
.

We now show that all the data points in S
C are correctly clustered. We define

Cj =
�
i 2 [n] : z⇤i = j, i 2 S

C
 
, j 2 [k].

The following holds:

• For each j 2 [k], Cj cannot be empty, as |Cj |� |{i : z⇤i = j}|� |S|> 0.
• For each pair j, l 2 [k], j 6= l, there cannot exist some i 2 Cj , i

0
2 Cl such that ẑi = ẑi0 .

Otherwise ✓̂ẑi = ✓̂ẑi0 which would imply
��✓⇤j � ✓

⇤
l

��=
���✓⇤z⇤

i
� ✓

⇤
z⇤
i0

���



���✓⇤z⇤
i
� ✓̂ẑi

���+
���✓̂ẑi � ✓̂ẑi0

���+
���✓̂ẑi0 � ✓

⇤
z⇤
i0

���<�,

contradicting with the definition of �.

Since ẑi can only take values in [k], we conclude that the sets {ẑi : i 2Cj} are disjoint for all
j 2 [k]. That is, there exists a permutation � 2�, such that

ẑi = �(j), i 2Cj , j 2 [k].

This implies that
P

i2SC I{ẑi 6= �(z⇤i )}= 0. Hence, we obtain that

|{i 2 [n] : ẑi 6= �(z⇤i )}| |S|
128k kEk

2

�2
.

Since |S| �n
2k (which means `(ẑ, z⇤) �n

2k from the above display), for any  2� such that
 6= �, we have |{i 2 [n] : ẑi 6=  (z⇤i )}|� 2�n/k� |S|� �n/k. As a result, we have

`(ẑ, z⇤) =
1

n
|{i 2 [n] : ẑi 6= �(z⇤i )}|

128k kEk
2

n�2
.
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Moreover, for each a 2 [k], we have

���✓̂�(a) � ✓
⇤
a

���
2


���⇥̂� P

���
2

F

|{i 2 [n] : ẑi = �(a), z⇤i = a}|


���⇥̂� P

���
2

F
�n
k � |S|


64k2 kEk

2

�n


