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APPENDIX A: PROOF OF THEOREM 2.3

The proof idea is similar to that of Theorem 2.2 but with more involved calculation as 7 is
not necessarily . Consider any ¢ € [n]. Define

A—zr )\—z ,r+1
(G

We need to verify p_; > 2 first in order to apply Theorem 2.1. Recall the definition of P_; in
(36) and E_; in (38). Let the SVD of P_; be

pA(n—1)

: : >\7 7.]u l’]v—lj7

where A_j1 > Ai2> ... 2 A a(n_1)- Denote U_; 1. = (u—j1,U—i2,. ., u_i) € OP*.
Then by Weyl’s inequality, we have

(48) A i = Ay A it = Mgt | < 1B < | B
Then the numerator
(49) Air = Aipr1 = Aip = Aipp1 —2[|E] -

In the following, we are going to connect A_; , — A_; ,41 With A, — A1,
To bridge the gap between A_; ., A_; 1 and A, A\, 1, define

* * T * * * XT
— :(02f7“‘7922‘71aU*i,1:TU 0 ) € RP*™,

=i, LYz Vel

P_; is the

best rank-r approximation of P_;. This is because for any rank-r projection matrix M €
RP*P such that M2 = M, we have

Let 5\_@1 > 5\_@2 > ... > ;\_@pm be its singular values. Note that U_Z-,LTU

—1,1r

[Pes = danaT B = = DAY P [ = MMV U 0%
> [|(1 = Uniga U, 1) Poi] [+ 0
= HP_I‘—U—i,l:TU—zer—z ’

where we use the fact U_Z-J:TUTi 1. P—; is the best rank-r approximation of P_;. Hence,

span(U_; 1.,) is exactly the leading r left singular space of P_;. It immediately implies:
. S\—i,j = A_;  forany j > r + 1, including
(50) Airt1 = Aigt1-



¢ Since U,M:TUT P i and U_; 1. UL . P only differ by one column where the lat-

2,lirt — i, Lyt —
ter one can be seen as the leave-one-out counterpart of the former one, using the same

argument as in (37), we have

k
51 \? 1—— )\,
(51) _”_( ﬁn> 2o
Then from (49), we have

. . / k- ~
(52) Aigp — Aipr1 >4/ 1= Bin)\fi,r — Airr1 — 2[E.

For the difference between S\,i 7 S\,Z- r+1and A\., A, 11, we use the Weyl’s inequality again:

max‘)\,” )\’<HP P

* T *
9 U*Z 12U i,LirYzr

In the proof of Theorem 2.2, we show u_; ; € span({0} } o)) for each j € [s]. Then

* T * T px
’ 921* - U*i,liTU—i,lzr 2r || — H (u*i,T’Jrl? s aufi,l-c) (u*iﬂ”rlv s 7“*1',%) 927*
T 2
— E *
- ( —1, aez )
a€lkl:a>r+1

For any a € [k] such a > r + 1, we have

«\? 1 « )2 1 )
<%ﬁﬂfﬂ&eu b -1 D s e

nj: 2 =z jEn)ji 2 =z; kT
< ;fi,a < );nz il
bn_ 1= bn_q
Hence, we obtain [|0%. —U_;1.,-U 71 1005 S VEA- a/+/Bn/k — 1 and consequently,
(53) max ‘X,i,j - Aj‘ < VEAir
J€lk] B

pn
V %
Then together with (50), we have |A\_; , 11 — Art1| < /KA r4+1/+/Bn/k — 1 and hence
)\7“+1

NG

(54) Air1 < .
Ve

Denote d := n/k. With (52), we have

~ o d—1 )\—i,r 1 )\—i,r 1
Aip — Aipt1 > 7 (Ar - d—+1> - </\r+1 + \/d%l> —2[E|

d—1 1 1 1
. M_MH1+(+ ) “2)|E|
d Vd — N
\/ﬁ d—1/1 Nt
d—1 4
>A—— (A= N1 — —=\ —2||E
>\ (V= A= o) - 218
3

4
55 > 2 (A = At — Ay ) —211E],
55) >3 (= A1 = he ) 215
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where in the last two inequalities we use the assumption that d/k > 10. As a consequence,
we have

St —hoienn 30— A ) 218

H (1=0iaa 0% ) x| (1= 0m 07 ,) X

Next, we are going to simplify the denominator of the above display. Using the orthogo-
nality of the singular vectors, we have

H (I - U—i,lsrUTi,1:r> 9:;

< H (I— ﬁ*i,liﬁﬁfi,lzn> 0z || + H(ﬂﬂ',rﬂ, s i) (@it i) 02
R . R - 2
(1= O 2 |+ | 30 (a7 0z)
Jj=r+1
. 2
< 3VE|E| n )‘—w ||E||
% — j=r+1 A/ ﬁn A/ ,Bn
3\FHEH )‘—zr+1 HEH

where the second to the 1nequahty is due to (41) and (44). By (54) and the Weyl’s inequality,
we have

" 1
Airt1 S A +H|IE| < NG Ary1+[[E]
Then, with the assumption 5n/ k2 > 10, we have
R N 3 FE 2| E
(-0 00,0, )05 < gu || e, 2l
/ bn J _ f Tn _
kk
< (6| E|| + 2Ar+1).
6n
Hence,
(1= 0000 0) X || (1= Ol 2| ]| (= O 0T
kk
(6B + 2 rs1) + | E]l.-
on

As a result,

3 (AT - \/;mml) L.

ﬁ—i > > > 27
VRS (6| E]| +2Ar11) + || B 8

under the assumption that An/(k?) > 10 and (11).



The remaining part of the proof is to study {ﬂzl «Xi}aep) and then apply Theorem 2.1.
Following the exact argument as in the proof of Theorem 2.2, we have

Z(ALX) VT - LBV 1

Aia B s Bn _ —i,r

acr , Vo1 Bn 1 3

Under the assumption that 3n/(k?) > 10 and (11), (55) is lower bounded by \,./2. This also

implies A_; , > \,/2. Then a direct application of Theorem 2.1 leads to

4 1 E

f VT VT |IE]] +HU—mU_m
\V ﬁn/k )‘—i,r V ﬁn/kj -

3 T
i,l:rU

—i,l:rei

U—z 1: TUT

—i,1:r€

i, 1:r

Hﬁl:rUiJ:r - U—i,l Ut

)

o (Ve
Po ﬁn )\r

APPENDIX B: PROOFS OF RESULTS IN SECTION 3.4

Before presenting the proof of Lemma 3.3, we first show  defined in (23) always exists.
In addition, since 7 € [k] is a random variable, we are going to associate it with some deter-
ministic set in [k]. Recall A\; > Ay > ... > Apnp, are singular values of the signal matrix P
and r is the its rank. Let its SVD be P — Y icpan] Aiugv] with {uj}jeppnn € R being its

S p/\n
left singular vectors.

LEMMA B.1. Under the same conditions as stated in Lemma 3.3, 7 always exists. Fur-
thermore, we have © € R where

56)  Ri={ac[kl:da—Aap1 > (5—2) | E|| and \ar1 < (kp+ 1) ||E||}.

PROOF. The existence of 7 can be proved by contradiction. If 7 does not exist, it means
that {a € [k] : Ay — Aay1 > T} is empty, which implies A, < A1 + kT = Npq + kp||E||.
By Weyl’s inequality, we have |\, — \o| < || E|| for all singular values of X and P. Then we
have A\; < (kp+ 1)||E||. On the other hand, we have

2 _ T T p* T
M= max[olPl >“m max o S (AT
>  max H Tor —wlo; H = BHAQ

2k

where the first inequality is due to the mixture model structure in P and the second in-
equality is due to 2(zy + x2)% > (x1 — x2)? for any two scalars x1,z2. Then we have
A > /Bn/(2k)A = (o/v2)EM5 ||E| by (25). Since j < 1p/64 is assumed, we have
(kp+ 1| E| < (wo/f)kl ‘5| E||, which is a contradiction.

To prove the second statement, note that we have Ay — Arq > 5 || E|| and Asy1 < kp || E]|.
Since |Aq — Ao| < || E|| for all singular values of X and P, we have A; — Ajy1 > (5—2) | E||
and \;11 < (kp+1)||E|. Hence, 7 € R. O

" a,belk]: a;ébweRP ||w|| 1 2]€

PROOF OF LEMMA 3.3. From Lemma B.1, we know 7 exists and 7 € R. Consider an

arbitrary r € R and define Uy = (t,...,0,) € RP*", Perform k-means on the columns of
U.-U 1T:,,X and let the output be
. b k .
<z(r), {Qj(r)}j:1> = argmin Z HU1 UL X — 921

z€[k]™,{6, }?:1 le[n]



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 5

In the following, we are going to establish statistical properties for Z(r) and eventually obtain
a desired upper bound for ¢(2(r), z*). Since performing k-means on the columns of Ul x
is equivalent to k-means on the columns of U;..U[. X, and since # € R, we have 7 = (7
and thus the desired upper bound also holds for £(Z, z*).

In the rest of the proof we are going to analyze Z(r) for any r € R. For simplicity, we use
the notation Z, {0; }jeln) instead of Z(r), {0;(r)} je[n)- The remaining proof can be decom-
posed into several parts.

(Preliminary Results for Z, {éj}je[n] ). We are going to use Proposition 3.1 to have some
preliminary results. Define Uy, := (u1,...,u;) and Ugqqy. = (Urg1, ..., ug). Instead of
the decomposition (6), we can write

X, = Ul;rUljzﬂre; + U(T+1);kU(TT+1):k02* +€ = UmUlTwﬂ} + €&,

where € := U, 41). kU( 0%. + €;. In this way, we have a new mixture model with the

r+1):k
centers being {Uy.,.UL,.0% }ae[k] and the additive noises being {;}. Define F := (¢y,...,&,).
Then

HEH <[IEll+ H (U(TJrl):kU(TrH):kHZ*a R U(r+1):kU(Tr+1);k92:L> H
= BN+ ||V U 1P| = 1B+ 2

(57 <(kp+2)|El.

The separation among the new centers is no longer A. Define

A= bn[nn U1 UL, 05 — Ur UL, 0z -

a,belk
Forany a,b € [k], Uy, UL,.0% — Uy, UL,.0; = (92_9;:)_U(r+1):kU(TT+1):]€02+U(r+1):kU(j;+1):k9;-
Also,

Zie[n]:zjza U(r+1):kU(Tr+1)k HUTH U(Tr+1):k
= Imax

at

max HU(T+1 kU(r—i-l) praid {i€n]:z =a}] /Bn/k
_2VRA _ VEG ) B
\/BT \/ Bn/k

(58)

Hence, we have
2Vk(kp+1) | E|

VBn/k

59) A> 0 — 05| — 2 HU WUT
(59) béﬁl}ﬂ#bu bl gé% (r+1):6Uy

Then from Proposition 3.1, as long as (which will be verified later)
. A
(60) Yo =

> 16,

we have

0(z,2%) = % ielnl s o(:0)] < 2

and

m?guaqﬁ(z U UL, 05| < CoB™"kn™0% || E]|.
€
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where Cy = 128.
(Entrywise Decomposition for Z). Next, we are going to have an entrywise decomposition for

I{%; # ¢(=;)} that is analogous to that of Lemma 3.2. When (60) is satisfied, from Lemma
3.1, we have

Urir Ufiei | + HUl:rfﬁT:rU(r+1):kU(7;+1);k9Z;f

H{zﬁé¢(z;)}gﬂ{(1—co% 2HU1TU1,£Z
By the definition of €; and (58), we have

N VA
HUlz'rUlzrei

IN

ﬁl:rﬁljjrei + H U(r—i—l):kU(TrJrl):kez;‘

VE(p+ 1) 2]
pn/k

IN

Ul:rﬁlj:rﬁi +

Then, we have

. . \/E kp+1)||E
Lz A 0D} <1 (1 - ol ) A <2 ([0, 08| + YL LDIED
vV Bn/k
- 2Vk(kp+ 1) ||E||\ « PN
1 (1-Codgt - Vk(kp +1) |1 B AngUlerlea .
VBn/kA
From (56), under the assumption that 5 > 4 and 3n/k* > 400, we have 5y defined as in
(11) to satisty

(=D
max {||B1|, /= (ko + 1)1 5]}

po > > 2.

Then Theorem 2.3 can be applied, with which we have

2 256vrk 256 HU—Z‘J:?’UE,MEZ' .

HUAvl’I”UiTr - U—i,l TU 1, 1:r

F™  y/np Ar
Then following the proof of Lemma 3.2, we have
I{z # ¢(27)}
1 2Vk(kp+1) || Bl
< - -
_11{<1 Colg \/WA <2 (|00 0%y ]| + |01 0T, = 01007,
v 2 DIIE|YN « 2 E 256 || E
<1l (1-coist - Vk(kp+1) || E| A<9 56\ﬁH I, <1+ 56 || H) w07
\/ﬂn/ A )\'r
. 2 p+ 2 El'\ « 256 | E
ol (1 gyt 2RI 2D IEN 5 _, (+ BOELY | 07,0
\/Bn/k‘A )\r
. 2 0+ 2 El\ « 2
<I 1—C0w0_1— \/E(kp—i_ 5T)H H A2<1+ 56> zlrUTz‘l;rei )
V Bn/kA p—2 ’

where in the last inequality we use A, > (p — 2) || E'|| > 0 (as long as p > 2) from (56).

IIEH)}
)
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The last step of the proof is to simplify the above display using A instead of A. Then,
under the assumption that 5 > 256, we have (1 +256/(p — 2))~" < (1 — 512/). Recall the
definition of ¢y in (25). Under the assumption that p < 1)9/64, we have

. 4 —-0.51.2,,—0.5 ~ E 45 A
61) A2A<1— BTk n0p ]l |>:A<1—f)>2,
A o 2
according to (59). Then together with (57), we can verify (60) holds due to
A/2 A Yo 5 1.

bo > > ==

Y0 B0k 05 (4 ) [B] ~ 4505k OB 4
Rearranging all the terms with the help of (61), we can simplify I{%; # ¢(z})} into
I{z # o(27)}

~ 450'5k2n0'5ﬁHEH> ( 256) ( 4ﬁ> - AT
<14 (1 4Como — 1-2) (1-2 A§2HU,Z-7 0T e
{< o A2 p Yo ' b

|

A

<1 { (1 — 5Coply ! — 256,5—1> A<2 HU,Z-,MUE,MQ

O]

PROOF OF THEOREM 3.2. Recall the definition of F in (46). Then if F holds, by appro-
priate choices of C1,Cs, we can verify the assumptions needed in Lemma 3.3 hold, which
lead to

T # GEDHFY <T{ (1= C"(pawz™ + 5 1)) & 2|0 10007, 156

JI{F)

for some constant C” > 0. Though # is random, the proof of Lemma 3.3 shows that 7 € R C
[k] where R is defined in (56). Note that for any r € [k], we can follow the proof of Theorem
3.1 to show

EI { (1= C"(paty ' +p3 ")) A <2 HU—Ll!TUTi,l:rei

1, A2
} <exp <—(1 —C"(p2vy " + Py ))802> ,

for some constant C*” > (. Hence, the same upper bound holds for EI{(1 — C"(patp; * +
pa NA < 2\|U_i,1:7:UTi71:fei||}. The rest of the proof follows that of Theorem 3.1 and is

omitted here. UJ

APPENDIX C: PROOF OF THEOREM 3.3

Define F = {||E|| < v2(y/n+ /p)o}. Then by Lemma B.1 of [27], we have P (F) >
1 — 0087 Then under the event F, the assumption (26) implies (16) holds, and hence (17)
and (18) hold. For simplicity, and without loss of generality, we can let ¢ in (17)-(18) to be
the identity, and we get

Cok (14 /2)% o2
fe) = Lt ez 2y « DALV

< CoB 9k (1 + \/@ o,

)

and

0, —0;

max ‘
a€k]

where Cy > 0 is some constant.



Denote P = (A]lkuszkX and let 15.71» be its ith column so that 15.,@ = Ul;kUEkXi. We define
r € [k] as (with A\gq; :=0)

(62) r:max{je[k]:)\j—)\j+127‘\/n+pa},
for a sequence T — oo to be determined later. We note that if A/(ks7% (1 —|—p/n)% o) —
oo, the set {j € [k] : A\j — Aj41 > 74/n + po} is not empty. Otherwise, this would imply A\ <

k7+/n + po which would contradict with the fact Ay > /n/kA/(20) (see Proposition A.1
of [27]). By the definition of r in (62), we immediately have

(63) Ar — Arp1 2 T/ + o,
(64) and A\,41 < kT/n + po.
We split ULk into ((A]l:,,, U(T+1):k) where Uy, 1= (t1,...,40,)and U(r+1) g = (Ups1,. .., Ug).

We decompose 15.72- :Pfg)—kp(’?),where 15( )= U1 TUlT P and P( ) U(r+1):kU(TT+1);kP,i-

Similarly, for each a € [k], we decompose 6, = o + 6% ), where 9((1 )= U1, UL 6, and

02 .— (A](Hl):kﬁ(j;ﬂ):kéa. Due to the orthogonality of {f‘l}le[k}’ we obtain that for any
i € [n] and any a € [k] such that a # 2,
. . )
iz =ay <a{ [P0+ 2 a0 -0 | < |0+ 22 -0 -2 ')
R R R ey

We denote 77/ = o(1) to be another sequence which we will specify later. Then the above
display can be decomposed and upper bounded by

)

//A2 R
qu g

+1{ra2<2(PD 6P —0D) = A+ Bia.

i

Then
S%Z > EI{%=a}
i€[n] a€k]:a#z;
©5) <P(A) 42 Y BAL{F Y Y EBLI{F)

1€[n] a€lk]:a#z; i€[n] a€(k]:a#z]

We are going to establish upper bounds first for n=" 3=, 1 3 c(k.azo: EBiol {F} and then
for n~* Z'Le[n} Eae[k]:a;ﬁz; EAZ‘,GJ]I {‘F}

(Analysis on 0= 370302 EBiolI{F}). For 32,0 3,2 EBiJ{F}, we can di-
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rectly use upper bounds established in Section 4.4.3 of [27]'. It proves that for any i € [n],

" o 2 2
S Bl{FNT) < 2exp —i( T A o k) A

Cq4 e
T 29—1 p 2
a€lk]:a#z; k=T B 2<1+5)0— 3n o

where ¢4 > 0 is some constant, and 7 is some high-probability event in the sense that

P(T)> 1 nkexp (J"‘k))

9
Hence,
1 1 C
— . < = )
nz 3 EBZ,aﬂ{f}_nZ 3 ]EBl,a]I{]-'ﬁT}JrIP’(T)
i€[n] a€k]:a#z; i€[n] a€k]:a#z;
2
1 A n—k\ A® (n—k)
<2 _= = ).
< 2exp 2<c4k:372ﬁ‘3(1+£)a o ) 7 | ke (57

(Analysis on 0= Y00 4z EAi JI{F}). We first follow some algebra as in Section
4.4.2 of [27] to simplify A; ,]1{F}. For any i € [n] and a # z, it proves
]}H {7},

k187214 L )
60wtz i (1- - EIITR Y s oo

A

for some constant c; > 0. Still working on the event JF, it also proves

+ 8\/5\/5_11412 (1 + %)a.

Our following analysis on A; ,I{F} is different from the rest proof in Section 4.4.2 of
[27]. Note that P} — Uy, U6 = U1, UF, X; — U1, UL, 6% = Ur, UL €;. Then (66) and
(67) give '

2:373 P "
(68) A; J{F}< H{ (1 ey TP g V) U) A<2 HULTUlT:Te,-

(67) [P =8| < || PP - tn0T 0

where we use 7 — oo and the fact that 1 + \/p/n, /1 + p/n are of the same order.

Recall the definition of X _; in (8) and 0—i,1:r0 T is the leave-one-out counterpart of

—1, L7
U1.-UL, . For (68), we can decompose ||U1.,. UL ;|| into
5 OAT _f 5T

UliT’Ul:r - U—i,liTUfi,lzr

Hﬁlzrﬁlj;rq +

3 T
S H U—Z‘,IZT‘U—'L'71;7'67;

el

To upper bound H(A]LTUlT:T — U_M;T(A]Ti,ml F, We are going to use Theorem 2.3. Since (63)-

(64) hold, under the assumption Sn/ kE* > 100, we have
)\7‘ — >\7’+1

max { | B], /5571 }

!The model in [27] assumes {ej} ud N(0,T) while in this paper we assume {e; } ud N(0,021). To directly
use results from [27], we can re-scale our data to have X;» = X /o forall j € [n]. Then {X;} has N'(0, I) noise

and the separation between their centers becomes A/o. Then all the results from [27] can be used here with A
replaced by A/o.

>

(O
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Applying Theorem 2.3, we have

g T
- 256\/@ 256 HU77;71:TU77;.1ZT‘6@'
F~  /nB Ar ’

HULTUII:T — U_i,lzrﬁzi,lzr

Hence,

3 T
< H U—i,l:rU i,1:r€i

2561k 256“071',1:7'05.1#61'
Vo A

_ 256k (B, (256 ‘

VB A

_ 256v2k(V/n + P)o . <1 . 2561/2(y/11 + \/}3)0>

- 1E]

HULTUIJ:TG’L

2 T
UinUZj g6

A~ A

T
U*Z'J”'U i.1:r€i

VnpB T/ + po

< 51268705 (1 + \/f) o+ (1+512r7) HU-i,lerTi.w

where in the second to the last inequality, we use (63) for A, and the event F for ||E||. Then
(68) leads to

2373 P R .
Al {F} < 11{ (1 g R (V) U) A<2(1+4512r7) HU_Z-,MUTZ,MQ

A -
K872 (1+4/2 N
< ]I{ (1 —cy ( L (A Vi)o + 71>> A<?2 HU_,-MUTZ-MQ }
where c3, ¢4 > 0 are some constants. As long as 1 — c4(k*7879%(1 + y/p/n)o/A+771) >

)

}H{f}

1/2, we can use Lemma E.2 to calculate the tail probability of || U,M;TU Ti,lzr
the proof of Theorem 3.1, we have

EA; J{F} <exp <_ (1 e (k;QTB_z (Z+ Vo . T_1>> A? > |

¢;||. Following

802

for some constant c; > 0. Then we have,

n1 Z Z EA; JJ{F} <kexp <_ (1 . (k%‘ﬁ_z (Z-I— \/g) o +T_1>> SA;> |

i€[n] a€lk]:a#z;

(Obtaining the Final Result.) From (65) and the above upper bounds on n Zie[n] > aclk]:atzr EB; 1{F}
and n~! D icin] 2ack]ars: EAi ol {F}, we have

2
1 A n—k\ A (n— k)
Fl(5. 2*) < ¢—008n | o _t _ RS
0(z2,2")<e + 2exp 5 (C4k272ﬁ_;(1+£)0 ™ > 3 —i—nkexp( 5 )

2.3—% D
+k‘exp<— (1—05 (k L (;+\/g)0+7_1>>8i22>'
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Since we assume n/k* > 100, we have (n — k)/n > 0.99. Hence, under the assumption
that A/(k*°37°5(1 4 £)o) — oo, we can take 7,7" to be

0.25
= 7_//—1 - A
' k3‘5ﬁ_0'5 (1 + %) o

such that 7 — oo and 7" = o(1). Then for some constant cg > 0, we have

2 05 \2
El(2, 2*) < =008 | 26xp —% <k3.550'5A(1 1) a) % + nke 017
A —0.25 )
+hkexp | — | 1—2c <k3'5ﬁ_0‘5 (1+£)U) 802
“o o ( A ) o Aiz 4 e 008n
<exp Ce 5505 (11 2) o 352 € :

APPENDIX D: PROOFS OF RESULTS IN SECTION 3.6

D.1. Proof of Theorem 3.4. The proof of Theorem 3.4 relies on the following entrywise
decomposition that is analogous to Lemma 3.2 but in an opposite direction. Note the the
singular vectors 11, and {11, —; },¢[,) are all identifiable up to sign. Without loss of generality,
we assume (G, uq) > 0 and (4, —;,u;) >0 forall i € [n].

LEMMA D.1.  Consider the model (28). Let ¢ € ® be the permutation such that {(%, z*) =
LI{i € [n]: 2 # ¢(2})}|. Then there exists a constants C,Cy > 0 such that if

A
= >
(69) 305,05 ||| = c,
then for any i € [n],
~0.5,,-0.5
(70) 1{z #¢(z)} > 1 { (1 + GF Z ”E”> A< —2<a?,_iei>sign<u1T9¢<z:>>}-

PROOF. The proof mainly follows the proofs of Lemma 3.1 and Lemma 3.2 with some
modifications such as adding a negative term instead of a positive term in order to obtain a
lower bound.

We first write Z equivalently as

s [512 . . C Ty 2
<Z’{Qj}j1>_ze[Q]iféi?%nleRMez[a;}HUIU1 Xl

where 0, = @, ¢, for each a € [2]. Note that & = 2. From Proposition 3.1, we have

I . . Cok || E|I”
- -3 ¥ < i
n‘{ze[n] ZZ#(Z)(Zz)H— TLAQ )
and
(71) max ||0y() — 04| < CoB~"kn "% || B,

a€l2]
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for some permutation ¢ : [2] — [2] and some constant Cp > 0. Without loss of generality,
assume ¢ = Id.
Recall that 0 = —05 = 61, w1 = 1//ply. A = dy@p = =¥, and |uf (07, —
(=0Z.))| = 26\/p = A. By Davis-Kahan Theorem, we have
mln | — suq|| < @ 2|12l
se+ A1 VA
where the last inequality is due to the assumption (16). Since we assume (U1, u1) > 0, we
have |41 — suq|| = minges |41 — suy|.

Consider any 7 € [n] and any a € [2] such that a # z. Note that for any scalars z,y,w
iflz—yl<|z—w i (w—y)(y +w)/2 > sign(w — y)x. Since
(y+w)/2=(y —w)/2+ w, a sufficient condition is |w — y| /2 + |w| < (—sign(w — y))z.
Hence, we have

<1/16,

Gul <l X, - .}

— @1 0a| < 0] X; — 41 6. |}
—H{‘ul € — U] ((9 — 9;}) ‘ < ‘ﬂ{el - fL{ (ézl - 9:*)‘}
{)af (0 —02)| <~ cosiental 0 ~ 0.}

> 1{]-

We are going to show sign (4! (6,: — 0,)) = sign(ulT(sz —0%)). By (71), we have

(ez;‘ - éa)‘ + ﬁ’{

v

< —2(i¥ e;)sign(i (.- —éa))}.

N *

<ézf—éa,9:;—9;;>: 2+<0 0.0 9*> <e — 05,07 0*>

-0.5,,—0.5
s (1 2k B

* *
0:. — 0

>0,

where the last inequality holds as long as A > 20087 %°kn=9%||E||. Due to the fact
0. — 07 € span(uy), 0. — 0} € span(ty), and (G, u1) > 0, if uy,05. — 0} are in the same
direction, then i, 92; — é; must also be in the same direction, and vice versa. Hence, we
have sign(a? (0. — 0,)) = sign(ulT(Hj‘* —6%)). Thus,

I{ iy Xy = 0x;|}

> 1{]|0-; ~ 0. —2(af e)sign(ud (62 — 07))}.

Following the same analysis as in the proof of Lemma 3.1, we can get the following result
that is analogous to (45):

ala,{ éa” S

0. — 0.

1{||aal X, anif Xi — 0z |}
4 _0'5]{: —0.5 E
> ]I{ <1 n Cop An I H) A< _Q(Q{ei)sign(uf(el} — 92))}

Next, we are going to decompose ﬁlTei following the proof of Lemma 3.2. Denote i1, ;
be the leave-one-out counterpart of 1, i.e., 41 —; is the leading left singular vector of X _;.
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Since we assume (@1, —j,u1) > 0, we have |41, —; —ui|| < 2| E| /(Vn — 1A). As a result,
we have ||4; —; — u1]] <4/ E|| /(v/n — 1A) which leads to

(72) (G, —i,00) > 1— 4| || /(Vn—1A) > 0

We have the following decomposition:
(@] e;)sign(u] (07 — 07))
= (f, ty@if €;) sign(uf (6% — 67))
= (1, (ﬂL_iﬂ{,i)e» sign(uf(@j; —03)) + (a, (ol —ay _Zul ;)€ ) sign(ug (9* —0))
= (a1, G,—) (0 _e;)sign(uf (03, — 03)) + (@1, (] — i8] _;)ei) sign(uf (05, —67))
< (t1,01,—4) (ﬁ{,iei)sign(u?(ﬁ* —02) + ||ma] — i _Zul | el -

Note that A1/ || E|| = Ay/n/(2]||E||) is greater than 16 under the assumption (69) holds for a
large constant C'. From Theorem 2.2 we have

P ko Hﬁly—iﬂlT,—zfz
~ M/E[ VBR A

”U]_Ul u]_ _Zul 72‘

Then,
(] e;)sign(ui (0% — 6;))

Ao aT
128k 128 Hul,,iuLﬂq
< A(Uy,01,—; uT,Z sign(uy (0. — 0 + E
< i i) (s s )signCut 02 =000 + | T e+ mmer ) 1
~T -1 2

e asgosggos g2 512ad e n !B
= (@1, 1,—;) (] _se;)sign(ul (67 — 602)) + f 1N, . '
So far we have obtained

1l X: — G < fanaf X~ [}

40 70.5]6 —0.5 E
{ 08 i [ H)Ag—Q@l,aLi>(ﬂ{_i6i)sign(u{(023—92))

256”70.5]{&70.5 HE”? 512 ‘ﬁ{_iei nt ||E||2
- A a A?

B ACo B Pkn 05 |E||  256n05k3-05 || E|?
_H{ (1 + A + A2

€;

. _ 2
ai i\ n~ | E
A2 )

< =2 (fy,dy, i) (0] _e)sign(uf (0% —03)) —

From (72) we have

(i ,i,ﬂ1>—n7HH21_4H H (n ) _ n H H
7 A? A A2
o W B L
o A -2’
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assuming — 0°\|E|| > 64.Forany z,y,z,w € Rsuchthatx > 0,1 >2>0,and z |[y| > w > 0,
wehave]I{x<zy w}z]l{xg(z—w/\yby} We then have,

]1{ U AT ATXi—ézf

Ulul
ACoB~O%kn~03 |[B]| | 256n~0%%50% ||
>1 1
> (( 4GS 0B 256n 70

—0.5
- (1 _ 16”A”E”> (af _ei)sign(ud (07, — 0::)))

—-0.5,,—0.5 E
ZH{<1+(M Z I H)AS—Q(af_ie,-)sign(uF{(Q::—92))}.

Since 0 = —0?., we have sign(u{(@‘; —0)) = sign(ul’ 07.). The proof is complete. O

PROOF OF THEOREM 3.4. Recall that A\; = A/n/2. Same as the proof of Theorem 3.1,
we work on the high-probability event (46).
For the upper bound, from Lemma 3.2, there exists some ¢ € ® such that for any ¢ € [n],

I{z # ()} <T{(1 = Cryp3 ") A < 2|ty —alei]|} =T{(1 — Crvp3 ') A < 2|af e
for some C; > 0, where the last inequality is due to that 3 is large. By Davis-Kahan Theo-

rem, Weknowthere exists some s; € {—1,1} suchthat ||i1 —; — s;ui|| < 2| Ef| /(vVn —1A) <
4epg !, Since (@ —;,u1) > 0 is assumed, we have s; = 1 for all i € [n]. Then

H{ﬁ’i 7& (ﬁ(zj)} S I { (1 — Cl’lb?)_l) A S 2 ‘u{61| + 2 ‘(ﬁl,—i — SiU1>T6i }

< ]I{(l — (Cl + 02)¢§1) A<2 ‘ulTel‘} +1 {ngglA <2 ’(ﬂl,—i — Siul)T €

!

where Co > 0 is a constant whose value Wlll be determined later. Due to the independence of
@y, — siug and e;, we have (@ _; — s;u1)” € ~ SG(16¢)520%) and then

02A2
<2 — 2 .
} = £Xp < 12802>
On the other hand, u{ei = p_% E§:1 € ; where {¢; ; }je[p] are i.i.d. with variance 2, which

can be approximated by a normal distribution. Since the distribution F' is sub-Gaussian, its
moment generating function exists. Then we can use the following KMT quantile inequality

(see Proposition [KMT] of [30]). Let YV 4 6‘1p7% Z§:1 €;,;. There exist some constants
D,n>0and Z ~ N(0,1), such that whenever |Y'| < 7,/p, we have

DY2 D

NN

EI {CQA < 2 ‘(al,—i - Siul)T €;

Y — 7| <

Then,

:E}I{(l —(C1+ Co)y3 ) % SQ\Y}

2
SEH{(l—(Cl—FCQ)wg_l)?52\Z\+21\)}/ %ﬁ

A
<ai{( @+ arcrant) 2 <o) vmf

b+ELY)> 0v5)

2DY?

zcs}+m{r¥|>n\/ﬁ},
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where C3 > 0 is a constant. Using the fact that Y ~ SG(1) with zero mean, we have
EI{(1—(C1+Co)y5 ") A<2|ul |}

1— (C1 + Oy + Cy +2D)p7 1) A2 C 2
§2exp<—( ( 1+C2+Cs+ )¢3 ) >—|—2exp<— 3gﬁ>+2exp<—772p>.

852 4
Then we have
El(z,27)

1 — 1 — . .
SnZEH{(l_(Cl+c2)¢31)A§2’u,{ez‘}+n;EH{CQAS2‘(u1’Z_Slul)TQ }—|—3 0.5

i=1

862

C3A? C 2
—+ 2exp <— 2 ) + 2exp (— if) + 2exp <_77p> + e 05m

1— (Cy + Cy + C5 +2D)p; 1) A2
§2exp<( (C1+Cy+C3+2D)y3 ") )

12802 2

where e 05" is the probability that (46) does not hold. Since o < C'a, when C5 is chosen to
satisfy C2/(128C?) > 16, we have

1— C// -1 QAQ
E(2,2%) < 2exp <— ( 8¢3 ) ) +exp (—C"/p) + €70,
o

for some constant C”' > 0.
For the lower bound, from (70) we know

I{% # ¢(2)} 2 T{(1+ Catb3 ") A < —2(a] _e5)sign(u] (Bp(ar) — 03— g(:))) }
for some constant Cy > 0 assuming 13 is large. Using the same argument as in the upper
bound, we are going to decompose ﬂ{_iei into ulTeZ- and (tq,—; — yl)TeZ-. Hence,

H{Z’i 7& ¢(z;k)} Z I { (1 + C4¢51) A S —2(u{ei)sign(u{(9¢(23) — 93_(75(2;))) -2 }(ﬁl,—i — siul)Tei‘}
>T{(14 (Ca+C5) 3 ") A < —2(uf &)sign(uf (Op(or) — O3-(:1))) }
—1I {CS%_IA <2|(fy,—i — siut) e },

for some constant C5 > 0 whose value to be chosen. Let

p
V'S5 (uf e)sign(u] (Bpar) — O3-(zr))) = sign(uf (Bg(ey — 3-g(z)))0 P72 D> €.
j=1

Then using the same argument above, there exists some Z' ~ N(0,1) such that whenever

D/y/Q D/
Y' <n'\/p, we have |Y' — Z'| < 7 + W where D’,n' > 0 are constants. Then

EI{(14 (Cs+C5)v3 ") A < —2(uf &)sign(uf (Op(or) — O3-(:))) }

:EH{(l—l— (C4—|—C5)¢3_1) % < —2Y’}

A 2DY"? 24
ZEH{(1+(C4+(15)¢3‘1)U§—2Z’— N

A
2EH{(1+(C’4+05+2D+C’6)¢§1)5§—2Z/}—E]I{

b <om

2DY"?

> 06} _EI{Y' >/ p).
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where Cg > 0 is a constant. Then following the proof of the upper bound, and by a proper
choice of (5, we have

1 C/// -1 2A2
Ee(zaz*) Z QeXp (—( + 835’ ) > _ eXp (_C/”\/ﬁ) _ 6—0.571’

for some constant C"" > 0. O
D.2. Proofs of Lemma 3.4 and Theorem 3.5.

PROOF OF LEMMA 3.4. For the upper bound, we consider the following likelihood ratio
test. For any € RP, define the two log-likelihood functions as

p P
li(x) = Zlogf(xj —6), and lz(z) = Zlogf(:vj +6).
Jj=1 j=1
Then for each i € [n], define the likelihood ratio test as
ART _ {1, if 1 (X0) > 12(X0),
= .
2, otherwise.

Then for any ¢ € [n] such that 2} = 1, we have

P P A (€ )
. F(20+ € ) fa(eiy
EI{2FRT =2} =P (Io(X;) > 1(X;)) =P Zlogﬁ >0 | =P Zlogﬁ
= €i,j = 0\€i,j
where we use the fact 20 = %. Since A is a constant, by local asymptotic normality (c.f.,
Chapter 7, [41]), we have
P fal(ey) TA2
ZlogL 4N (—,IAQ) .
= foley) 2

Then, limy_,o EI { /8T =2} < C} exp (—ZA?%/8) for some constant C; > 0. We have the
same upper bound if z; = 2 instead. Hence,

IA?
lim inf sup El(z,2%)< lim sup EL(ZMRT %) <exp (—) .
P00 2 gy P00 gl 8

For the lower bound, instead of allowing z* € [2]", we consider a slightly smaller pa-
rameter space. Define Z = {z€[2]":2;=1,V1<i<n/3,z,=2,Vn/3+1<i<2n/3}.
Then for any z,2’ € Z we have £(z,2') = n= 1Y "  T{z # 2/} <1/3 due to the fact
n~tY " T{¢(z) # 2/} > 1/3if ¢ # 1d. Hence,
inf sup El(z,z*)>inf sup El(z,2*) > n"Linf sup E Z I{z # %}

Z zee2m Z 2reZ 2 2cZ iem]

1
>npt Z inf sup El{z; # 2} = 7 inf sup El{z, # 2},
L ey 3 2 ziepy
i>2n/3 27 €l !

where it is reduced into a testing problem on whether X,, has mean 67 or 65. According to
the Neyman-Pearson Lemma, the optimal procedure is the likelihood ratio test 2-RT defined
above. By the same argument, we have

o R T . IA?
liminf sup El(z,z )Zghmmf sup El{z, # 2} > Coexp | ——— |,

p— z z=e[2]n p— zZn zx€l?] 8

for some constant Cy > 0. ]

>0

)
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PROOF OF THEOREM 3.5. First, we have the following connection between the Fisher
information Z and the variance &2

o (5 1) () s = (for =

where we use Cauchy-Schwarz inequality and the integral by part [zf'dx = [z fdz —
J fdz =0 — 1 = —1. The equation holds if and only if f’/f oc x, which is equivalent to
F' being normally distributed. O

APPENDIX E: AUXILIARY LEMMAS AND PROPOSITIONS AND THEIR PROOFS

PROPOSITIONE.1. ForY andY defined in (1), we have (2) holds assuming o, — 041 >
2 H(I - UrUvT)ynH

PROOF. Recall the augmented matrix Y” is defined as (Y, U,.U!y,). Note that U, U Y is
the best rank-r approximation of Y. Since

17 =0:0) Y |lp = (1 = 0:U7) ¥, 0) | = [[(T = 007 ) Y

we have U,U!Y" also being the best rank-r approximation of Y. This proves that span(U,.)
and U, U! are also the leading r left singular subspace and projection matrix of Y. Then
U, U,,T — U,UT is about the perturbation between YandY'.

Leto;, 0, be the rthand (r+ 1)th largest singular values of Y, respectively. By Wedin’s
Thereom (see Section 2.3 of [9]), if o] — 6,41 > 0, then we have

i HY -V I-UUF

(73) jsin 0@, v < 1o le _ [ = U U]
Op = Or41 o) — 0Oyl

Regarding the values of o;. and 0., first we have o,. > o,.. This is because

- : T~ . T T ) T
o= it Y= it @Y )|z inf Y] 20

In addition, we have o} = 0,41, due to the fact that (I — U,U! )Y’ = ((I — U,U])Y,0).
By Weyl’s inequality, we have

R R [ B [ |

Hence, if 0, — 01 > 2 H (I — UTUTT)ynH is further assumed, we have

N 1
(74) 0-; —Op41 2 0p — Opy] — H(I - UTUg)ynH > 5 (Ur - 0r+1) .
With (73), (74), and the fact ||U.UL — U,UT || = v2||sin ©(U,,U,)||r (see Lemma 1 of
[9]), the proof is complete. ]

LEMMA E.1. Let E = (e1,...,€,) € RP*™ be a random matrix with each column ¢; ~
SG,(0?),Vi € [n] independently. Then
t2 —3)n
P (HEH > dto(v/n + \/13)) <exp (—(2)> ,

foranyt > 2.
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PROOF. We follow a standard e-net argument. Let I/ and V be a 1/4 covering set of the
unit sphere in R? and in R"”, respectively. That is, for any u € R? such that ||u|| = 1, there
exists a u’ € U such that ||v/|| =1 and ||u — /|| < 1/4. Similarly, for any v € R™ such that
|v]| = 1, there exists a v’ € V such that ||'|| = 1 and ||v — v'|| < 1/4. Then

| Ev| = ’ulTEv’ +uTE@w—v)+ (u—u)TEv 4+ (u— o) E(w -1

< ’u/TEU/

+ ’u'TE(v —)

+ ‘(u - u/)TEv/| + ’(u —u)\'E(v - v’)‘ .
Maximizing over u, v on both sides, we have

|E| = max ’uTEv}g max ‘U/TEU/

1 1 1
N+ B+ — B .
u€RP veR”:||ul|=||v||=1 u' €U’ eV 4” H 4” H 16 H H

Hence,

IE| <4 max ‘UITEU/
u' eU V' €V

For any v/ € U, v’ € V, we have each u/”¢; being an independent SG(o?) and then u/” Ev' ~
SG(c?). Note |U| < 97 < e3P and similarly |V'| < e3". Then by the tail probability of sub-
Gaussian random variable and by the union bound, we have

P(||E| < 4to(vn+/p)) <P < max ‘u’TEv" <to(vn+ \/]3)>

u'eU ' eV

< U1V]exp (—W)

<exp (—@2_23)n> )

for any ¢ > 2. O

LEMMA E2. Let X ~ SGy(0?). Consider any k < d. For any matrix U = (uy,...,u) €
RI*F that is independent of X and is with orthogonal columns {Uz‘}ie[k]- We have

P((lUUT x| = 02k +2vEE +2t)) <.

PROOF. Note that tr(UU”) = tr((UUT)?) =k and |[UUT|| = 1. This is a direct conse-
quence of Theorem 1 in [18] for concentration of quadratic forms of sub-Gaussian random
vectors. ]

PROOF OF PROPOSITION 3.1. Define P = Ziem Xzaz@? Due to the fact that P is the
best rank-r approximation of X in spectral norm and P is rank-«, under the assumption that
x < r, we have that

|2 -x]||<1P-x1= 121

Since r < k is assumed, the rank of P — P his at most 2k, and we have

(75) HP . PHF < x/ﬁ”ﬁ - PH <2k (HP - X‘ +1IP - X|) <2v2k | E|
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A~

Now, denote © := (ézl ) 9}2, ...,03,). Since © is the solution to the k-means objective (15),
we have that

~ ~ < ~

fo- ], =2 r], < B

LA
5 (-

Since {éz — 0. } are exactly the columns of © — P, we have that
v Jie

i€[n]

Now, define the set .S as

S—{ie[n]: 0:, — 03

. 2
@—PH 2
18] < P 128k || E|| .

(a/2? — A2
Under the assumption (16) we have
AZ
PR 956,
k| E
which implies
on
Sl < —.
IST= 57

We now show that all the data points in S¢ are correctly clustered. We define
Cij={icn]:zf =4,i€8°), jelk]
The following holds:
* For each j € [k], C; cannot be empty, as |C;| > |[{i: 2z} =j}| —|S]| > 0.
* For each pair j,1 € [k],j # [, there cannot exist some i € C},7’ € C; such that z; = 2.
Otherwise éz = éz which would imply

o5 o] = oz — o

2%

< 0;* - éi’i éi’z‘ - éi’z’ ééi’ o H:*/

d

+]

] <A,
contradicting with the definition of A.

Since Z; can only take values in [k], we conclude that the sets {2; : ¢ € C;} are disjoint for all
Jj € [k]. That is, there exists a permutation ¢ € ®, such that

73i = ¢(])7 (AS Cj7 ] € [k]
This implies that ), e I{2; # ¢(2;)} = 0. Hence, we obtain that

k| E|?
i€ n]: 2 #6(2)} < |S] < 128A‘2H'

Since |S| < g—z (which means £(Z,z*) < g—z from the above display), for any ¢ € ® such that
) # ¢, we have |{i € [n] : 2; #(2)}| > 26n/k — |S| > Bn/k. As aresult, we have
128k || E||?

0(3,2%) = %W eln): 2 # 60} < =
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Moreover, for each a € [k], we have

~ 2 ~ 2
2 6-rl, -7l sy

Héma) — 0,

“Hiel]:Z=¢(a),zf=a}| T Br_|5] T fn



