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APPENDIX A: PROOFS OF AUXILIARY LEMMAS OF SECTION 5

PROOF OF LEMMA 5.1. Let e�1 �
e�2 � . . .� e�d be eigenvalues of eX . By Weyl’s inequal-

ity, we have ke�r+1��r+1k  kX � eXk. Under the assumption kX � eXk< (�r ��r+1)/4,
we have

�r �
e�r+1 = �r � �r+1 + �r+1 �

e�r+1 � �r � �r+1 �

���X � eX
���>

3

4
(�r � �r+1)> 0.

Define

⇥(U, eU) := diag(cos�1
�1, . . . , cos

�1
�r) 2Rr⇥r

,

where �1 � �2 � . . .� �r are singular values of UH eU . Since �r�
e�r+1 > 0, by Davis-Kahan

Theorem [13], we have

���sin⇥(U, eU)
���

���X � eX
���

�r �
e�r+1
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���X � eX

���
3(�r � �r+1)

.

From page 10 of [13], we also have ksin⇥(U, eU)k= k(I �UU
H)eUk. The proof is complete.

PROOF OF LEMMA 5.2. Since both x and y are unit vectors, we have

kx� ybk
2 = 2� x

H

yb� (yb)Hx= 2� 2Re(xH

yb),8b 2C1.(47)

Therefore, when x
H
y = 0, we have kx� ybk =

p
2 independent of b. In this case, we also

have k(In � xx
H)yk= kyk= 1. This proves the statement in the lemma for the xH

y = 0 case.
When x

H
y 6= 0, the infimum over b in (47) is achieved when b= y

H
x/|y

H
x|. We then have

inf
b2C1

kx� ybk
2 =

����y�
x

H
y

|xHy|
x

����
2

=

����y� xx
H

y+ xx
H

y�
x

H
y

|xHy|
x

����
2

= ky� xx
H

yk
2 +

����

✓
1�

1

|xHy|

◆
(xH

y)x

����
2

= ky� xx
H

yk
2 +

����1�
1

|xHy|

����
2

|x
H

y|
2

= ky� xx
H

yk
2 + |1� |x

H

y||
2
,

where we use the orthogonality between (Id � xx
H)y and x. With ky� xx

H
yk

2 = 1 +
kxx

H
yk

2
� 2yH

xx
H
y = 1 � |x

H
y|

2
� (1� |x

H
y|)2, where the last inequality is due to 0 

|x
H
y| 1, the proof is complete.
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PROOF OF LEMMA 5.3. Note that EA= pJn�pIn. Note that (1n/
p
n)TEA(1n/

p
n) =

(n� 1)p and for any unit vector u 2Rn that is orthogonal to 1n/
p
n, we have uTEAu= 0�

pkuk
2 =�p. Hence, (n� 1)p is the largest eigenvalue with 1n/

p
n being the corresponding

eigenvector, and �p is another eigenvalue with multiplicity n� 1.
By Weyl’s inequality, we have |�0

� (n�1)p|,max2jn |�
0

j
� (�p)| kA�EAk, which

leads to (33) after rearrangement. This completes the proof, with �
⇤ = �

0 and �
⇤
2 = �

0
2 by

Lemma 2.1.

PROOF OF LEMMA 5.4. The first two inequalities stem from Lemma 5 and Lemma 6 of
[17], respectively. The third inequality is derived from Lemma 7 and (29) in [17].

PROOF OF LEMMA 5.7. It is proved in (31) of [17].

APPENDIX B: PROOFS FOR ORTHOGONAL GROUP SYNCHRONIZATION

B.1. Proof of Lemma 3.2. Before the proof, we first state a technical lemma that is
analogous to Lemma 5.2.

LEMMA B.1. For any two matrices U,V 2O(d1, d2), we have

k(Id1
� V V

T)Uk  inf
O2O(d2)

kV �UOk 
p
2k(Id1

� V V
T)Uk .

PROOF. Let V? 2 Rd1⇥(d1�d2) be the complement of V such that (V,V?) 2 O(d1).
From Lemma 2.5 and Lemma 2.6 of [11], we have kU

T
V?k  infO2O(d2) kV �UOk 

p
2kUT

V?k. The proof is complete with kU
T
V?k= kV?V

T

?
Uk= k(Id1

� V V
T)Uk.

PROOF OF LEMMA 3.2. We first give an explicit expression for the first-order approxi-
mation eV . Denote µ1 � . . . � µn as the eigenvalues of Y . Let Y V

⇤ = GDN
T be its SVD

where G 2 O(n,d), N 2 O(d), and D 2 Rd⇥d is a diagonal matrix with singular values.
Define M

⇤ = diag(µ⇤
1, . . . , µ

⇤

d
) 2Rd⇥d. Since

Y V
⇤ = Y

⇤
V

⇤ + (Y � Y
⇤)V ⇤ = V

⇤
M

⇤ + (Y � Y
⇤)V ⇤

,(48)

we have

max
i2[d]

|Dii � µ
⇤

i | k(Y � Y
⇤)V ⇤

k  kY � Y
⇤
k ,(49)

by Weyl’s inequality. Under the assumption that kY � Y
⇤
k  min{µ⇤

d
� µ

⇤

d+1, µ
⇤

d
}/4, we

have {Dii}i2[d] all being positive. Note that

eV = argmin
V 02O(n,d)

��V 0
� Y V

⇤
��2
F
= argmax

V 2O(n,d)

⌦
V

0
, Y V

⇤
↵

= argmax
V 02O(n,d)

tr
�
V

0T
GDN

T

�
= argmax

V 02O(n,d)

⌦
G

T

V
0
N,D

↵
.

Due to the fact that G,V
0
2O(n,d), N 2O(d), and the diagonal entries of D are all posi-

tive, the maximum is achieved when G
T
V

0
N = Id. This gives eV =GN

T which can also be
written as

eV = Y V
⇤
S,(50)

where

S :=ND
�1

N
T

2Rd⇥d(51)
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can be seen as a linear operator and plays a similar role as 1/kXu
⇤
k for eu=Xu

⇤
/kXu

⇤
k

in (9).
Define M := diag(µ1, µ2, . . . , µd) 2Rd⇥d. Then we have

VM = Y V,

eVM = Y V
⇤
SM,

and consequently,

(V � eV )M = Y (V � V
⇤
SM) = Y (V � eV ) + Y (eV � V

⇤
SM).

After rearranging, we have

Y eV � eVM = Y (eV � V
⇤
SM).

Multiplying (I � V V
T) on both sides, we have

Y (I � V V
T)eV � (I � V V

T)eVM = (I � V V
T)Y eV � (I � V V

T)eVM

= (I � V V
T)Y (eV � V

⇤
SM),

where the first equation is due to Y (I�V V
T) = (I�V V

T)Y as V is the leading eigenspace
of Y . Note that for any x 2 span(I � V V

T) and for any i 2 [d], we have kY x� µixk �

(µi � µd+1)kxk. Then we have
���Y (I � V V

T)eV � (I � V V
T)eVM

���� (µd � µd+1)
���(I � V V

T)eV
��� .

As a result, we have
���(I � V V

T)eV
���

1

µd � µd+1

���(I � V V
T)Y (eV � V

⇤
SM)

��� ,(52)

which is analogous to (31) in the proof of Lemma 3.2. By Lemma B.1, we have

inf
O2O(d)

���V � eV O

���
p
2
���(I � V V

T)eV
���

p
2

µd � µd+1

���(I � V V
T)Y (eV � V

⇤
SM)

��� .

(53)

In the next, we are going to analyze (I � V V
T)Y (eV � V

⇤
SM). Using (50), we have

(I � V V
T)Y (eV � V

⇤
SM)

= (I � V V
T)Y (Y V

⇤
S � V

⇤
SM)

= (I � V V
T)Y (V ⇤

M
⇤
S + (Y � Y

⇤)V ⇤
S � V

⇤
SM)

= (I � V V
T)Y V

⇤ (M⇤
S � SM) + (I � V V

T)Y (Y � Y
⇤)V ⇤

S

= (I � V V
T) (V ⇤

M
⇤ + (Y � Y

⇤)V ⇤) (M⇤
S � SM)

+ (I � V V
T)V ⇤

M
⇤
V

⇤T(Y � Y
⇤)V ⇤

S

+ (I � V V
T)(Y ⇤

� V
⇤
M

⇤
V

⇤T)(Y � Y
⇤)V ⇤

S + (I � V V
T)(Y � Y

⇤)(Y � Y
⇤)V ⇤

S

= (I � V V
T)V ⇤

M
⇤ ((M⇤

S � SM) + V
⇤T(Y � Y

⇤)V ⇤
S)

+ (I � V V
T)(Y � Y

⇤)V ⇤ (M⇤
S � SM)

+ (I � V V
T)(Y ⇤

� V
⇤
M

⇤
V

⇤T)(Y � Y
⇤)V ⇤

S + (I � V V
T)(Y � Y

⇤)(Y � Y
⇤)V ⇤

S,
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where in the second to last equation, we use (48) and the decomposition Y = V
⇤
M

⇤
V

⇤T +
(Y ⇤

� V
⇤
M

⇤
V

⇤T) + (Y � Y
⇤). Hence, with kY

⇤
� V

⇤
M

⇤
V

⇤T
k =max{|µ⇤

d+1|, |µ
⇤
n|}, we

have���(I � V V
T)Y (eV � V

⇤
SM)

���

 µ
⇤

1 k(I � V V
T)V ⇤

k (kM⇤
S � SMk+ kY � Y

⇤
kkSk)

+ kY � Y
⇤
kkM

⇤
S � SMk+max{|µ⇤

d+1|, |µ
⇤

n|}kY � Y
⇤
kkSk+ kY � Y

⇤
k
2
kSk .

Then from (53), we have

inf
O2O(d)

���V � eV O

���
p
2

µd � µd+1

 
µ
⇤

1 k(I � V V
T)V ⇤

k (kM⇤
S � SMk+ kY � Y

⇤
kkSk)

+ kY � Y
⇤
kkM

⇤
S � SMk+max{|µ⇤

d+1|, |µ
⇤

n|}kY � Y
⇤
kkSk

+ kY � Y
⇤
k
2
kSk

!
.

In the rest of the proof, we are going to simplify the display above. By Weyl’s inequality,
we have

max
i2[n]

|µi � µ
⇤

i | kY � Y
⇤
k .(54)

Since kY � Y
⇤
k  (µ⇤

d
� µ

⇤

d+1)/4 is assumed, we have

µd � µd+1 �
µ
⇤

d
� µ

⇤

d+1

2
.

By this assumption and Lemma 5.1, we have

k(I � V V
T)V ⇤

k 
2kY � Y

⇤
k

µ⇤

d
� µ⇤

d+1

.

By (49) and the definition of S in (51), we have

kSk=
��D�1

�� 1

µ⇤

d
� kY � Y ⇤k


4

3µ⇤

d

.

In addition,

kM
⇤
S � SMk  kM

⇤
S � SM

⇤
k+ kS (M �M

⇤)k

 k(M⇤
� µ

⇤

dId)S + S(µ⇤

dId �M
⇤)k+ kSkkM �M

⇤
k

 kSk (2kM⇤
� µ

⇤

dIdk+ kM �M
⇤
k)


4

3µ⇤

d

(2(µ⇤

1 � µ
⇤

d) + kY � Y
⇤
k) ,

where in the last inequality we use the fact kM �M
⇤
k=maxi2[d] |µi � µ

⇤

i
| and (54). Com-

bining all the results together, we have

inf
O2O(d)

���V � eV O

���


2
p
2

µ⇤

d
� µ⇤

d+1

✓
µ
⇤

1
2kY � Y

⇤
k

µ⇤

d
� µ⇤

d+1

✓
4 (2(µ⇤

1 � µ
⇤

d
) + kY � Y

⇤
k)

3µ⇤

d

+
4kY � Y

⇤
k

3µ⇤

d

◆◆
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+
4

3µ⇤

d

(2(µ⇤

1 � µ
⇤

d) + kY � Y
⇤
k)kY � Y

⇤
k+

4max{|µ⇤

d+1|, |µ
⇤
n|}kY � Y

⇤
k

3µ⇤

d

+
4kY � Y

⇤
k
2

3µ⇤

d

!


16
p
2

3
�
µ⇤

d
� µ⇤

d+1

�
µ⇤

d

✓
2µ⇤

1

3(µ⇤

d
� µ⇤

d+1)
+ 1

◆
kY � Y

⇤
k
2

+
8
p
2

3
�
µ⇤

d
� µ⇤

d+1

�
µ⇤

d

✓
4µ⇤

1 (µ
⇤
1 � µ

⇤

d
)

µ⇤

d
� µ⇤

d+1

+ 2(µ⇤

1 � µ
⇤

d) +max{|µ⇤

d+1|, |µ
⇤

n|}

◆
kY � Y

⇤
k .

B.2. Proofs of Lemma 3.1, Proposition 3.1, and Proposition 3.2.

PROOF OF LEMMA 3.1. Similar to the proof of Lemma 2.1, we can show each eigenvalue
of A is also an eigenvalue of (A⌦ Jd) � Z⇤

Z
⇤T with multiplicity d. At the same time, each

eigenvalue of (A⌦ Jd) �Z⇤
Z

⇤T must be an eigenvalue of A. The proof is omitted here.

PROOF OF PROPOSITION 3.1. Since � = 0, we have U = U
⇤. Then bZj = P(Uj) =

P(U⇤

j
) = P(Z⇤

j
quj). Since Z

⇤

j
is an orthogonal matrix, we have bZj = Z

⇤

j
sign(quj). Then by

(16), the proposition is proved by the same argument used to prove Proposition 2.1.

Before proving Proposition 3.2, we state some properties of A and W . The following
lemma can be seen as an analog of Lemma 5.4.

LEMMA B.2. There exist constants C1,C2 > 0 such that if np

logn >C1, then we have

k(A⌦ Jd) �Wk C2

p
dnp,

nX

i=1

������

X

j2[n]\{i}

Aij

�
Z

⇤T

i WijZ
⇤

j �Z
⇤T

j WjiZ
⇤

i

�
������

2

F

 2d(d� 1)n2
p

 
1 +C2

r
logn

n

!
,

nX

i=1

������

X

j2[n]\{i}

AijWijZ
⇤

j

������

2

F

 d
2
n
2
p

 
1 +C2

r
logn

n

!
,

hold with probability at least 1� 3n�10.

PROOF. The first inequality is from Lemma 4.2 of [19]. The second and third inequalities
are from (59) and (60), together with Lemma 4.3, of [19], respectively.

PROOF OF PROPOSITION 3.2. By Lemma 5.4 and Lemma B.2, there exist constants
c1, c2 > 0 such that when np

logn > c1, we have kA�EAk  c2
p
np and k(A⌦ Jd) �Wk 

c2
p
dnp with probability at least 1 � 6n�10. By Lemma 3.1 and Lemma 5.3, we have

�
⇤
1 = �

⇤

d
� (n � 1)p � c2

p
np, max{|�⇤

d+1|, |�
⇤
n|}  p + c2

p
np, and �

⇤

d
� �

⇤

d+1 � np �

2c2
p
np. Note that d is a constant. When np

logn and np

�2 are greater than some sufficiently



6

large constant, we have 4� k(A⌦ Jd) �Wk  np/2 min{�⇤

d
,�

⇤

d
� �

⇤

d+1} satisfied. Since
X � (A⌦ Jd) �Z⇤

Z
⇤H = �(A⌦ Jd) �W , a direct application of Lemma 3.2 leads to

inf
O2O(d)

���U � eUO

���


8
p
2

3(�⇤
1 � �⇤

d+1)

 ✓
4

3(�⇤
1 � �⇤

d+1)
+

2

�⇤
1

◆
�
2
k(A⌦ Jd) �Wk

2

+
max{|�⇤

d+1|, |�
⇤
n|}

�⇤
1

� k(A⌦ Jd) �Wk

!

=
8
p
2

3(np/2)

✓✓
4

3(np/2)
+

2

np/2

◆
�
2
c
2
2dnp+

p+ c2
p
np

np/2
�c2

p
dnp

◆

 c3
�
2
d+ �

p
d

np
,

for some constant c3 > 0.

B.3. Proof of Theorem 3.1. We first state useful technical lemmas. They are analogs of
Lemma 5.7 and Lemma 5.8, respectively. Lemma B.3 is proved in (31) of [19].

LEMMA B.3. There exists some constant C > 0 such that for any ⇢ that satisfies ⇢
2
np

d2�2 �

C , we

nX

i=1

I

8
<

:
2�

np

������

X

j2[n]\{i}

AijWijZ
⇤

j

������
> ⇢

9
=

;
�
2

⇢2p
exp

 
�

r
⇢2np

�2

!
,

with probability at least 1� exp

✓
�

q
⇢2np

�2

◆
.

LEMMA B.4 (Lemma 2.1 of [19]). Let X, eX 2Rd⇥d be two matrices of full rank. Then,
���P(X)�P( eX)

���
F


2

smin(X) + smin( eX)

���X � eX
���
F
.

PROOF OF THEOREM 3.1. Let O 2 O(d) satisfy kU � eUOk = infO02O(d) kU � eUO
0
k.

Define � := U � eUO 2 Rnd⇥d. Recall qu is the leading eigenvector of A. From Proposition
2.1, Proposition 3.2, Lemma 5.4, and Lemma B.2, there exist constants c1, c2 > 0 such that
if np

logn ,
np

�2 > c1, we have

k�k  c2
�
2
d+ �

p
d

np
,(55)

max
j2[n]

����quj �
1
p
n
b2

���� c2

 s
logn

np
+

1

log(np)

!
1
p
n
,(56)

kA�EAk  c2
p
np,(57)

k(A⌦ Jd) �Wk  c2

p
npd,(58)
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nX

i=1

������

X

j2[n]\{i}

Aij

�
Z

⇤T

i WijZ
⇤

j �Z
⇤T

j WjiZ
⇤

i

�
������

2

F

 2d(d� 1)n2
p

 
1 + c2

r
logn

n

!
,(59)

nX

i=1

������

X

j2[n]\{i}

AijWijZ
⇤

j

������

2

F

 d
2
n
2
p

 
1 + c2

r
logn

n

!
,(60)

with probability at least 1 � n
�9, for some b2 2 {�1,1}. By Lemma 3.1 and Lemma 5.3,

we have �
⇤
1 = �

⇤

d
, |�⇤

d
� (n� 1)p|  c2

p
np,

���⇤

d+1

��  p+ c2
p
np, and �

⇤

d
� �

⇤

d+1 � np�

2c2
p
np.

Using the same argument as (50) and (51) in the proof of Lemma 3.2, we can have an
explicit expression for eU . Recall the definition of eU in (22). Let XU

⇤ =GDN
T be its SVD

where G 2O(nd,d), N 2O(d), and D 2Rd⇥d is a diagonal matrix with singular values. By
the decomposition (21), we have

XU
⇤ = ((A⌦ Jd) �Z

⇤
Z

⇤T)U⇤ + �((A⌦ Jd) �W)U⇤ = �
⇤

1U
⇤ + �((A⌦ Jd) �W)U⇤

.

(61)

Since the diagonal entries of D correspond to the leading singular values of XU
⇤, Weyl’s

inequality leads to maxj2[d] |Djj � �
⇤
1| � k(A⌦ Jd) �Wk  c2�

p
dnp. Denote

t := p+ c2
p
np+ c2�

p
dnp.(62)

We then have

max
j2[d]

|Djj � np| t.(63)

When np

logn ,
np

d�2 are greater than some sufficiently large constant, we have np/2  �
⇤
1 and

np/2  Djj  3np/2 for all j 2 [d]. As a consequence, all the diagonal entries of D are
positive. Then eU can be written as

eU =XU
⇤
S,

where

S :=ND
�1

N
T

2Rd⇥d
.(64)

Then (63) leads to
����
1

np
Id � S

����=
����
1

np
Id �D

�1

����
1

np� t
�

1

np


2t

(np)2
,(65)

and

kSk=
��D�1

�� 2

np
.(66)

Using (61), we have the following decomposition for U :

U = eUO+�=XU
⇤
SO+�= (�⇤

1U
⇤ + �((A⌦ Jd) �W)U⇤)SO+�.

Recall the definition of U⇤ in (14). Define �⇤ := U
⇤
�

1
p
n
Z

⇤
b2. When np

logn � 2c⇤2, by the
same argument used to derive (39) as in the proof of Theorem 2.1, we have

k�⇤
k=

����Z
⇤
�

✓
qu⌦ 1d �

1
p
n
1n ⌦ 1db2

◆����=
����qu⌦ 1d �

1
p
n
1n ⌦ 1d

����=
p

d

����qu�
1
p
n
1nb2

����


2c2

p
np+ 2p

np

p

d.

(67)
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Then U can be further decomposed into

U =

✓
�
⇤

1U
⇤ + �((A⌦ Jd) �W)

✓
1
p
n
Z

⇤
b2 +�⇤

◆◆
SO+�.

For any j 2 [n], denote [(A⌦ Jd) �W]j· 2Rd⇥nd as the submatrix corresponding to its rows
from the ((j � 1)d+ 1)th to the (jd)th. Note that SO 2Rd⇥d. Then Uj has an expression:

Uj =

✓
�
⇤

1U
⇤

j +
�
p
n
[(A⌦ Jd) �W ]j·Z

⇤
b2 + �[(A⌦ Jd) �W ]j·�

⇤

◆
SO+�j

=

0

@�
⇤

1Z
⇤

j quj +
�
p
n

X

k 6=j

AjkWjkZ
⇤

kb2 + �[(A⌦ Jd) �W ]j·�
⇤

1

ASO+�j ,

where �j 2Rd⇥d is denoted as the jth submatrix of �.
Note that we have following properties for the mapping P . For any B 2 Rd⇥d of full

rank and any F 2 O(d), we have P(BF ) = P(B)F . In addition, if B is positive-definite,
P(B) = Id. Since we have shown the diagonal entries of D are all lower bounded by np/2,
(64) leads to P(S) = Id. Then

��� bZj �Z
⇤

jOb2

���
F
=
��P(Uj)�Z

⇤

jOb2

��
F
=
��P(Z⇤T

j UjO
T

b2)� Id

��
F
.

We have

Z
⇤T

j UjO
T

b2 =

✓
�
⇤

1qujb2Id +
�
p
n
⌅j + �b2Z

⇤T

j [(A⌦ Jd) �W ]j·�
⇤

◆
S +Z

⇤T

j �jO
T

b2

where

⌅j :=
X

k 6=j

AjkZ
⇤T

j WjkZ
⇤

k .

Note that from (56), we have

b2quj �
 
1� c2

 s
logn

np
+

1

log(np)

!!
1
p
n
.

As long as np

logn is greater than some sufficiently large constant, we have b2quj � 1
2
p
n
. Since

�
⇤
1 is also positive, we have

Z
⇤T

j
UjO

T
b2

�⇤
1qujb2

= S + Tj(68)

where Tj is defined as

Tj :=
1

�⇤
1qujb2

✓✓
�
p
n
⌅j + �b2Z

⇤T

j [(A⌦ Jd) �W ]j·�
⇤

◆
S +Z

⇤T

j �jO
T

b2

◆

=
1

�⇤
1qujb2

�
p
n
⌅jS +

�b2Z
⇤T

j
[(A⌦ Jd) �W ]j·�⇤

S

�⇤
1qujb2

+
Z

⇤T

j
�jO

T
b2

�⇤
1qujb2

.

As a consequence, when det(Uj) 6= 0, we have
��� bZj �Z

⇤

jOb2

���
F
=

����P
✓
Z

⇤T

j
UjO

T
b2

�⇤
1qujb2

◆
� Id

����
F

= kP (S + Tj)� IdkF .(69)
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Let 0 < �,⇢ < 1/8 whose values will be determined later. To simplify k bZj � Z
⇤

j
Ob2kF,

consider the following two cases.
(1) If

����
1

�⇤
1qujb2

�
p
n
⌅jS

����
�

np
(70)

����
�b2Z

⇤T

j
[(A⌦ Jd) �W ]j·�⇤

S

�⇤
1qujb2

����
⇢

np

����
Z

⇤T

j
�jO

T
b2

�⇤
1qujb2

����
⇢

np
(71)

all hold, then

smin(S + Tj)� smin(S)� kTjk= smin(D
�1)� kTjk=D

�1
11 � kTjk

�D
�1
11 �

� + 2⇢

np
,

which is greater than 0 by (63). Together with (68), we have det(Uj) 6= 0. The same lower
bound holds for smin(S + (Tj + T

T

j
)/2). Since S is positive-definite, we have P(S + (Tj +

T
T

j
)/2) = Id. By Lemma B.4 and (69), we have

��� bZj �Z
⇤

jOb2

���
F

=

����P (S + Tj)�P

✓
S +

Tj + T
T

j

2

◆����
F


1⇣

D
�1
11 �

�+2⇢
np

⌘
����
Tj � T

T

j

2

����
F


1

�⇤
1qujb2

1

2
⇣
D

�1
11 �

�+2⇢
np

⌘
 

�
p
n

��⌅jS � S
T⌅T

j

��
F
+ 2

���b2Z⇤T

j [(A⌦ Jd) �W ]j·�
⇤
S
��
F

+ 2
��Z⇤T

j �jO
T

b2

��
F

!
.

We can further simplify the first term in the display above. We have
��⌅jS � S

T⌅T

j

��
F
=

����
1

np

�
⌅j �⌅T

j

�
�⌅j

✓
1

np
Id � S

◆
+ (

1

np
Id � S

T)⌅T

j

����
F


1

np

��⌅j �⌅T

j

��
F
+ 2

����
1

np
Id � S

����k⌅jkF .

Using (65) and (66), we have
��� bZj �Z

⇤

jOb2

���
F


1

�⇤
1qujb2

1

2
⇣
D

�1
11 �

�+2⇢
np

⌘
 

�
p
n

1

np

��⌅j �⌅T

j

��
F
+

�
p
n

t

(np)2
k⌅jkF

+
4

np
� k[(A⌦ Jd) �W ]j·�

⇤
kF + 2k�jkF

!
.
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Using the lower bounds for �⇤
1, qujb2, and D

�1
11 , as given at the beginning of this proof, we

have��� bZj �Z
⇤

jOb2

���
F


1

�
np� p� c2

p
np
�⇣

1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘⇣
1

np+t
�

�+2⇢
np

⌘ �

2np

��⌅j �⌅T

j

��
F

+
4�t

(np)2
k⌅jkF +

16�
p
n

np
k[(A⌦ Jd) �W ]j·�

⇤
kF + 16

p
nk�jkF .

Let ⌘ > 0 whose value will be given later. By the same argument as used in the proof of
Theorem 2.1, we have
��� bZj �Z

⇤

jOb2

���
2

F


1 + ⌘

�
np� p� c2

p
np
�2 ⇣

1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘2 ⇣
1

np+t
�

�+2⇢
np

⌘2
�
2

4(np)2
��⌅j �⌅T

j

��2
F

+ 3(1 + ⌘
�1)

16�2
t
2

(np)4
k⌅jk

2
F + 3(1 + ⌘

�1)
256�2

n

(np)2
k[(A⌦ Jd) �W ]j·�

⇤
k
2
F

+ 3(1 + ⌘
�1)64nk�jk

2
F .

(2) If any one of (70)-(71) does not hold, we simply upper bound k bZj �Z
⇤

j
eQb2kF by 2

p
d.

Then this case can be written as
��� bZj �Z

⇤

jOb2

���
2

F

 4d

 
I
⇢����

1

�⇤
1qujb2

�
p
n
⌅jS

����>
�

np

�
+ I

⇢����
�b2Z

⇤T

j
[(A⌦ Jd) �W ]j·�⇤

S

�⇤
1qujb2

����>
⇢

np

�

+ I
⇢����

Z
⇤T

j
�jO

T
b2

�⇤
1qujb2

����>
⇢

np

�!
.

Using (66), �⇤
1 � np/2, and qujb2 � 1/(2

p
n), we have

��� bZj �Z
⇤

jOb2

���
2

F

 4d
�
I{8� k⌅jk � �np}+ I

�
8
p
n� k[(A⌦ Jd) �W ]j·�

⇤
k � ⇢np

 
+ I

�
4
p
nk�jk � ⇢

 �

 4d

✓
I{8� k⌅jk � �np}+

64�2
n

(⇢np)2
k[(A⌦ Jd) �W ]j·�

⇤
k
2
F + 16n⇢�2

k�jk
2
F

◆
.

Combining these two cases together, we have
��� bZj �Z

⇤

jOb2

���
2

F


1 + ⌘

�
np� p� c2

p
np
�2 ⇣

1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘2 ⇣
1

np+t
�

�+2⇢
np

⌘2
�
2

4(np)2
��⌅j �⌅T

j

��2
F

+ 3(1 + ⌘
�1)

16�2
t
2

(np)4
k⌅jk

2
F + 3(1 + ⌘

�1)
256�2

n

(np)2
k[(A⌦ Jd) �W ]j·�

⇤
k
2
F
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+ 3(1 + ⌘
�1)64nk�jk

2
F

+ 4d

✓
I{8� k⌅jk � �np}+

64�2
n

(⇢np)2
k[(A⌦ Jd) �W ]j·�

⇤
k
2
F + 16n⇢�2

k�jk
2
F

◆

=
1+ ⌘

�
np� p� c2

p
np
�2 ⇣

1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘2 ⇣
1

np+t
�

�+2⇢
np

⌘2
�
2

4(np)2
��⌅j �⌅T

j

��2
F

+ 3(1 + ⌘
�1)

16�2
t
2

(np)4
k⌅jk

2
F + 4dI{8� k⌅jk � �np}

+
256�2

n

(np)2
�
3(1 + ⌘

�1) + d⇢
�2
�
k[(A⌦ Jd) �W ]j·�

⇤
k
2
F

+ 64n
�
3(1 + ⌘

�1) + d⇢
�2
�
k�jk

2
F .

As a result, we have

`
od( bZ,Z

⇤)


1

n

X

j2[n]

��� bZj �Z
⇤

jOb2

���
2

F


1 + ⌘

�
np� p� c2

p
np
�2 ⇣

1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘2 ⇣
1

np+t
�

�+2⇢
np

⌘2

⇥
�
2

4(np)2
1

n

X

j2[n]

��⌅j �⌅T

j

��2
F

+ 3(1 + ⌘
�1)

16�2
t
2

(np)4
1

n

X

j2[n]

k⌅jk
2
F + 4d

1

n

X

j2[n]

I{8� k⌅jk � �np}

+
256�2

(np)2
�
3(1 + ⌘

�1) + d⇢
�2
� X

j2[n]

k[(A⌦ Jd) �W ]j·�
⇤
k
2
F

+ 64
�
3(1 + ⌘

�1) + d⇢
�2
� X

j2[n]

k�jk
2
F .

In the rest of the proof, we are going to simplify the display above. Specifically, we
are going to upper bound

P
j2[n] k⌅j �⌅T

j
k
2
F,

P
j2[n] k⌅jk

2
F,

P
j2[n] I{8� k⌅jk � �np},

P
j2[n] k[(A⌦ Jd) �W ]j·�⇤

k
2
F, and

P
j2[n] k�jk

2
F.

For
P

j2[n] k⌅j �⌅T

j
k
2
F and

P
j2[n] k⌅jk

2
F, note that they are the left-hand sides of (59)

and (60), respectively. Hence, they can be upper bounded by the right-hand sides of (59) and
(60), respectively. For

P
j2[n] I{8� k⌅jk � �np}, according to Lemma B.3, if �

2
np

d2�2 > c3 for
some c3 > 0, we have

X

j2[n]

I{8� k⌅jk � �np}
16�2

�2p
exp

 
�

r
�2np

16�2

!
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with probability at least 1� exp

✓
�

q
�2np

16�2

◆
. When c3 is sufficiently large, it follows that

16�2

�2np
exp

 
�

r
�2np

16�2

!


✓
�
2

�2np

◆3

by the same argument as in the proof of Theorem 2.1. For
P

j2[n] k[(A⌦ Jd) �W ]j·�⇤
k
2
F,

we have
X

j2[n]

k[(A⌦ Jd) �W ]j·�
⇤
k
2
F = k(A⌦ Jd) �W�⇤

k
2
F

 k(A⌦ Jd) �Wk
2
k�⇤

k
2
F

 dk(A⌦ Jd) �Wk
2
k�⇤

k
2

 c2d

✓p
dnp

2c2
p
np+ 2p

np

p

d

◆2

,

where in the second to last inequality we use the fact that �⇤ is rank-d and in the last
inequality we use (67). For

P
j2[n] k�jk

2
F, we have

P
j2[n] k�jk

2
F = k�k

2
F  dk�k

2


d

⇣
c2

�
2
d+�

p
d

np

⌘2
where the last inequality is due to (55).

Using the above results, we have

`
od( bZ,Z

⇤)


1 + ⌘

�
np� p� c2

p
np
�2 ⇣

1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘2 ⇣
1

np+t
�

�+2⇢
np

⌘2

⇥
�
2

4(np)2
2d(d� 1)np

 
1 + c

0

2

r
logn

n

!

+ 3(1 + ⌘
�1)

16�2
t
2

(np)4
d
2
np

 
1 + c

0

2

r
logn

n

!
+ 4d

✓
�
2

�2np

◆3

+
256�2

(np)2
�
3(1 + ⌘

�1) + d⇢
�2
�
c2d

✓p
dnp

2c2
p
np+ 2p

np

p

d

◆2

+ 64
�
3(1 + ⌘

�1) + d⇢
�2
�
d

 
c2
�
2
d+ �

p
d

np

!2

.

Note that 1
(1�x)2  1 + 16x for any 0  x 

1
2 . When np

logn is greater than some suffi-

ciently large constant, we have
⇣
1� c2

⇣q
logn
np

+ 1
log(np)

⌘⌘�2
 16c2

⇣q
logn
np

+ 1
log(np)

⌘

and
⇣
1� c2

1
p
np

�
1
n

⌘�2
 16

⇣
c2

1
p
np

+ 1
n

⌘
. When np

d�2 is also greater than some sufficiently

large constant, we have
⇣

np

np+t
� � � 2⇢

⌘�2
 16

⇣
t

np+t
+ � + 2⇢

⌘
 16

⇣
t

np
+ � + 2⇢

⌘


16
⇣
p+c2

p
np+c2�

p
dnp

np
+ � + 2⇢

⌘
, using the definition of t in (62). We then have

`
od( bZ,Z

⇤)
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 163c2(1 + ⌘)

✓
c2

1
p
np

+
1

n

◆ s
logn

np
+

1

log(np)

!✓
p+ c2

p
np+ c2�

p
dnp

np
+ � + 2⇢

◆

⇥

 
1 + c

0

2

r
logn

n

!
d(d� 1)�2

2np

+ 3(1 + ⌘
�1)

✓
p+ c2

p
np+ c2�

p
dnp

np

◆2
 
1 + c

0

2

r
logn

n

!
16

np

d
2
�
2

np

+ 4��6

✓
�
2

np

◆2
d�

2

np
+ 256c2

�
3(1 + ⌘

�1) + d⇢
�2
�✓ 2c2

p
np

+
2

n
p
np

◆2
d
2
�
2

np

+ 64
�
3(1 + ⌘

�1) + d⇢
�2
�
 
c2
�
p
d+ 1

p
np

!2
d
2
�
2

np
.

After rearrangement, there exists some constant c5 > 0 such that

`
od( bZ,Z

⇤)

 
1 + c5

 
⌘+ � + ⇢+

s
logn

np
+

1

log(np)
+ �

�6

✓
�
2

np

◆2

+

s
d�2

np

+
�
⌘
�1 + d⇢

�2
�✓1 + d�

2

np

◆!!
d(d� 1)�2

2np
.

We can take �
2 =

p
d2�2/np (then �

2
np

d2�2 > c3 is guaranteed as long as np

d2�2 > c
2
3). We also

take ⇢
2 =

p
(d+ d�2)/np and let ⌘ = ⇢

2. They are guaranteed to be smaller than 1/8 when
np

d
and np

d2�2 are greater than some large constant. Then, there exists some constant c6 > 0
such that

`
od( bZ,Z

⇤)

 
1 + c5

 ✓
d+ d�

2

np

◆ 1

2

+

✓
d
2
�
2

np

◆ 1

4

+

✓
d+ d�

2

np

◆ 1

4

+

s
logn

np
+

1

log(np)

+ d
�3

✓
�
2

np

◆ 1

2

+

s
d�2

np
+ (1+ d)

r
np

d+ d�2

✓
1 + d�

2

np

◆!!
d(d� 1)�2

2np



 
1 + c6

 ✓
d+ d

2
�
2

np

◆ 1

4

+

s
logn

np
+

1

log(np)

!!
d(d� 1)�2

2np
.

This holds with probability at least 1� n
�9

� exp
⇣
�

1
32

�
np

�2

� 1

4

⌘
.

APPENDIX C: CALCULATION FOR (18)

Recall the definitions of Y
⇤ and Y in (17). First, we are going to show v, the leading

eigenvector of Y , must be a linear combination of e1 and e2. Note that for any unit vector
x= (x1, . . . , xn)T 2Rn, we have

x
T

Y x= x
T

Y
⇤
x+ x

T(Y � Y
⇤)x=

0

@�

X

2jn

x
2
j

1

A+
�

2
(x1 + x2)

2 =�1 + x
2
1 +

�

2
(x1 + x2)

2
.
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If x maximizes the right-hand side over the unit sphere, it is obvious that neither x1 nor x2
can be 0. In addition, x1x2 � 0 and x

2
1 + x

2
2 = 1 must be satisfied; otherwise the right-hand

side can be made strictly larger. Then we can write v = ↵e1 +
p
1� ↵2e2 where ↵ 2 [0,1].

Since Y v = �

2(↵+
p
1� ↵2)e1 +

⇣
�

2(↵+
p
1� ↵2)�

p
1� ↵2

⌘
e2, we have

↵

�

2(↵+
p
1� ↵2)

=

p
1� ↵2

⇣
�

2(↵+
p
1� ↵2)�

p
1� ↵2

⌘ .

After rearrangement, this gives �(2↵2
� 1) = 2↵

p
1� ↵2 which means ↵

2
>

1
2 . Squar-

ing it yields the equation 4(1 + �
2)↵4

� 4(1 + �
2)↵2 + �

2 = 0 whose solution is ↵
2 =

1
2

⇣
1± 1

p
1+�2

⌘
. Since ↵

2
>

1
2 , we have ↵

2 = 1
2

⇣
1 + 1

p
1+�2

⌘
. Hence,

v =

s
1

2

✓
1 +

1
p
1 + �2

◆
e1 +

s
1

2

✓
1�

1
p
1 + �2

◆
e2.

We can verify it is the eigenvector of Y corresponding to the eigenvalue 1
2(�+

p
1 + �2 � 1).
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