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APPENDIX A: PROOFS OF AUXILIARY LEMMAS OF SECTION 5

PROOF OF LEMMA 5.1. Let Xl > Xg > Xd be eigenvalues of X. By Wey!’s inequal-
ity, we have || A,+1 — Arp1|| < ||X — X||. Under the assumption || X — X || < (A, — A\ry1)/4,
we have

~ - ~l 3
A= et = A = Art F Arit = Arpt 2 A = At = [X = || > F O = Ara) > 0.
Define
O(U,U) := diag(cos o1,...,cos L o,) e R™",

where 01 > 03 > ... > o, are singular values of U"U. Since A\, — X,«H > 0, by Davis-Kahan
Theorem [13], we have

|x-%]| _ ax-%]
< —— <
A — Mgt 3 = Arp)

Hsin@(U,ﬁ)H

From page 10 of [13], we also have ||sin ©®(U, U)|| = ||(I — UU™)U||. The proof is complete.
O

PROOF OF LEMMA 5.2. Since both x and y are unit vectors, we have
(47) |z — yb||> =2 — 2"yb — (yb)"z = 2 — 2Re(z"yb),Vb € C.

Therefore, when z"y = 0, we have ||z — yb|| = v/2 independent of b. In this case, we also
have ||(1, — zz")y|| = ||y|| = 1. This proves the statement in the lemma for the ="y = 0 case.
When z"y # 0, the infimum over b in (47) is achieved when b = y"z/|y"z|. We then have

2 2

H H

. 'y 'y
inf ||z —yb|>=|ly — —Zz|| =|ly — 22y + 22"y — —Zx
becln ol Hy |zHy| Hy Y Y |zHy|
2
-yl | (1 ) e
2
2 2
=yl 1 | e

= |ly — za"y|* + |1 - J2"y]?,

where we use the orthogonality between (I; — zz")y and z. With |y — zz"y||* = 1 +
|zzty||® — 2yfzaty =1 — |z"y[* > (1 — |z"y|)?, where the last inequality is due to 0 <
|x"y| < 1, the proof is complete. O



PROOF OF LEMMA 5.3. Note that EA = pJ,, — pI,,. Note that (1,,/v/n)"EA(1L,/v/n) =
(n — 1)p and for any unit vector u € R™ that is orthogonal to 1,,/1/n, we have u”"EAu =0 —
p|lul|? = —p. Hence, (n — 1)p is the largest eigenvalue with 1,,/1/n being the corresponding
eigenvector, and —p is another eigenvalue with multiplicity n — 1.

By Weyl’s inequality, we have [\' — (n — 1)p[, maxa<j<n |\ — (—=p)| < [|A — EAJ|, which
leads to (33) after rearrangement. This completes the proof, with A* = X and \5 = A}, by
Lemma 2.1. O

PROOF OF LEMMA 5.4. The first two inequalities stem from Lemma 5 and Lemma 6 of
[17], respectively. The third inequality is derived from Lemma 7 and (29) in [17]. ]

PROOF OF LEMMA 5.7. Itis proved in (31) of [17]. ]

APPENDIX B: PROOFS FOR ORTHOGONAL GROUP SYNCHRONIZATION

B.1. Proof of Lemma 3.2. Before the proof, we first state a technical lemma that is
analogous to Lemma 5.2.

LEMMA B.1.  For any two matrices U,V € O(dy,ds), we have

I(la, —=VVIU| < inf [V =UO| <V2|/(Ia, —VVU.
0€0(ds)

PROOF. Let V| € Rux(di—d2) be the complement of V' such that (V,V,) € O(dy).
From Lemma 2.5 and Lemma 2.6 of [11], we have U™V || < infocoa,) IV —UO| <

V2||UT V|| The proof is complete with | U™V, || = |[V.VIU| = ||(Ia, — VV U] O

PROOF OF LEMMA 3.2. We first give an explicit expression for the first-order approxi-
mation V. Denote 1> ... > uy as the eigenvalues of Y. Let YV* = GDN™ be its SVD
where G € O(n,d), N € O(d), and D € R™? is a diagonal matrix with singular values.
Define M* = diag(u5, ..., ;) € R¥4. Since

(48) YV =Y*'V'+ (Y -Y" V' =V'M*"+ (Y -Y*V",
we have
(49) max [ Dis = i | < |V =YWl < IV =¥

by Weyl’s inequality. Under the assumption that ||Y" — Y| < min{pu} — p, ,, 15} /4, we
have {Dj; };c|q) all being positive. Note that

V = argmin HV’ — YV*H? = argmax (V' YV™)

V/€O(n,d) Ve (n,d)
= argmax tr (V’TGDNT) = argmax <GTV’N,D>.
V/EO(n,d) V€O (n,d)

Due to the fact that G, V' € O(n,d), N € O(d), and the diagonal entries of D are all posi-

tive, the maximum is achieved when G*V'N = I;. This gives V = GN™ which can also be
written as

(50) V=YV*S,
where

(51) S:=ND7I'N™ e R™¥4
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can be seen as a linear operator and plays a similar role as 1/ || Xu*|| for v = Xu*/ || Xu*||
in (9).
Define M := diag (1, pio, . . . , tq) € R4*?. Then we have

VM =YV,
VM =YV*SM,
and consequently,
(V-VIM=Y(V-V*SM)=Y(V-V)+Y(V -V*SM).
After rearranging, we have
YV -VM=Y(V-V*SM).
Multiplying (I — V'V'™) on both sides, we have
YI-VVYW I -VVIWM=I-VV)YV~-(I-VVVM
=(I-VVIY(V-V*SM),

where the first equationisdue to Y (I —VV™) = (I —VV™)Y as V is the leading eigenspace
of Y. Note that for any = € span(/ — V'V™) and for any ¢ € [d], we have ||[Yz — p;x| >
(i — prg+1) ||z||- Then we have

HY(I VYV - (I VVT)T/MH > (4d — pas1) H(I - VVT)T/H .
As a result, we have

(52) H(I—VVT)X~/H< H[ VVOY(V - VESsM)||

Hd — Hd+1
which is analogous to (31) in the proof of Lemma 3.2. By Lemma B.1, we have

(53)
Y

inf HV VOH<fHI 8760 VH
Hd — Hd+1

St HI VVIY(V — V*SM)H

In the next, we are going to analyze (I — VVT)Y(V — V*SM). Using (50), we have

(I — VVT)Y(V V*SM)
(I-VVHY (YV*S—-V*SM)
=I-VVY (V*M*S+ (Y -Y"V*S-V*SM)
=T -VVOYV*(M*S-=SM)+(I-VVHY(Y -Y*")V*S
=T -VVH(V*M*"+ (Y -Y"V*)(M*S - SM)

+ I -VVHV*M* V(Y = Y*)V*S

LI —VVY* VM V)Y —Y)VS+ (I - VVTY — Y)Y - Y*)V*S
=T -VVHV*M*(M*S —SM)+V*(Y =Y*)V*S)

+{I-VVI)Y =Y )V (M*S - SM)

F I =VVY* = VM V)Y —Y)VS+ (I - VVT)Y = Y)Y - Y)V*S,
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where in the second to last equation, we use (48) and the decomposition Y = V*M*V*" 4
(Y* = V*M*V*") + (Y — Y™). Hence, with ||[Y* — V*M*V*"|| = max{|uj |, |u,]}, we
have

H(I VY)Y (V- V*SM)H
<m I =VVIOVE([[M*S = SM[| + (Y = Y*[[||S])
Y = Y| M*S = SMI| 4+ max{ |z |, [ Y = YIS+ 1Y = Y|
Then from (53), we have
V2
Hd — Hd+1

+ Y = YF[[M*S = SM| + max{|pg ], [ 3 Y = Y7 S]]

inf HV _ 17OH <

NI —=VVHOVH (|IM*S — SM Y -Y*IS
0€0(d) (MH( VI |+ 1] 111S1)

+HY—Y*||2||5||)-

In the rest of the proof, we are going to simplify the display above. By Weyl’s inequality,
we have

(54) Iirelfﬁ\m—uﬂé 1Y =Y.

Since ||Y — Y| < (u — p5,1)/4 is assumed, we have

* *
Md__ud+12iﬁ1425@i1_

By this assumption and Lemma 5.1, we have
2|y - Y™

*

(I =VVIO)VI < ——
Hg— Hgia

By (49) and the definition of S in (51), we have
1 4

S|=D7 < ——F—— < —.
ISI= P70 = =1 = 5

In addition,
[M*S — SM|| < [[M*S = SM*|| +[|S (M — M")]|
< |(M* = pgla)S + S(ugla — M*)|| + [[S| M — M|
< |ISI2IIM* — pglall + |M = M)
<
=30

where in the last inequality we use the fact [[M — M*|| = max;¢|q) |t; — p17| and (54). Com-
bining all the results together, we have

(2011 = pa) + Y =YD,

inf HV—T/OH
0€0(d)
2v2 ( L2 =Y <4(2(M’{—M2)+HY—Y*H)+4HY—Y*H>>
= % * 1 % * * *
Fg = Mgt Hg = Haq1 g kg
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amaxc{a, |, s} Y =Y

2(puy — Y-Y*|IY -Y*
+3u2}< (1 = pa) + |l D I+ 3
4y — Y|
LS
3

<

16v/2 24}

3 (1 — #ipr) 15 <3(u22 — M
8v2 A (i — )

3 (g — ) 1 < 11— W

) + 1) |y —v*|?

. 203 — 123 + max{[u | m:;r}) v -y,

O]
B.2. Proofs of Lemma 3.1, Proposition 3.1, and Proposition 3.2.
PROOF OF LEMMA 3.1. Similar to the proof of Lemma 2.1, we can show each eigenvalue

of A is also an eigenvalue of (A ® Jy) o Z*Z*" with multiplicity d. At the same time, each
eigenvalue of (A ® Jy) o Z*Z*" must be an eigenvalue of A. The proof is omitted here. [

PROOF OF PROPOSITION 3.1. Since o0 = 0, we have U = U*. Then 2j =PU;) =
PU;) = P(Zj*ﬁj) Since Z7 is an orthogonal matrix, we have Z; = Z]’-‘s'ign(ﬁj). Then by
(16), the proposition is proved by the same argument used to prove Proposition 2.1. O

Before proving Proposition 3.2, we state some properties of A and W. The following
lemma can be seen as an analog of Lemma 5.4.

LEMMA B.2. There exist constants C1,Co > 0 such that if% > (4, then we have

(A ® Jgq) o W] < Cay/dnp,
2

Yol DD Ay (ZWyzs - 2 wyz)|| < 2d(d—1)n’p (1+02\/1°§”>,

=1 ||5€ln\{i} F

. 2
oAl DD Agwiyzy| <dn’p (1 + Cay\f loin> ;
=1 ||jeln\{i} F

hold with probability at least 1 — 3n~1,

PROOF. The first inequality is from Lemma 4.2 of [19]. The second and third inequalities
are from (59) and (60), together with Lemma 4.3, of [19], respectively. ]

PROOF OF PROPOSITION 3.2. By Lemma 5.4 and Lemma B.2, there exist constants

c1, ¢z > 0 such that when J- > ¢1, we have ||A — EA|| < c2y/np and [[(A® Jq) o W] <

cay/dnp with probability at least 1 — 6n 0. By Lemma 3.1 and Lemma 5.3, we have
A=A, > (n— 1)p — coy/mp, max{ [Ny |, [\h|} < p+cay/mp, and N — N | > np —

2co./np. Note that d is a constant. When lglgpn and 2% are greater than some sufficiently
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large constant, we have 40 [|(A ® Jg) o W|| < np/2 <min{\}, A} — N} satisfied. Since
X — (AR Jy)o Z*Z* = 0(A® Jg) o W, adirect application of Lemma 3.2 leads to

inf HU—&OH
0cO(d)
8v2 ( 4 2> ) 5
< T s o T | o (AR Jg) e W)
max{| A7, [, |\, |}
o (4@ Ja) o W
1
= 8v2 << 1 + 2 )GZCanp+p+62'npac \/dnp>
= 2
3(np/2) \\3(np/2) " np/2) " np/2
o?d+ov/d
<cg——,
np
for some constant c3 > 0. J

B.3. Proof of Theorem 3.1. We first state useful technical lemmas. They are analogs of
Lemma 5.7 and Lemma 5.8, respectively. Lemma B.3 is proved in (31) of [19].

2
LEMMA B.3.  There exists some constant C' > 0 such that for any p that satisfies 5578 >
C, we

n
20 . o? 2np
SHZ S Az sp%exp(— f’2),

=1 " ||jeinn iy ?

with probability at least 1 — exp (—\/psz)

LEMMA B.4 (Lemma 2.1 of [19]). Let X, X € R¥4 pe two matrices of full rank. Then,

2 ~
|, < AR
F Smin(X) + Smin(X) F

|Px)-P(X)

PROOF OF THEOREM 3.1. Let O € O(d) satisfy ||U — UO|| = inforeow@) IU — uo'|.

Define A := U — UO € R™*4_Recall 7 is the leading eigenvector of A. From Proposition
2.1, Proposition 3.2, Lemma 5.4, and Lemma B.2, there exist constants c1,cg > 0 such that

if l;";;pn, 28 > c1, we have
o2d + o/d
(55) 1Al < g
n
- 1 logn 1 1
(56) max |u; — —=bo| <c + —,
G e (\/ np log(np)> vn
(57) |A —EA| < cay/np,

(58) I(A® Ja) o W < ea/npd,
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2
" 1
59 Y I D Ay (ZrWyz - 2 Wzy)|| <2d(d—1)n’p (1 + e/ Oin) ,
F

i=1 [|jelm\{5)

n

1
(60) Yo > Agwuz;| <dnip (1 a2 ”) ,
=1 ||5€\{i} F
with probability at least 1 — n =2, for some by € {—1,1}. By Lemma 3.1 and Lemma 5.3,
we have \f = A%, |\5 — (n — 1)p| < co\/mp, [Ny S p+cay/mp, and X — Noy | > np —
2¢co/Np.

Using the same argument as (50) and (51) in the proof of Lemma 3.2, we can have an
explicit expression for U. Recall the definition of U in (22). Let YU* = GDN™ be its SVD
where G € O(nd, d), N € O(d), and D € R%*9 is a diagonal matrix with singular values. By
the decomposition (21), we have

(61)
XU =((A® Jq) 0 Z*Z*"\U* + 0 ((A® Jg) oW)U* = N[U* + 0 ((A® Jg) o W)U,

Since the diagonal entries of D correspond to the leading singular values of XYU*, Weyl’s
inequality leads to max;c(q |Dj; — AJ| < 0 [[(A® Jg) o W| < cao+/dnp. Denote

(62) t:=p-+ co/np + coo/dnp.

We then have

(63) max |D;; —np| < t.
mx | Ds; —np)

When lgfgpn, 2% are greater than some sufficiently large constant, we have np/2 < A} and

np/2 < Dj;; < 3np/2 for all j € [d]. As a consequence, all the diagonal entries of D are
positive. Then U can be written as

U=XU*S,

where
(64) S:=ND N e R¥¥,
Then (63) leads to

1 1 1 1 ot
(65) Id—SH:HId—D—l < - —<—,

np np np—t np~ (np)
and

_ 2
(66) ISi= D~ < —.
np

Using (61), we have the following decomposition for U:
U=UO+A=XU"SO+A=(\NU"+0((A® J3) oW)U*) SO + A.

Recall the definition of U* in (14). Define A* := U* — ﬁZ*bg. When % > 2c5, by the

same argument used to derive (39) as in the proof of Theorem 2.1, we have

-~ 1 . 1 .1
(67)
2ca./ 2
<@Z§+p\/@
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Then U can be further decomposed into

1
U= ()\{U* Fo((A® Jg) o W) (\/ﬁz*b2 + A*)) SO +A.

For any j € [n], denote [(A ® Jy) o W];. € R¥" as the submatrix corresponding to its rows
from the ((j — 1)d + 1)th to the (jid)th. Note that SO € R?*?, Then U; has an expression:

U; = <X;U; (A® Jg) o W];.Z%by + 0[(A® Jg) o W), A*) SO+ A

NG
* L o * *
— Alzjuj+%ZAjkwjkzkbz+a[(A®Jd)oW}j.A SO+ A,

where A; € R¥4 js denoted as the jth submatrix of A.

Note that we have following properties for the mapping P. For any B € R%*? of full
rank and any F' € O(d), we have P(BF) = P(B)F. In addition, if B is positive-definite,
P(B) = 1. Since we have shown the diagonal entries of D are all lower bounded by np/2,
(64) leads to P(S) = I4. Then

|2 = 2;005|| = |[P;) = 2;0bs |, = |[P(2;7U;0™b) -

ls = Ll -

We have

Z;TUjOTbQ = </\1ujb21d +— u] + O'bQZ [(A &® Jd) o W]jA*> S+ Z;TAjOTbQ

NZD

where
Ej=Y  ApZ" Wi Zi.
k#j
Note that from (56), we have

logn 1 1
oo (i)

As long as 1 — is greater than some sufficiently large constant, we have bat; > 2\1/5. Since
A] is also posmve, we have

68 Z;"U;0by ST

o B

where T} is defined as

1 o
= e \\ Z7"((A LA ZITA;O"
s (G ronarias o))
1 o _ o, o0Zl"(A®Js) oW A™S  Z7TA;0"by
R A s . |
Niijbs i AT1jbs Ajtjba

As a consequence, when det(U;) # 0, we have
Z7'U; 'OTbg)
R i R

- T5) — Iyl

(69) H@—Z;f()@”;“?( )
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Let 0 < ,p < 1/8 whose values will be determined later. To simplify HZJ — Z;ObgHF,
consider the following two cases.

(1) If
1 o Y
7 — =55 < —
(70) H X{ﬁjbg \/ﬁ J - np
obe Z7[(A® Jg) o W]j.A*S -

NiTb = np

VARVANTON
D ‘332 <2
ATt;bo np

all hold, then
smin(S +T5) > smin(S) = | Tj|| = smin (D) = 1T = D' = |1 T3
> Dyl - 7+ 20’
np
which is greater than 0 by (63). Together with (68), we have det(U;) # 0. The same lower
bound holds for smin (S + (T +T7})/2). Since S is positive-definite, we have P(S + (T +
T7)/2) = I4. By Lemma B.4 and (69), we have

|7 z0m],

L+ 17
=||P(S+T;)-P|S+—F—
2 F
< 1 ‘Tj_TjT
(ot -2y 2
1 1

7|z =y *T AR
= Nilijbs o <D1‘11 _ %5,)) (n |58 = S"E5 || + 2|00 Z; " [(A® Ja) o W] A*S |,

+2\\Z;TAj0szny>.

We can further simplify the first term in the display above. We have

= =T — i =._ =Ty _=. i — i _ gT\=T
H_JS—S “]'HF_ np (_J “j) =] (npfd S)"‘(npfd S )Hj -
1 - = 1 —
SWH:J-—:AIF+2HWId—S\ 1251l
Using (65) and (66), we have
~ . 1 1 c 1, _ o t —
— < —_— ||z — = — |2
Hz] ZJObQHF—A;ajbm(Dl_ll_%p)(ﬁnp\\ 1=l + i 15l

4 *
o’ I[(A® Ja) o W] A%l +2 ||Aj||F>‘
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Using the lower bounds for A}, @b, and Dl_ll, as given at the beginning of this proof, we
have
|2 - 0%,

1 o

S /logn 1 1 Y+2p 2anEj_EjHF
(np —p—C2 AV np) (1 —C2 ( np + log(np))) (np+t - np >
4ot | _ 160+/n N
W”:‘jHF ——— [[[(A® Ja) o W];. A%[[p + 16V || Ajl -

Let n > 0 whose value will be given later. By the same argument as used in the proof of
Theorem 2.1, we have

|2 - z30u],

1+n

EAERE
< 2 2 4(np)2 157~ = lle
(np—p — cay/mp)’ (1 — ¢ ( l‘fp” + log(ln )>> (np1+t B V:zf ) "

IS+ 30+ R (4 s ) o WA

+3(1+n"H6dn || A%

(2) If any one of (70)-(71) does not hold, we simply upper bound HE] —Z J’f@bg |r by 2V/4d.
Then this case can be written as

+3(1+77h

~ 2
|2 - ziowa|
o _ gl
< 4d = L l4r
<sa(t{[sima=el> o} 1

>£}>

Using (66), A} > np/2, and @b > 1/(2y/n), we have

O'bQZ*T[(A@Jd)OW] A*SH p }
>

Nt np

{HZ*TA jOTby

ATt;bo

~ 2
|2 -z 00,
< 44 (1{8 |[Z,]| = ynp} + 1{8v/no |[(A @ Ja) o W] A%| > prp} +T{4v/n | A]) > p})

640°n N _
)2 I[(A® Ja) o W);. A% |[f + 16np 2||Aj|!12r>-

Combining these two cases together, we have

<aa (1080 5 2+ oy

|2 - zjow],

I+n

S 5 24 2 H’_‘ ‘:‘jHF
(np _p — 62\/7Tp)2 (]. — C9 ( l(zgpn + log(ln ))) (np1+t - nP ) (np
160242 1, 2560°n

#3007 15 e+ 30 T A @ Ja) 0 WA



OPTIMALITY OF SPECTRAL METHODS IN SYNCHRONIZATION PROBLEMS 11

+3(1+n N)64n || A2

640°n ) _ 2
+4d( (87 155112 1m0} + T[4 Ja) o WL, A° -+ 1omp 2uAqu>
- : ATty Sramerne L] ST
(np—p—CQ\/TTp) (1_02<\/ np +log(np)>> (np+t_ np )
16022
#3044 {80155 2 o)
25602n

gz B0+ +dp7) (A ® Ja) o WA

+64n (3(1+ 171 + dp2) [|1A,3.

As a result, we have

EOd(Z\ Z*)
Z HZ Z*ObQH
F
JE[n
. 147

2 2
(np —pP— 02\/@)2 (1 —C2 (\/ 1‘25])71 + log(lnp)>> (npl-‘rt - ’Y:]?p)
o 1 _ 112
n )25 Z = _:jHF
j€[n]

1602t2 1
(np)? ZHuyl!FJr‘ld > 1{80 |5l = ynp}

" jem) i€l

+3(1+7h

e B+ o) X (4 T oW 7

JE[n]

+64(3(L+n ) +dp?) D A%
J€n]

In the rest of the proof, we are going to simplify the display above. Specifically, we
. = r =12 =

are going 0 upper bound e 125 = Z [ Ssepy 155l Yo 187 125112 7mp).
2 jetn I(A® Ja) o W] A%, and 32 5cp (|45

For 3 i) ||E] - E]TH% and 3 e 115 H%, note that they are ‘the left-har}d sides of (59)
and (60), respectively. Hence, they can be upper bounded by the right-hand sides of (59) and
(60), respectively. For 3~ {80 ||Z;|| > ynp}, according to Lemma B.3, if Z? “L > ¢ for
some c3 > 0, we have

jE[n

> 180 |5 = ynp} <

- 1602 exp (_ 72np>
- R 1602
jelnl TP
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with probability at least 1 — exp <— 1’602> When cj is sufficiently large, it follows that

1602 ~v2np o2 \*
2,0 P | — A
¥ np 160 Y np
. 2
by t}llle same argument as in the proof of Theorem 2.1. For 3.1 [[(A ® Ja) o W], A™ |5,
we have

D T A® Ja) o W] AR = [[(A® Ja) o WA
Jj€n]

<|[(A® Ja) o WI* [ A*|[%
<d|(A® Jg) o W | A*|?

2 2 2
< CQd( finp 2c2V/ P+ 2 W@) ,
np

where in the second to last inequality we use the fact that A* is rank-d and in the last
. . 2 2 2 2
inequality we use (67). For >, |45, we have > ;1 |45 = [[AllF < 4| Al

. 2
d <62 %;\/g) where the last inequality is due to (55).

Using the above results, we have
eod(Z\’ Z*)
I+n

2 2
2 logn 1 1 +2
(np P~ C2y np) (1 -2 (\/ ?r:gp + log(np)>> (np+t - ’anp)
o? logn
—=2d(d—1 1+¢
X Tnp)? ( )np( + chy/ -
16022 logn o2 \*
314nt Eap [ 14/ 4d
FAET) Gy np( eV T <72np>
25602 2co\/np + 2
02 (Bl+n" +dp %) cod <\/ 2 pf)

(np)
o2d + 0\/3
np

<

+64(3(L+n")+dp?)d (02

Note that ((=mH )2 <1+ 16z for any 0 < x < £, When % is greater than some suffi-

—2
ciently large constant, we have (1 —c (1 / k;;gp” + log(np))> < 16¢9 (\ [logn 4 ﬁ)

-2
and <1 — sz — %) <16 (cz N + ) When - T P is also greater than some sufficiently

large constant, we have (ngﬁt —y— 2p) <16 <npt+t +v+ 2p> <16 <nip +v+ Qp) <
16 (p e ‘/ﬁ:;w vanp v+ 2p> , using the definition of ¢ in (62). We then have

EOd(Z\, Z*)



OPTIMALITY OF SPECTRAL METHODS IN SYNCHRONIZATION PROBLEMS 13

1 1 1 1 + cor/Np + coo/dn,
<16%c2(1+1) | 2 + - %y Provmrr® L v +2p
JIp o on np  log(np) n

p
/1 —1)o?
" <1+c’2 ogn> d(d—1)o
n 2np

2
+ c2,/Np + c204/d /1 16 d*o?
+3(1 4+ (P 2 npnpcza np) <1+C,2 oin> o

np np

o2 2 do? 2¢9 2 2 252
+4y7° <> —— +256¢5 (3(1+n~1) +dp~? < + )
np/ mnp ( ( ) ) NP ny/np np

2
Vd+1 d?c?
A1+ +dp?) [ e .
+64(3(L+n"") +dp )<62 N oy

After rearrangement, there exists some constant ¢ > 0 such that

= logn 1 2\? do?
N2, 2 < (14 es[ntry+p+ 2+ +7‘6<0> T
np  log(np) np

o2 ~1)g2
) (1 )))d“%;) |

We can take 72 = /d?02 /np (then j;;”; > cg is guaranteed as long as 72 > ¢3). We also
take p? = \/(d + do?) /np and let = p?. They are guaranteed to be smaller than 1/8 when
%D and d?g > are greater than some large constant. Then, there exists some constant cg > 0
such that

R 2\ 3 2 2\ i 2\ 1
€°d(Z,Z*)§<1+C5<<d+dU> +<da> +<d+da> N /logn+ 1
np np np np log

(np)

2\: [ g,2 2 2
YA do? np 1+do d(d—1)o
d (np) * np+(1+d)\/d+d02< np ))) 2np
2 2\ 3 1y 2
<146 d+do N logn+ 1 d(d—1)o .
np np  log(np) 2np

This holds with probability at least 1 — n ™% — exp (—3—12 (@) )

APPENDIX C: CALCULATION FOR (18)

Recall the definitions of Y* and Y in (17). First, we are going to show v, the leading

eigenvector of Y, must be a linear combination of e; and ey. Note that for any unit vector
x=(x1,...,2,)" € R, we have

=

(o9

2Yr=2"Y'z+2"(Y -Y )z =| — Z :J:J2 +

2<j<n

)
2(:):1 + m2)2 =-1 —I—x% + 5(961 + :):2)2.
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If  maximizes the right-hand side over the unit sphere, it is obvious that neither x; nor z2
can be 0. In addition, x129 > 0 and J;% + :1;% = 1 must be satisfied; otherwise the right-hand
side can be made strictly larger. Then we can write v = ae; + V1 — a2eq where « € [0, 1].

Since Yv = g(a +vV1-a?)er + (g(a +vV1-a?)—V1- a2) ea, we have

a _ V1—a?
datVi-al) (Ya+vi-a?)-vi-a?)

After rearrangement, this gives §(2a% — 1) = 2av/1 — a2 which means o? > % Squar-
ing it yields the equation 4(1 + 6%)a* — 4(1 + §%)a? + 62 = 0 whose solution is a? =

% (1 + \/#) Since a2 > %, we have o2 = % (1 + \/117) Hence,

S e [

We can verify it is the eigenvector of Y corresponding to the eigenvalue %(5 +V1+46%2-1).
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