SUPPLEMENT TO "EXACT MINIMAX OPTIMALITY OF SPECTRAL METHODS IN PHASE SYNCHRONIZATION AND ORTHOGONAL GROUP SYNCHRONIZATION"

BY Anderson Ye Zhang

University of Pennsylvania

APPENDIX A: PROOFS OF AUXILIARY LEMMAS OF SECTION [5](#page-0-0)

PROOF OF LEMMA [5.1.](#page-0-1) Let $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_d$ be eigenvalues of \tilde{X} . By Weyl's inequality, we have $\|\widetilde{\lambda}_{r+1} - \lambda_{r+1}\| \leq \|X - \widetilde{X}\|$. Under the assumption $\|X - \widetilde{X}\| < (\lambda_r - \lambda_{r+1})/4$, we have

$$
\lambda_r - \widetilde{\lambda}_{r+1} = \lambda_r - \lambda_{r+1} + \lambda_{r+1} - \widetilde{\lambda}_{r+1} \ge \lambda_r - \lambda_{r+1} - \left\| X - \widetilde{X} \right\| > \frac{3}{4} \left(\lambda_r - \lambda_{r+1} \right) > 0.
$$

Define

$$
\Theta(U, \widetilde{U}) := \text{diag}(\cos^{-1} \sigma_1, \dots, \cos^{-1} \sigma_r) \in \mathbb{R}^{r \times r},
$$

where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r$ are singular values of $U^{\text{H}}\widetilde{U}$. Since $\lambda_r - \widetilde{\lambda}_{r+1} > 0$, by Davis-Kahan Theorem [\[13\]](#page-0-2), we have

$$
\left\|\sin\Theta(U,\widetilde{U})\right\| \le \frac{\left\|X-\widetilde{X}\right\|}{\lambda_r-\widetilde{\lambda}_{r+1}} \le \frac{4\left\|X-\widetilde{X}\right\|}{3(\lambda_r-\lambda_{r+1})}.
$$

From page 10 of [\[13\]](#page-0-2), we also have $\|\sin\Theta(U,\tilde{U})\| = \|(I - UU^{\text{H}})\tilde{U}\|$. The proof is complete.

PROOF OF LEMMA [5.2.](#page-0-3) Since both *x* and *y* are unit vectors, we have

(47)
$$
||x - yb||^{2} = 2 - x^{\mu}yb - (yb)^{\mu}x = 2 - 2\text{Re}(x^{\mu}yb), \forall b \in \mathbb{C}_{1}.
$$

Therefore, when $x^{\text{H}}y = 0$, we have $||x - yb|| = \sqrt{2}$ independent of *b*. In this case, we also have $||(I_n - xx^H)y|| = ||y|| = 1$. This proves the statement in the lemma for the $x^H y = 0$ case. When $x^{\text{H}}y \neq 0$, the infimum over *b* in [\(47\)](#page-0-4) is achieved when $b = y^{\text{H}}x/|y^{\text{H}}x|$. We then have

$$
\inf_{b \in \mathbb{C}_1} ||x - yb||^2 = ||y - \frac{x^{\mathrm{H}}y}{|x^{\mathrm{H}}y|}x||^2 = ||y - xx^{\mathrm{H}}y + xx^{\mathrm{H}}y - \frac{x^{\mathrm{H}}y}{|x^{\mathrm{H}}y|}x||^2
$$

\n
$$
= ||y - xx^{\mathrm{H}}y||^2 + ||\left(1 - \frac{1}{|x^{\mathrm{H}}y|}\right)(x^{\mathrm{H}}y)x||^2
$$

\n
$$
= ||y - xx^{\mathrm{H}}y||^2 + \left|1 - \frac{1}{|x^{\mathrm{H}}y|}\right|^2 |x^{\mathrm{H}}y|^2
$$

\n
$$
= ||y - xx^{\mathrm{H}}y||^2 + |1 - |x^{\mathrm{H}}y||^2,
$$

where we use the orthogonality between $(I_d - xx^H)y$ and *x*. With $||y - xx^Hy||^2 = 1 +$ $||xx^{\text{H}}y||^{2} - 2y^{\text{H}}xx^{\text{H}}y = 1 - |x^{\text{H}}y|^{2} \ge (1 - |x^{\text{H}}y|)^{2}$, where the last inequality is due to $0 \le$ $|x^{\text{H}}y|$ < 1, the proof is complete.

PROOF OF LEMMA [5.3.](#page-0-5) Note that $\mathbb{E}A = pJ_n - pI_n$. Note that $(\mathbb{1}_n/\sqrt{n})^T \mathbb{E}A(\mathbb{1}_n/\sqrt{n}) =$ $(n-1)p$ and for any unit vector $u \in \mathbb{R}^n$ that is orthogonal to $1_n/\sqrt{n}$, we have $u^T \mathbb{E} Au = 0$ $p||u||^2 = -p$. Hence, $(n-1)p$ is the largest eigenvalue with $\frac{1}{n}\sqrt{\sqrt{n}}$ being the corresponding eigenvector, and $-p$ is another eigenvalue with multiplicity $n - 1$.

By Weyl's inequality, we have $|\lambda' - (n-1)p|$, $\max_{2 \leq j \leq n} |\lambda'_j - (-p)| \leq ||A - \mathbb{E}A||$, which leads to [\(33\)](#page-0-6) after rearrangement. This completes the proof, with $\lambda^* = \lambda'$ and $\lambda_2^* = \lambda'_2$ by Lemma [2.1.](#page-0-7)

PROOF OF LEMMA [5.4.](#page-0-8) The first two inequalities stem from Lemma 5 and Lemma 6 of [\[17\]](#page-0-9), respectively. The third inequality is derived from Lemma 7 and (29) in [\[17\]](#page-0-9). \Box

PROOF OF LEMMA 5.7 . It is proved in (31) of [\[17\]](#page-0-9).

APPENDIX B: PROOFS FOR ORTHOGONAL GROUP SYNCHRONIZATION

B.1. Proof of Lemma [3.2.](#page-0-11) Before the proof, we first state a technical lemma that is analogous to Lemma [5.2.](#page-0-3)

LEMMA B.1. *For any two matrices* $U, V \in \mathcal{O}(d_1, d_2)$ *, we have*

$$
|| (I_{d_1} - VV^{T})U || \le \inf_{O \in \mathcal{O}(d_2)} ||V - UO|| \le \sqrt{2} || (I_{d_1} - VV^{T})U ||.
$$

PROOF. Let $V_{\perp} \in \mathbb{R}^{d_1 \times (d_1 - d_2)}$ be the complement of *V* such that $(V, V_{\perp}) \in \mathcal{O}(d_1)$. From Lemma 2.5 and Lemma 2.6 of [\[11\]](#page-0-12), we have $||U^T V_{\perp}|| \le \inf_{O \in \mathcal{O}(d_2)} ||V - UO|| \le \sqrt{2}||U^T V_{\perp}||$. The proof is complete with $||U^T V_{\perp}|| = ||V_{\perp} V^T U|| = ||(I_d - V V^T)U||$. $\sqrt{2} ||U^T V_{\perp}||$. The proof is complete with $||U^T V_{\perp}|| = ||V_{\perp} V_{\perp}^T U|| = ||(I_{d_1} - V V^T)U||$.

PROOF OF LEMMA [3.2.](#page-0-11) We first give an explicit expression for the first-order approximation *V*. Denote $\mu_1 \geq \ldots \geq \mu_n$ as the eigenvalues of *Y*. Let $YV^* = GDN^T$ be its SVD where $G \in \mathcal{O}(n, d)$, $N \in \mathcal{O}(d)$, and $D \in \mathbb{R}^{d \times d}$ is a diagonal matrix with singular values. Define $M^* = \text{diag}(\mu_1^*, \ldots, \mu_d^*) \in \mathbb{R}^{d \times d}$. Since

(48)
$$
YV^* = Y^*V^* + (Y - Y^*)V^* = V^*M^* + (Y - Y^*)V^*,
$$

we have

(49)
$$
\max_{i \in [d]} |D_{ii} - \mu_i^*| \leq ||(Y - Y^*)V^*|| \leq ||Y - Y^*||,
$$

by Weyl's inequality. Under the assumption that $||Y - Y^*|| \le \min{\{\mu_d^* - \mu_{d+1}^*, \mu_d^*\}}/4$, we have ${D_{ii}}_{i \in [d]}$ all being positive. Note that

$$
\widetilde{V} = \underset{V' \in \mathcal{O}(n,d)}{\operatorname{argmin}} ||V' - YV^*||_{\mathrm{F}}^2 = \underset{V \in \mathcal{O}(n,d)}{\operatorname{argmax}} \langle V', YV^* \rangle
$$

=
$$
\underset{V' \in \mathcal{O}(n,d)}{\operatorname{argmax}} \operatorname{tr}(V'^{\mathrm{T}}GDN^{\mathrm{T}}) = \underset{V' \in \mathcal{O}(n,d)}{\operatorname{argmax}} \langle G^{\mathrm{T}}V'N, D \rangle.
$$

Due to the fact that $G, V' \in \mathcal{O}(n, d)$, $N \in \mathcal{O}(d)$, and the diagonal entries of *D* are all positive, the maximum is achieved when $G^TV'N = I_d$. This gives $V = GN^T$ which can also be written as

$$
\widetilde{V} = YV^*S,
$$

where

(51)
$$
S := ND^{-1}N^{T} \in \mathbb{R}^{d \times d}
$$

 \Box

can be seen as a linear operator and plays a similar role as $1/||Xu^*||$ for $\tilde{u} = Xu^* / ||Xu^*||$ in [\(9\)](#page-0-13).

Define $M := diag(\mu_1, \mu_2, \dots, \mu_d) \in \mathbb{R}^{d \times d}$. Then we have

$$
VM = YV,
$$

$$
\widetilde{V}M = YV^*SM,
$$

and consequently,

$$
(V - \widetilde{V})M = Y(V - V^*SM) = Y(V - \widetilde{V}) + Y(\widetilde{V} - V^*SM).
$$

After rearranging, we have

$$
Y\widetilde{V} - \widetilde{V}M = Y(\widetilde{V} - V^*SM).
$$

Multiplying $(I - V V^T)$ on both sides, we have

$$
Y(I - V V^{\mathrm{T}})\widetilde{V} - (I - V V^{\mathrm{T}})\widetilde{V}M = (I - V V^{\mathrm{T}})Y\widetilde{V} - (I - V V^{\mathrm{T}})\widetilde{V}M
$$

$$
= (I - V V^{\mathrm{T}})Y(\widetilde{V} - V^*SM),
$$

where the first equation is due to $Y(I - V V^{T}) = (I - V V^{T})Y$ as *V* is the leading eigenspace of *Y*. Note that for any $x \in \text{span}(I - V V^T)$ and for any $i \in [d]$, we have $||\overline{Y}x - \mu_i x|| \ge$ $(\mu_i - \mu_{d+1}) ||x||$. Then we have

$$
\left\| Y(I - V V^{T}) \widetilde{V} - (I - V V^{T}) \widetilde{V} M \right\| \geq (\mu_d - \mu_{d+1}) \left\| (I - V V^{T}) \widetilde{V} \right\|.
$$

As a result, we have

(52)
$$
\left\| (I - V V^{\mathrm{T}}) \widetilde{V} \right\| \leq \frac{1}{\mu_d - \mu_{d+1}} \left\| (I - V V^{\mathrm{T}}) Y (\widetilde{V} - V^* S M) \right\|,
$$

which is analogous to (31) in the proof of Lemma [3.2.](#page-0-11) By Lemma [B.1,](#page-1-0) we have

(53)

$$
\inf_{O \in \mathcal{O}(d)} \left\| V - \widetilde{V}O \right\| \le \sqrt{2} \left\| (I - V V^{\mathrm{T}}) \widetilde{V} \right\| \le \frac{\sqrt{2}}{\mu_d - \mu_{d+1}} \left\| (I - V V^{\mathrm{T}}) Y (\widetilde{V} - V^* S M) \right\|.
$$

In the next, we are going to analyze $(I - V V^{T}) Y(\tilde{V} - V^{*} S M)$. Using [\(50\)](#page-1-1), we have

$$
(I - V V^{\mathrm{T}}) Y (V - V^* S M)
$$

= $(I - V V^{\mathrm{T}}) Y (Y V^* S - V^* S M)$
= $(I - V V^{\mathrm{T}}) Y (V^* M^* S + (Y - Y^*) V^* S - V^* S M)$
= $(I - V V^{\mathrm{T}}) Y V^* (M^* S - S M) + (I - V V^{\mathrm{T}}) Y (Y - Y^*) V^* S$
= $(I - V V^{\mathrm{T}}) (V^* M^* + (Y - Y^*) V^*) (M^* S - S M)$
+ $(I - V V^{\mathrm{T}}) V^* M^* V^{* \mathrm{T}} (Y - Y^*) V^* S$
+ $(I - V V^{\mathrm{T}}) (Y^* - V^* M^* V^{* \mathrm{T}}) (Y - Y^*) V^* S + (I - V V^{\mathrm{T}}) (Y - Y^*) V^* S$
= $(I - V V^{\mathrm{T}}) V^* M^* ((M^* S - S M) + V^{* \mathrm{T}} (Y - Y^*) V^* S)$
+ $(I - V V^{\mathrm{T}}) (Y - Y^*) V^* (M^* S - S M)$
+ $(I - V V^{\mathrm{T}}) (Y^* - V^* M^* V^{* \mathrm{T}}) (Y - Y^*) V^* S + (I - V V^{\mathrm{T}}) (Y - Y^*) V^* S$,

where in the second to last equation, we use [\(48\)](#page-1-2) and the decomposition $Y = V^*M^*V^{*T}$ + $(Y^* - V^*M^*V^{*\mathrm{T}}) + (Y - Y^*)$. Hence, with $||Y^* - V^*M^*V^{*\mathrm{T}}|| = \max{||\mu_{d+1}^*|, |\mu_n^*|},$ we have

$$
\begin{aligned} & \left\| (I - V V^{\scriptscriptstyle{\text{T}}}) Y (\widetilde{V} - V^* S M) \right\| \\ & \leq \mu_1^* \left\| (I - V V^{\scriptscriptstyle{\text{T}}}) V^* \right\| (\left\| M^* S - S M \right\| + \left\| Y - Y^* \right\| \left\| S \right\|) \\ & + \left\| Y - Y^* \right\| \left\| M^* S - S M \right\| + \max \{ \left| \mu_{d+1}^* \right|, \left| \mu_n^* \right| \} \left\| Y - Y^* \right\| \left\| S \right\| + \left\| Y - Y^* \right\|^2 \left\| S \right\| . \end{aligned}
$$

Then from (53) , we have

$$
\inf_{O \in \mathcal{O}(d)} \left\| V - \widetilde{V}O \right\| \le \frac{\sqrt{2}}{\mu_d - \mu_{d+1}} \left(\mu_1^* \left\| (I - V V^T) V^* \right\| (\left\| M^* S - S M \right\| + \left\| Y - Y^* \right\| \left\| S \right\| \right) \right)
$$

$$
+ \left\| Y - Y^* \right\| \left\| M^* S - S M \right\| + \max \{ \left| \mu_{d+1}^* \right|, \left| \mu_n^* \right| \} \left\| Y - Y^* \right\| \left\| S \right\|
$$

$$
+ \left\| Y - Y^* \right\|^2 \left\| S \right\| \right).
$$

In the rest of the proof, we are going to simplify the display above. By Weyl's inequality, we have

(54)
$$
\max_{i \in [n]} |\mu_i - \mu_i^*| \le ||Y - Y^*||.
$$

Since $||Y - Y^*|| \leq (\mu_d^* - \mu_{d+1}^*)/4$ is assumed, we have

$$
\mu_d - \mu_{d+1} \ge \frac{\mu_d^* - \mu_{d+1}^*}{2}.
$$

By this assumption and Lemma [5.1,](#page-0-1) we have

$$
||(I - V V^{\mathrm{T}})V^*|| \le \frac{2||Y - Y^*||}{\mu_d^* - \mu_{d+1}^*}.
$$

By (49) and the definition of *S* in (51) , we have

$$
||S|| = ||D^{-1}|| \le \frac{1}{\mu_d^* - ||Y - Y^*||} \le \frac{4}{3\mu_d^*}.
$$

In addition,

$$
||M^*S - SM|| \le ||M^*S - SM^*|| + ||S(M - M^*)||
$$

\n
$$
\le ||(M^* - \mu_d^*I_d)S + S(\mu_d^*I_d - M^*)|| + ||S|| ||M - M^*||
$$

\n
$$
\le ||S|| (2||M^* - \mu_d^*I_d|| + ||M - M^*||)
$$

\n
$$
\le \frac{4}{3\mu_d^*} (2(\mu_1^* - \mu_d^*) + ||Y - Y^*||),
$$

where in the last inequality we use the fact $||M - M^*|| = \max_{i \in [d]} |\mu_i - \mu_i^*|$ and [\(54\)](#page-3-0). Combining all the results together, we have

$$
\begin{aligned} & \inf_{O \in \mathcal{O}(d)} \left\| V - \tilde{V}O \right\| \\ & \leq \frac{2\sqrt{2}}{\mu_d^* - \mu_{d+1}^*} \left(\mu_1^* \frac{2\left\| Y - Y^* \right\|}{\mu_d^* - \mu_{d+1}^*} \left(\frac{4 \left(2(\mu_1^* - \mu_d^*) + \left\| Y - Y^* \right\| \right)}{3\mu_d^*} + \frac{4\left\| Y - Y^* \right\|}{3\mu_d^*} \right) \right) \end{aligned}
$$

$$
+\frac{4}{3\mu_d^*} \left(2(\mu_1^* - \mu_d^*) + \|Y - Y^*\| \right) \|Y - Y^*\| + \frac{4 \max\{|\mu_{d+1}^*|, |\mu_n^*|\} \|Y - Y^*\|}{3\mu_d^*} \\ + \frac{4\|Y - Y^*\|^2}{3\mu_d^*} \right) \\ \leq \frac{16\sqrt{2}}{3\left(\mu_d^* - \mu_{d+1}^*\right)\mu_d^*} \left(\frac{2\mu_1^*}{3(\mu_d^* - \mu_{d+1}^*)} + 1 \right) \|Y - Y^*\|^2 \\ + \frac{8\sqrt{2}}{3\left(\mu_d^* - \mu_{d+1}^*\right)\mu_d^*} \left(\frac{4\mu_1^*\left(\mu_1^* - \mu_d^*\right)}{\mu_d^* - \mu_{d+1}^*} + 2(\mu_1^* - \mu_d^*) + \max\{|\mu_{d+1}^*|, |\mu_n^*|\} \right) \|Y - Y^*\| \, . \qquad \Box
$$

B.2. Proofs of Lemma [3.1,](#page-0-15) Proposition [3.1,](#page-0-16) and Proposition [3.2.](#page-0-17)

PROOF OF LEMMA [3.1.](#page-0-15) Similar to the proof of Lemma [2.1,](#page-0-7) we can show each eigenvalue of *A* is also an eigenvalue of $(A \otimes J_d) \circ Z^*Z^{*\tau}$ with multiplicity *d*. At the same time, each eigenvalue of $(A \otimes J_d) \circ Z^*Z^{**}$ must be an eigenvalue of A. The proof is omitted here. \square

PROOF OF PROPOSITION [3.1.](#page-0-16) Since $\sigma = 0$, we have $U = U^*$. Then $\hat{Z}_j = \mathcal{P}(U_j) =$ $P(U_j^*) = P(Z_j^* \check{u}_j)$. Since Z_j^* is an orthogonal matrix, we have $Z_j = Z_j^*$ sign(\check{u}_j). Then by [\(16\)](#page-0-18), the proposition is proved by the same argument used to prove Proposition [2.1.](#page-0-19)

Before proving Proposition [3.2,](#page-0-17) we state some properties of *A* and *W*. The following lemma can be seen as an analog of Lemma [5.4.](#page-0-8)

LEMMA B.2. *There exist constants* $C_1, C_2 > 0$ *such that if* $\frac{np}{\log n} > C_1$ *, then we have* $||(A \otimes J_d) \circ \mathcal{W}|| \leq C_2 \sqrt{dnp},$ $\sum_{n=1}^{\infty}$ *i*=1 \sum *j*2[*n*]*\{i}* $A_{ij}\left(Z_{i}^{*\text{T}}\mathcal{W}_{ij}Z_{j}^{*}-Z_{j}^{*\text{T}}\mathcal{W}_{ji}Z_{i}^{*}\right)$ 2 F $\leq 2d(d-1)n^2p$ $\sqrt{ }$ $1 + C_2$ $\sqrt{\log n}$ *n* \setminus *,* $\sum_{n=1}^{\infty}$ *i*=1 \sum *j*2[*n*]*\{i}* $A_{ij}W_{ij}Z_j^*$ 2 F $\leq d^2n^2p$ $\sqrt{ }$ $1 + C_2$ $\sqrt{\log n}$ *n* \setminus *,*

hold with probability at least $1 - 3n^{-10}$.

PROOF. The first inequality is from Lemma 4.2 of [\[19\]](#page-0-20). The second and third inequalities are from (59) and (60), together with Lemma 4.3, of [\[19\]](#page-0-20), respectively. П

PROOF OF PROPOSITION [3.2.](#page-0-17) By Lemma [5.4](#page-0-8) and Lemma [B.2,](#page-4-0) there exist constants $c_1, c_2 > 0$ such that when $\frac{np}{\log n} > c_1$, we have $||A - \mathbb{E}A|| \leq c_2 \sqrt{np}$ and $||(A \otimes J_d) \circ \mathcal{W}|| \leq$ $c_2\sqrt{dnp}$ with probability at least $1 - 6n^{-10}$. By Lemma [3.1](#page-0-15) and Lemma [5.3,](#page-0-5) we have $\lambda_1^* = \lambda_d^* \geq (n-1)p - c_2\sqrt{np}$, $\max\{|\lambda_{d+1}^*|, |\lambda_n^*|\} \leq p + c_2\sqrt{np}$, and $\lambda_d^* - \lambda_{d+1}^* \geq np - c_2\sqrt{np}$ $2c_2\sqrt{np}$. Note that *d* is a constant. When $\frac{np}{\log n}$ and $\frac{np}{\sigma^2}$ are greater than some sufficiently large constant, we have $4\sigma ||(A \otimes J_d) \circ \mathcal{W}|| \leq np/2 \leq \min\{\lambda_d^*, \lambda_d^* - \lambda_{d+1}^*\}$ satisfied. Since $\mathcal{X} - (A \otimes J_d) \circ Z^* Z^{**} = \sigma(A \otimes J_d) \circ \mathcal{W}$, a direct application of Lemma [3.2](#page-0-11) leads to

$$
\inf_{O \in \mathcal{O}(d)} \left\| U - \widetilde{U}O \right\|
$$
\n
$$
\leq \frac{8\sqrt{2}}{3(\lambda_1^* - \lambda_{d+1}^*)} \left(\left(\frac{4}{3(\lambda_1^* - \lambda_{d+1}^*)} + \frac{2}{\lambda_1^*} \right) \sigma^2 \left\| (A \otimes J_d) \circ \mathcal{W} \right\|^2
$$
\n
$$
+ \frac{\max\{|\lambda_{d+1}^*|, |\lambda_n^*| \}}{\lambda_1^*} \sigma \left\| (A \otimes J_d) \circ \mathcal{W} \right\| \right)
$$
\n
$$
= \frac{8\sqrt{2}}{3(np/2)} \left(\left(\frac{4}{3(np/2)} + \frac{2}{np/2} \right) \sigma^2 c_2^2 dnp + \frac{p + c_2\sqrt{np}}{np/2} \sigma c_2 \sqrt{dnp} \right)
$$
\n
$$
\leq c_3 \frac{\sigma^2 d + \sigma \sqrt{d}}{np},
$$

for some constant $c_3 > 0$.

B.3. Proof of Theorem [3.1.](#page-0-21) We first state useful technical lemmas. They are analogs of Lemma [5.7](#page-0-10) and Lemma [5.8,](#page-0-22) respectively. Lemma [B.3](#page-5-0) is proved in (31) of [\[19\]](#page-0-20).

LEMMA B.3. *There exists some constant* $C > 0$ such that for any ρ that satisfies $\frac{\rho^2 np}{d^2 \sigma^2} \geq$ *C , we*

$$
\sum_{i=1}^{n} \mathbb{I} \left\{ \frac{2\sigma}{np} \left\| \sum_{j \in [n] \setminus \{i\}} A_{ij} \mathcal{W}_{ij} Z_{j}^{*} \right\| > \rho \right\} \leq \frac{\sigma^{2}}{\rho^{2} p} \exp \left(-\sqrt{\frac{\rho^{2} np}{\sigma^{2}}} \right),
$$

with probability at least $1 - \exp \left(-\sqrt{\frac{\rho^{2} np}{\sigma^{2}}} \right).$

LEMMA B.4 (Lemma 2.1 of [\[19\]](#page-0-20)). Let $X, \widetilde{X} \in \mathbb{R}^{d \times d}$ *be two matrices of full rank. Then,*

$$
\left\| \mathcal{P}(X) - \mathcal{P}(\tilde{X}) \right\|_{\mathrm{F}} \leq \frac{2}{s_{\min}(X) + s_{\min}(\tilde{X})} \left\| X - \tilde{X} \right\|_{\mathrm{F}}.
$$

PROOF OF THEOREM [3.1.](#page-0-21) Let $O \in \mathcal{O}(d)$ satisfy $||U - UO|| = \inf_{O' \in \mathcal{O}(d)} ||U - UO'||$. Define $\Delta := U - \widetilde{U}O \in \mathbb{R}^{nd \times d}$. Recall \widetilde{u} is the leading eigenvector of *A*. From Proposition [2.1,](#page-0-19) Proposition [3.2,](#page-0-17) Lemma [5.4,](#page-0-8) and Lemma [B.2,](#page-4-0) there exist constants $c_1, c_2 > 0$ such that if $\frac{np}{\log n}, \frac{np}{\sigma^2} > c_1$, we have

(55)
$$
\|\Delta\| \le c_2 \frac{\sigma^2 d + \sigma \sqrt{d}}{np},
$$

(56)
$$
\max_{j\in[n]} \left|\widetilde{u}_j - \frac{1}{\sqrt{n}}b_2\right| \le c_2 \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)}\right) \frac{1}{\sqrt{n}},
$$

$$
||A - \mathbb{E}A|| \le c_2 \sqrt{np},
$$

(58)
$$
||(A \otimes J_d) \circ \mathcal{W}|| \leq c_2 \sqrt{npd},
$$

 \Box

(59)
$$
\sum_{i=1}^{n} \left\| \sum_{j \in [n] \setminus \{i\}} A_{ij} \left(Z_i^{*T} \mathcal{W}_{ij} Z_j^* - Z_j^{*T} \mathcal{W}_{ji} Z_i^* \right) \right\|_{\mathrm{F}}^2 \leq 2d(d-1)n^2 p \left(1 + c_2 \sqrt{\frac{\log n}{n}} \right),
$$

(60)
$$
\sum_{i=1}^{n} \left\| \sum_{j \in [n] \setminus \{i\}} A_{ij} \mathcal{W}_{ij} Z_j^* \right\|_{\mathrm{F}}^2 \leq d^2 n^2 p \left(1 + c_2 \sqrt{\frac{\log n}{n}} \right),
$$

with probability at least $1 - n^{-9}$, for some $b_2 \in \{-1, 1\}$. By Lemma [3.1](#page-0-15) and Lemma [5.3,](#page-0-5) we have $\lambda_1^* = \lambda_d^*$, $|\lambda_d^* - (n-1)p| \le c_2 \sqrt{np}$, $|\lambda_{d+1}^*| \le p + c_2 \sqrt{np}$, and $\lambda_d^* - \lambda_{d+1}^* \ge np - d$ $2c_2\sqrt{np}$.

Using the same argument as (50) and (51) in the proof of Lemma [3.2,](#page-0-11) we can have an explicit expression for *U*. Recall the definition of *U* in [\(22\)](#page-0-23). Let $\mathcal{X}U^* = GDN^T$ be its SVD where $G \in \mathcal{O}(nd, d)$, $N \in \mathcal{O}(d)$, and $D \in \mathbb{R}^{d \times d}$ is a diagonal matrix with singular values. By the decomposition (21) , we have

$$
(61)
$$

$$
\mathcal{X}U^* = ((A \otimes J_d) \circ Z^*Z^{**})U^* + \sigma((A \otimes J_d) \circ \mathcal{W})U^* = \lambda_1^*U^* + \sigma((A \otimes J_d) \circ \mathcal{W})U^*.
$$

Since the diagonal entries of *D* correspond to the leading singular values of $\mathcal{X}U^*$, Weyl's inequality leads to $\max_{j \in [d]} |D_{jj} - \lambda_1^*| \le \sigma ||(A \otimes J_d) \circ \mathcal{W}|| \le c_2 \sigma \sqrt{dnp}$. Denote

(62)
$$
t := p + c_2 \sqrt{np} + c_2 \sigma \sqrt{dnp}.
$$

We then have

(63)
$$
\max_{j\in[d]}|D_{jj}-np|\leq t.
$$

When $\frac{np}{\log n}$, $\frac{np}{d\sigma^2}$ are greater than some sufficiently large constant, we have $np/2 \leq \lambda_1^*$ and $np/2 \leq D_{ij} \leq 3np/2$ for all $j \in [d]$. As a consequence, all the diagonal entries of *D* are positive. Then U can be written as

$$
U = \mathcal{X}U^*S,
$$

where

(64)
$$
S := ND^{-1}N^{T} \in \mathbb{R}^{d \times d}.
$$

Then (63) leads to

(65)
$$
\left\| \frac{1}{np} I_d - S \right\| = \left\| \frac{1}{np} I_d - D^{-1} \right\| \le \frac{1}{np - t} - \frac{1}{np} \le \frac{2t}{(np)^2},
$$

and

(66)
$$
||S|| = ||D^{-1}|| \le \frac{2}{np}.
$$

Using [\(61\)](#page-6-1), we have the following decomposition for *U*:

$$
U = \widetilde{U}O + \Delta = \mathcal{X}U^*SO + \Delta = (\lambda_1^*U^* + \sigma((A \otimes J_d) \circ \mathcal{W})U^*) SO + \Delta.
$$

Recall the definition of *U*[★] in [\(14\)](#page-0-25). Define $\Delta^* := U^* - \frac{1}{\sqrt{n}} Z^* b_2$. When $\frac{np}{\log n} \ge 2c_2^*$, by the same argument used to derive (39) as in the proof of Theorem [2.1,](#page-0-27) we have

$$
\|\Delta^*\| = \left\| Z^* \circ \left(\check{u} \otimes \mathbb{1}_d - \frac{1}{\sqrt{n}} \mathbb{1}_n \otimes \mathbb{1}_d b_2 \right) \right\| = \left\| \check{u} \otimes \mathbb{1}_d - \frac{1}{\sqrt{n}} \mathbb{1}_n \otimes \mathbb{1}_d \right\| = \sqrt{d} \left\| \check{u} - \frac{1}{\sqrt{n}} \mathbb{1}_n b_2 \right\|
$$

(67)

$$
\leq \frac{2c_2 \sqrt{np} + 2p}{np} \sqrt{d}.
$$

Then *U* can be further decomposed into

$$
U = \left(\lambda_1^* U^* + \sigma((A \otimes J_d) \circ \mathcal{W}) \left(\frac{1}{\sqrt{n}} Z^* b_2 + \Delta^* \right) \right) SO + \Delta.
$$

For any $j \in [n]$, denote $[(A \otimes J_d) \circ \mathcal{W}]_j \in \mathbb{R}^{d \times nd}$ as the submatrix corresponding to its rows from the $((j-1)d+1)$ th to the (jd) th. Note that $SO \in \mathbb{R}^{d \times d}$. Then U_j has an expression:

$$
U_j = \left(\lambda_1^* U_j^* + \frac{\sigma}{\sqrt{n}} [(A \otimes J_d) \circ \mathcal{W}]_j \cdot Z^* b_2 + \sigma [(A \otimes J_d) \circ \mathcal{W}]_j \cdot \Delta^* \right) SO + \Delta_j
$$

=
$$
\left(\lambda_1^* Z_j^* \check{u}_j + \frac{\sigma}{\sqrt{n}} \sum_{k \neq j} A_{jk} \mathcal{W}_{jk} Z_k^* b_2 + \sigma [(A \otimes J_d) \circ \mathcal{W}]_j \cdot \Delta^* \right) SO + \Delta_j,
$$

where $\Delta_j \in \mathbb{R}^{d \times d}$ is denoted as the *j*th submatrix of Δ .

Note that we have following properties for the mapping *P*. For any $B \in \mathbb{R}^{d \times d}$ of full rank and any $F \in \mathcal{O}(d)$, we have $\mathcal{P}(BF) = \mathcal{P}(B)F$. In addition, if *B* is positive-definite, $P(B) = I_d$. Since we have shown the diagonal entries of *D* are all lower bounded by $np/2$, [\(64\)](#page-6-2) leads to $P(S) = I_d$. Then

$$
\left\|\hat{Z}_j - Z_j^*Ob_2\right\|_{\mathcal{F}} = \left\|\mathcal{P}(U_j) - Z_j^*Ob_2\right\|_{\mathcal{F}} = \left\|\mathcal{P}(Z_j^{*\texttt{T}}U_jO^{\texttt{T}}b_2) - I_d\right\|_{\mathcal{F}}.
$$

We have

$$
Z_j^{*\mathrm{T}}U_jO^{\mathrm{T}}b_2 = \left(\lambda_1^*\widetilde{u}_jb_2I_d + \frac{\sigma}{\sqrt{n}}\Xi_j + \sigma b_2Z_j^{*\mathrm{T}}[(A\otimes J_d)\circ\mathcal{W}]_j.\Delta^*\right)S + Z_j^{*\mathrm{T}}\Delta_jO^{\mathrm{T}}b_2
$$

where

$$
\Xi_j:=\sum_{k\neq j}A_{jk}Z_j^{*\scriptscriptstyle{\text{T}}}\mathcal{W}_{jk}Z_k^*.
$$

Note that from (56) , we have

$$
b_2\breve{u}_j \ge \left(1 - c_2\left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)}\right)\right) \frac{1}{\sqrt{n}}.
$$

As long as $\frac{np}{\log n}$ is greater than some sufficiently large constant, we have $b_2 \check{u}_j \geq \frac{1}{2\sqrt{n}}$. Since λ_1^* is also positive, we have

(68)
$$
\frac{Z_j^{*T}U_jO^Tb_2}{\lambda_1^*\check{u}_jb_2} = S + T_j
$$

where T_j is defined as

$$
T_j := \frac{1}{\lambda_1^* \check{u}_j b_2} \left(\left(\frac{\sigma}{\sqrt{n}} \Xi_j + \sigma b_2 Z_j^{*\mathrm{T}}[(A \otimes J_d) \circ \mathcal{W}]_j \Delta^* \right) S + Z_j^{*\mathrm{T}} \Delta_j O^{\mathrm{T}} b_2 \right)
$$

=
$$
\frac{1}{\lambda_1^* \check{u}_j b_2} \frac{\sigma}{\sqrt{n}} \Xi_j S + \frac{\sigma b_2 Z_j^{*\mathrm{T}}[(A \otimes J_d) \circ \mathcal{W}]_j \Delta^* S}{\lambda_1^* \check{u}_j b_2} + \frac{Z_j^{*\mathrm{T}} \Delta_j O^{\mathrm{T}} b_2}{\lambda_1^* \check{u}_j b_2}.
$$

As a consequence, when $\det(U_i) \neq 0$, we have

(69)
$$
\left\|\widehat{Z}_j - Z_j^*Ob_2\right\|_{\mathrm{F}} = \left\|\mathcal{P}\left(\frac{Z_j^{*T}U_jO^{T}b_2}{\lambda_1^*\widetilde{u}_jb_2}\right) - I_d\right\|_{\mathrm{F}} = \left\|\mathcal{P}\left(S+T_j\right) - I_d\right\|_{\mathrm{F}}.
$$

Let $0 < \gamma, \rho < 1/8$ whose values will be determined later. To simplify $||Z_j - Z_j^*Ob_2||_F$, consider the following two cases.

(1) If

(70)
\n
$$
\left\| \frac{1}{\lambda_1^* \check{u}_j b_2} \frac{\sigma}{\sqrt{n}} \Xi_j S \right\| \leq \frac{\gamma}{np}
$$
\n
$$
\left\| \frac{\sigma b_2 Z_j^{* \mathrm{\scriptscriptstyle T}}[(A \otimes J_d) \circ \mathcal{W}]_j \Delta^* S}{\lambda_1^* \check{u}_j b_2} \right\| \leq \frac{\rho}{np}
$$
\n(71)
\n
$$
\left\| \frac{Z_j^{* \mathrm{\scriptscriptstyle T}} \Delta_j O^{\mathrm{\scriptscriptstyle T}} b_2}{\lambda_1^* \check{u}_j b_2} \right\| \leq \frac{\rho}{np}
$$

all hold, then

$$
s_{\min}(S + T_j) \ge s_{\min}(S) - ||T_j|| = s_{\min}(D^{-1}) - ||T_j|| = D_{11}^{-1} - ||T_j||
$$

$$
\ge D_{11}^{-1} - \frac{\gamma + 2\rho}{np},
$$

which is greater than 0 by [\(63\)](#page-6-0). Together with [\(68\)](#page-7-0), we have $\det(U_j) \neq 0$. The same lower bound holds for $s_{\min}(S + (T_j + T_j^T)/2)$. Since *S* is positive-definite, we have $P(S + (T_j + T_j^T)/2)$. $T_j^{\text{\tiny T}}/2$ = I_d . By Lemma [B.4](#page-5-2) and [\(69\)](#page-7-1), we have

$$
\begin{split}\n\left\|\hat{Z}_j - Z_j^* Ob_2\right\|_{\mathcal{F}} \\
&= \left\|\mathcal{P}\left(S+T_j\right) - \mathcal{P}\left(S+\frac{T_j+T_j^{\scriptscriptstyle{\text{T}}}}{2}\right)\right\|_{\mathcal{F}} \\
&\leq \frac{1}{\left(D_{11}^{-1} - \frac{\gamma+2\rho}{np}\right)} \left\|\frac{T_j-T_j^{\scriptscriptstyle{\text{T}}}}{2}\right\|_{\mathcal{F}} \\
&\leq \frac{1}{\lambda_1^*\widetilde{u}_jb_2} \frac{1}{2\left(D_{11}^{-1} - \frac{\gamma+2\rho}{np}\right)} \left(\frac{\sigma}{\sqrt{n}} \left\|\Xi_j S - S^{\scriptscriptstyle{\text{T}}}\Xi_j^{\scriptscriptstyle{\text{T}}}\right\|_{\mathcal{F}} + 2\left\|\sigma b_2 Z_j^{*\scriptscriptstyle{\text{T}}}\left[(A \otimes J_d) \circ \mathcal{W}\right]_j.\Delta^* S\right\|_{\mathcal{F}} \\
&+ 2\left\|Z_j^{*\scriptscriptstyle{\text{T}}}\Delta_j O^{\scriptscriptstyle{\text{T}}}b_2\right\|_{\mathcal{F}}\right).\n\end{split}
$$

We can further simplify the first term in the display above. We have

$$
\|\Xi_j S - S^{\mathrm{T}} \Xi_j^{\mathrm{T}}\|_{\mathrm{F}} = \left\|\frac{1}{np} \left(\Xi_j - \Xi_j^{\mathrm{T}}\right) - \Xi_j \left(\frac{1}{np} I_d - S\right) + \left(\frac{1}{np} I_d - S^{\mathrm{T}}\right) \Xi_j^{\mathrm{T}}\right\|_{\mathrm{F}}
$$

$$
\leq \frac{1}{np} \left\|\Xi_j - \Xi_j^{\mathrm{T}}\right\|_{\mathrm{F}} + 2 \left\|\frac{1}{np} I_d - S\right\| \|\Xi_j\|_{\mathrm{F}}.
$$

Using (65) and (66) , we have

$$
\left\|\widehat{Z}_{j} - Z_{j}^{*}Ob_{2}\right\|_{F} \leq \frac{1}{\lambda_{1}^{*}\widetilde{u}_{j}b_{2}} \frac{1}{2\left(D_{11}^{-1} - \frac{\gamma + 2\rho}{np}\right)} \left(\frac{\sigma}{\sqrt{n}} \frac{1}{np} \left\|\Xi_{j} - \Xi_{j}^{T}\right\|_{F} + \frac{\sigma}{\sqrt{n}} \frac{t}{(np)^{2}} \left\|\Xi_{j}\right\|_{F} + \frac{4}{np}\sigma \left\|\left[(A \otimes J_{d}) \circ \mathcal{W}\right]_{j}.\Delta^{*}\right\|_{F} + 2\left\|\Delta_{j}\right\|_{F}\right).
$$

Using the lower bounds for λ_1^* , $\check{u}_j b_2$, and D_{11}^{-1} , as given at the beginning of this proof, we have

$$
\begin{aligned}\n\left\|\widehat{Z}_{j}-Z_{j}^{*}Ob_{2}\right\|_{\mathrm{F}}&\leq \frac{1}{\left(np-p-c_{2}\sqrt{np}\right)\left(1-c_{2}\left(\sqrt{\frac{\log n}{np}}+\frac{1}{\log(np)}\right)\right)\left(\frac{1}{np+t}-\frac{\gamma+2\rho}{np}\right)}\frac{\sigma}{2np}\left\|\Xi_{j}-\Xi_{j}^{T}\right\|_{\mathrm{F}}\\&+\frac{4\sigma t}{(np)^{2}}\left\|\Xi_{j}\right\|_{\mathrm{F}}+\frac{16\sigma\sqrt{n}}{np}\left\|\left[(A\otimes J_{d})\circ\mathcal{W}\right]_{j}.\Delta^{*}\right\|_{\mathrm{F}}+16\sqrt{n}\left\|\Delta_{j}\right\|_{\mathrm{F}}.\n\end{aligned}
$$

Let $\eta > 0$ whose value will be given later. By the same argument as used in the proof of Theorem [2.1,](#page-0-27) we have

$$
\left\| \hat{Z}_j - Z_j^* Ob_2 \right\|_{\mathrm{F}}^2
$$

\n
$$
\leq \frac{1+\eta}{(np - p - c_2\sqrt{np})^2 \left(1 - c_2 \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)}\right)\right)^2 \left(\frac{1}{np + t} - \frac{\gamma + 2\rho}{np}\right)^2} \frac{\sigma^2}{4(np)^2} \left\| \Xi_j - \Xi_j^{\mathrm{T}} \right\|_{\mathrm{F}}^2
$$

\n
$$
+ 3(1 + \eta^{-1}) \frac{16\sigma^2 t^2}{(np)^4} \left\| \Xi_j \right\|_{\mathrm{F}}^2 + 3(1 + \eta^{-1}) \frac{256\sigma^2 n}{(np)^2} \left\| \left[(A \otimes J_d) \circ \mathcal{W} \right]_j \Delta^* \right\|_{\mathrm{F}}^2
$$

\n
$$
+ 3(1 + \eta^{-1}) 64n \left\| \Delta_j \right\|_{\mathrm{F}}^2.
$$

(2) If any one of [\(70\)](#page-8-0)-[\(71\)](#page-8-1) does not hold, we simply upper bound $\|\hat{Z}_j - Z_j^*\tilde{Q}b_2\|_F$ by $2\sqrt{d}$. Then this case can be written as

$$
\begin{aligned}\n\left\|\widehat{Z}_{j} - Z_{j}^{*}Ob_{2}\right\|_{\mathrm{F}}^{2} \\
&\leq 4d \left(\mathbb{I}\left\{\left\|\frac{1}{\lambda_{1}^{*}\widetilde{u}_{j}b_{2}}\frac{\sigma}{\sqrt{n}}\Xi_{j}S\right\| > \frac{\gamma}{np}\right\} + \mathbb{I}\left\{\left\|\frac{\sigma b_{2}Z_{j}^{*}\mathbb{T}[(A \otimes J_{d}) \circ \mathcal{W}]_{j}.\Delta^{*}S}{\lambda_{1}^{*}\widetilde{u}_{j}b_{2}}\right\| > \frac{\rho}{np}\right\} \\
&+ \mathbb{I}\left\{\left\|\frac{Z_{j}^{*}\mathbb{T}\Delta_{j}O^{\mathrm{T}}b_{2}}{\lambda_{1}^{*}\widetilde{u}_{j}b_{2}}\right\| > \frac{\rho}{np}\right\}.\n\end{aligned}
$$

Using [\(66\)](#page-6-4), $\lambda_1^* \ge np/2$, and $\check{u}_j b_2 \ge 1/(2\sqrt{n})$, we have

$$
\left\|\widehat{Z}_{j} - Z_{j}^{*}Ob_{2}\right\|_{\mathrm{F}}^{2}
$$

\n
$$
\leq 4d \left(\mathbb{I} \left\{8\sigma \left\|\Xi_{j}\right\| \geq \gamma np\right\} + \mathbb{I} \left\{8\sqrt{n}\sigma \left\|\left[(A \otimes J_{d}) \circ \mathcal{W}\right]_{j}.\Delta^{*}\right\| \geq \rho np\right\} + \mathbb{I} \left\{4\sqrt{n} \left\|\Delta_{j}\right\| \geq \rho\right\}\right)
$$

\n
$$
\leq 4d \left(\mathbb{I} \left\{8\sigma \left\|\Xi_{j}\right\| \geq \gamma np\right\} + \frac{64\sigma^{2}n}{(\rho np)^{2}} \left\|\left[(A \otimes J_{d}) \circ \mathcal{W}\right]_{j}.\Delta^{*}\right\|_{\mathrm{F}}^{2} + 16n\rho^{-2} \left\|\Delta_{j}\right\|_{\mathrm{F}}^{2}\right).
$$

Combining these two cases together, we have

$$
\left\| \widehat{Z}_{j} - Z_{j}^{*} Ob_{2} \right\|_{\mathrm{F}}^{2}
$$
\n
$$
\leq \frac{1+\eta}{\left(np - p - c_{2}\sqrt{np} \right)^{2} \left(1 - c_{2} \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} \right) \right)^{2} \left(\frac{1}{np+t} - \frac{\gamma + 2\rho}{np} \right)^{2}} \frac{\sigma^{2}}{4(np)^{2}} \left\| \Xi_{j} - \Xi_{j}^{\mathrm{T}} \right\|_{\mathrm{F}}^{2}
$$
\n
$$
+ 3(1+\eta^{-1}) \frac{16\sigma^{2}t^{2}}{(np)^{4}} \left\| \Xi_{j} \right\|_{\mathrm{F}}^{2} + 3(1+\eta^{-1}) \frac{256\sigma^{2}n}{(np)^{2}} \left\| \left[(A \otimes J_{d}) \circ \mathcal{W} \right]_{j} \Delta^{*} \right\|_{\mathrm{F}}^{2}
$$

$$
+ 3(1 + \eta^{-1})64n ||\Delta_j||_F^2
$$

\n
$$
+ 4d \left(\mathbb{I} \{ 8\sigma ||\Xi_j|| \ge \gamma np \} + \frac{64\sigma^2 n}{(\rho np)^2} ||[(A \otimes J_d) \circ \mathcal{W}]_j.\Delta^*||_F^2 + 16n\rho^{-2} ||\Delta_j||_F^2 \right)
$$

\n
$$
= \frac{1 + \eta}{(\eta p - p - c_2 \sqrt{np})^2 \left(1 - c_2 \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} \right) \right)^2 \left(\frac{1}{np + t} - \frac{\gamma + 2\rho}{np} \right)^2} \frac{\sigma^2}{4(np)^2} ||\Xi_j - \Xi_j^*||_F^2
$$

\n
$$
+ 3(1 + \eta^{-1}) \frac{16\sigma^2 t^2}{(np)^4} ||\Xi_j||_F^2 + 4d\mathbb{I} \{ 8\sigma ||\Xi_j|| \ge \gamma np \}
$$

\n
$$
+ \frac{256\sigma^2 n}{(np)^2} \left(3(1 + \eta^{-1}) + d\rho^{-2} \right) ||[(A \otimes J_d) \circ \mathcal{W}]_j.\Delta^*||_F^2
$$

\n
$$
+ 64n \left(3(1 + \eta^{-1}) + d\rho^{-2} \right) ||\Delta_j||_F^2.
$$

As a result, we have

$$
\ell^{od}(\widehat{Z}, Z^*)
$$
\n
$$
\leq \frac{1}{n} \sum_{j \in [n]} \left\| \widehat{Z}_j - Z_j^* Ob_2 \right\|_{\mathrm{F}}^2
$$
\n
$$
\leq \frac{1 + \eta}{(\ln p - p - c_2 \sqrt{n p})^2 \left(1 - c_2 \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} \right) \right)^2 \left(\frac{1}{np + t} - \frac{\gamma + 2\rho}{np} \right)^2}
$$
\n
$$
\times \frac{\sigma^2}{4(np)^2} \frac{1}{n} \sum_{j \in [n]} \left\| \Xi_j - \Xi_j^* \right\|_{\mathrm{F}}^2
$$
\n
$$
+ 3(1 + \eta^{-1}) \frac{16\sigma^2 t^2}{(np)^4} \frac{1}{n} \sum_{j \in [n]} \left\| \Xi_j \right\|_{\mathrm{F}}^2 + 4d \frac{1}{n} \sum_{j \in [n]} \mathbb{I} \{ 8\sigma \left\| \Xi_j \right\| \geq \gamma np \}
$$
\n
$$
+ \frac{256\sigma^2}{(np)^2} \left(3(1 + \eta^{-1}) + d\rho^{-2} \right) \sum_{j \in [n]} \left\| \left[(A \otimes J_d) \circ \mathcal{W} \right]_{j} \Delta^* \right\|_{\mathrm{F}}^2
$$
\n
$$
+ 64 \left(3(1 + \eta^{-1}) + d\rho^{-2} \right) \sum_{j \in [n]} \left\| \Delta_j \right\|_{\mathrm{F}}^2.
$$

In the rest of the proof, we are going to simplify the display above. Specifically, we are going to upper bound $\sum_{j \in [n]} ||\Xi_j - \Xi_j^{\mathrm{T}}||_F^2$, $\sum_{j \in [n]} ||\Xi_j||_F^2$, $\sum_{j \in [n]} ||\Xi_j||_F^2$, $\sum_{j \in [n]} ||\Xi_j||_F^2$, $\sum_{j \in [n]} ||\Delta_j||_F^2$, $\sum_{j \in [n]} ||\Delta_j||_F^2$.

For $\sum_{j\in[n]} ||\Xi_j - \Xi_j^{\mathrm{T}}||_F^2$ and $\sum_{j\in[n]} ||\Xi_j||_F^2$, note that they are the left-hand sides of [\(59\)](#page-6-5) and (60) , respectively. Hence, they can be upper bounded by the right-hand sides of (59) and [\(60\)](#page-6-6), respectively. For $\sum_{j \in [n]} \mathbb{I} \{8\sigma \|\Xi_j\| \ge \gamma np\}$, according to Lemma [B.3,](#page-5-0) if $\frac{\gamma^2 np}{d^2 \sigma^2} > c_3$ for some $c_3 > 0$, we have

$$
\sum_{j \in [n]} \mathbb{I} \left\{ 8\sigma \left\| \Xi_j \right\| \ge \gamma np \right\} \le \frac{16\sigma^2}{\gamma^2 p} \exp \left(-\sqrt{\frac{\gamma^2 np}{16\sigma^2}} \right)
$$

12

with probability at least $1 - \exp(-\frac{1}{2}$ $\sqrt{\gamma^2 np}$ $16\sigma^2$ ◆ . When c_3 is sufficiently large, it follows that

$$
\frac{16\sigma^2}{\gamma^2 np} \exp\left(-\sqrt{\frac{\gamma^2 np}{16\sigma^2}}\right) \le \left(\frac{\sigma^2}{\gamma^2 np}\right)^3
$$

by the same argument as in the proof of Theorem [2.1.](#page-0-27) For $\sum_{j \in [n]} ||[(A \otimes J_d) \circ \mathcal{W}]_j \Delta^*||_F^2$, we have

$$
\sum_{j\in[n]} ||[(A\otimes J_d)\circ W]_j.\Delta^*||_F^2 = ||(A\otimes J_d)\circ W\Delta^*||_F^2
$$

\n
$$
\leq ||(A\otimes J_d)\circ W||^2 ||\Delta^*||_F^2
$$

\n
$$
\leq d ||(A\otimes J_d)\circ W||^2 ||\Delta^*||^2
$$

\n
$$
\leq c_2 d \left(\sqrt{dnp}\frac{2c_2\sqrt{np} + 2p}{np}\sqrt{d}\right)^2
$$

where in the second to last inequality we use the fact that Δ^* is rank-*d* and in the last inequality we use [\(67\)](#page-6-7). For $\sum_{j \in [n]} ||\Delta_j||_F^2$, we have $\sum_{j \in [n]} ||\Delta_j||_F^2 = ||\Delta||_F^2 \le d ||\Delta||^2 \le$

,

 $d\left(c_2 \frac{\sigma^2 d + \sigma\sqrt{d}}{np}\right)^2$ where the last inequality is due to [\(55\)](#page-5-3).

Using the above results, we have

$$
\ell^{od}(\hat{Z}, Z^*)
$$
\n
$$
\leq \frac{1+\eta}{(np-p-c_2\sqrt{np})^2 \left(1-c_2\left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)}\right)\right)^2 \left(\frac{1}{np+t} - \frac{\gamma+2\rho}{np}\right)^2}
$$
\n
$$
\times \frac{\sigma^2}{4(np)^2} 2d(d-1)np\left(1+c'_2\sqrt{\frac{\log n}{n}}\right)
$$
\n
$$
+ 3(1+\eta^{-1})\frac{16\sigma^2t^2}{(np)^4}d^2np\left(1+c'_2\sqrt{\frac{\log n}{n}}\right) + 4d\left(\frac{\sigma^2}{\gamma^2np}\right)^3
$$
\n
$$
+ \frac{256\sigma^2}{(np)^2} \left(3(1+\eta^{-1})+d\rho^{-2}\right)c_2d\left(\sqrt{dnp}\frac{2c_2\sqrt{np}+2p}{np}\sqrt{d}\right)^2
$$
\n
$$
+ 64\left(3(1+\eta^{-1})+d\rho^{-2}\right)d\left(c_2\frac{\sigma^2d+\sigma\sqrt{d}}{np}\right)^2.
$$

Note that $\frac{1}{(1-x)^2} \leq 1 + 16x$ for any $0 \leq x \leq \frac{1}{2}$. When $\frac{np}{\log n}$ is greater than some sufficiently large constant, we have $\left(1 - c_2 \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)}\right)\right)$ $1)^{-2}$ $\leq 16c_2 \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)}\right)$ \setminus and $\left(1 - c_2 \frac{1}{\sqrt{np}} - \frac{1}{n}\right)$ $\Big)^{-2} \leq 16 \left(c_2 \frac{1}{\sqrt{np}} + \frac{1}{n} \right)$). When $\frac{np}{d\sigma^2}$ is also greater than some sufficiently large constant, we have $\left(\frac{np}{np+t} - \gamma - 2\rho\right)^{-2} \le 16\left(\frac{t}{np+t} + \gamma + 2\rho\right) \le 16\left(\frac{t}{np} + \gamma + 2\rho\right)$ \leq $16\left(\frac{p+c_2\sqrt{np}+c_2\sigma\sqrt{dnp}}{np}+\gamma+2\rho\right)$, using the definition of *t* in [\(62\)](#page-6-8). We then have $\ell^{od}(\widehat{Z},Z^*)$

$$
\leq 16^3 c_2 (1+\eta) \left(c_2 \frac{1}{\sqrt{np}} + \frac{1}{n} \right) \left(\sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} \right) \left(\frac{p + c_2 \sqrt{np} + c_2 \sigma \sqrt{dnp}}{np} + \gamma + 2\rho \right)
$$

\n
$$
\times \left(1 + c_2' \sqrt{\frac{\log n}{n}} \right) \frac{d(d-1)\sigma^2}{2np}
$$

\n
$$
+ 3(1+\eta^{-1}) \left(\frac{p + c_2 \sqrt{np} + c_2 \sigma \sqrt{dnp}}{np} \right)^2 \left(1 + c_2' \sqrt{\frac{\log n}{n}} \right) \frac{16}{np} \frac{d^2 \sigma^2}{np}
$$

\n
$$
+ 4\gamma^{-6} \left(\frac{\sigma^2}{np} \right)^2 \frac{d\sigma^2}{np} + 256c_2 \left(3(1+\eta^{-1}) + d\rho^{-2} \right) \left(\frac{2c_2}{\sqrt{np}} + \frac{2}{n\sqrt{np}} \right)^2 \frac{d^2 \sigma^2}{np}
$$

\n
$$
+ 64 \left(3(1+\eta^{-1}) + d\rho^{-2} \right) \left(c_2 \frac{\sigma \sqrt{d}+1}{\sqrt{np}} \right)^2 \frac{d^2 \sigma^2}{np}.
$$

After rearrangement, there exists some constant $c_5 > 0$ such that

$$
\ell^{od}(\widehat{Z}, Z^*) \le \left(1 + c_5 \left(\eta + \gamma + \rho + \sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} + \gamma^{-6} \left(\frac{\sigma^2}{np}\right)^2 + \sqrt{\frac{d\sigma^2}{np}} + (\eta^{-1} + d\rho^{-2}) \left(\frac{1 + d\sigma^2}{np}\right)\right)\right) \frac{d(d-1)\sigma^2}{2np}.
$$

We can take $\gamma^2 = \sqrt{d^2 \sigma^2 / np}$ (then $\frac{\gamma^2 np}{d^2 \sigma^2} > c_3$ is guaranteed as long as $\frac{np}{d^2 \sigma^2} > c_3^2$). We also take $\rho^2 = \sqrt{(d + d\sigma^2)/np}$ and let $\eta = \rho^2$. They are guaranteed to be smaller than 1/8 when $\frac{np}{d}$ and $\frac{np}{d^2\sigma^2}$ are greater than some large constant. Then, there exists some constant $c_6 > 0$ such that

$$
\ell^{od}(\widehat{Z}, Z^*) \le \left(1 + c_5 \left(\left(\frac{d + d\sigma^2}{np}\right)^{\frac{1}{2}} + \left(\frac{d^2\sigma^2}{np}\right)^{\frac{1}{4}} + \left(\frac{d + d\sigma^2}{np}\right)^{\frac{1}{4}} + \sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} \right) + d^{-3} \left(\frac{\sigma^2}{np}\right)^{\frac{1}{2}} + \sqrt{\frac{d\sigma^2}{np}} + (1 + d)\sqrt{\frac{np}{d + d\sigma^2}} \left(\frac{1 + d\sigma^2}{np}\right) \right) \frac{d(d - 1)\sigma^2}{2np}
$$

$$
\le \left(1 + c_6 \left(\left(\frac{d + d^2\sigma^2}{np}\right)^{\frac{1}{4}} + \sqrt{\frac{\log n}{np}} + \frac{1}{\log(np)} \right) \right) \frac{d(d - 1)\sigma^2}{2np}.
$$

This holds with probability at least $1 - n^{-9} - \exp\left(-\frac{1}{32} \left(\frac{np}{\sigma^2}\right)^{\frac{1}{4}}\right)$.

 \Box

APPENDIX C: CALCULATION FOR [\(18\)](#page-0-28)

Recall the definitions of Y^* and Y in [\(17\)](#page-0-29). First, we are going to show v , the leading eigenvector of *Y* , must be a linear combination of *e*¹ and *e*2. Note that for any unit vector $x = (x_1, \ldots, x_n)^{\mathrm{T}} \in \mathbb{R}^n$, we have

$$
x^{T}Yx = x^{T}Y^{*}x + x^{T}(Y - Y^{*})x = \left(-\sum_{2 \leq j \leq n} x_{j}^{2}\right) + \frac{\delta}{2}(x_{1} + x_{2})^{2} = -1 + x_{1}^{2} + \frac{\delta}{2}(x_{1} + x_{2})^{2}.
$$

If *x* maximizes the right-hand side over the unit sphere, it is obvious that neither x_1 nor x_2 can be 0. In addition, $x_1x_2 \ge 0$ and $x_1^2 + x_2^2 = 1$ must be satisfied; otherwise the right-hand side can be made strictly larger. Then we can write $v = \alpha e_1 + \sqrt{1 - \alpha^2} e_2$ where $\alpha \in [0, 1]$. Since $Yv = \frac{\delta}{2}(\alpha + \sqrt{1 - \alpha^2})e_1 + \left(\frac{\delta}{2}(\alpha + \sqrt{1 - \alpha^2}) - \sqrt{1 - \alpha^2}\right)e_2$, we have α $\frac{\delta}{2}(\alpha+\sqrt{1-\alpha^2})=$ $\sqrt{1-\alpha^2}$ $\sqrt{\frac{\delta}{2}(\alpha + \sqrt{1 - \alpha^2}) - \sqrt{1 - \alpha^2}}$ ⌘*.*

After rearrangement, this gives $\delta(2\alpha^2 - 1) = 2\alpha\sqrt{1 - \alpha^2}$ which means $\alpha^2 > \frac{1}{2}$. Squaring it yields the equation $4(1 + \delta^2)\alpha^4 - 4(1 + \delta^2)\alpha^2 + \delta^2 = 0$ whose solution is $\alpha^2 =$ 1 2 $\left(1 \pm \frac{1}{\sqrt{1+1}}\right)$ $1+\delta^2$). Since $\alpha^2 > \frac{1}{2}$, we have $\alpha^2 = \frac{1}{2}$ $\left(1+\frac{1}{\sqrt{1}}\right)$ $1+\delta^2$). Hence, $v =$ $\sqrt{1}$ 2 $\overline{1}$ $1 + \frac{1}{\sqrt{1}}$ $\sqrt{1 + \delta^2}$ ◆ *e*¹ + $\sqrt{1}$ 2 $\left(1 - \frac{1}{\sqrt{1 + \delta^2}}\right)$ ◆ *e*2*.*

We can verify it is the eigenvector of *Y* corresponding to the eigenvalue $\frac{1}{2}(\delta + \sqrt{1 + \delta^2} - 1)$.