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APPENDIX A: ADDITIONAL ALGORITHMS

In this section, we provide the detailed implementations of the batched
Gibbs sampling and the iterative algorithm of MLE for community detec-

tion.

A.1. Batched Gibbs Sampling.

Algorithm 2: Batched Gibbs Sampling

Input: Adjacency matrix A, number of communities k, hyperparameters

pri pri pri prl prl
T 0 , Pp Oy

Output: Gibbs sampling Z D, q
for s=1,2,...,5 do
1 Update a(é) ,<f ,aq§)75(5) by

(s) o aprl + Z Z Az ]Z<S l)Z(s 1>,/31(,S) ﬁpn +
a=11i<jg
a<s> =P 4 Z ZA2 JZ<S I)Z(.Ysl:l),ﬂés) —
a#b i<j

Then generate p'® ~ Beta(al,

A% I

, some initializers z© , number of iterations S.

ZZ 17 7,] Z(s I)Z(s 1)

a=11i<g
Z(s I)Z(s 1) )

a#b i<j

(")) and ¢*) ~ Beta(a!”, 8) independently.

2 Define
(s) (s) (s)
s _ 1. p¥(1—¢") () _ l1—gq
t = 3 log A= p)g’ and A\ 2 log 1 —"
Then update 7 with

Z®) from distributions

P(Z =e,) =

7,

7

za,’

end
3 We have 2 = 209, p = p® (s).

p=p~) and §=g¢q

7 = ht(s)y)\(s)(Z(s_l)),

where h: »(+) is defined as in Equation (11). Independently generate each row of

Ya € [k],Vi € [n].




A.2. An Iterative Algorithm for Maximum Likelihood Estima-
tion. We first define a mapping I’ : IIy — Il as follows

(38) [P\(Z2))ia =1 |a = arg max E Zip(Aij — )
b .
JF#i

Here if the maximizer is not unique, we simply pick the smallest index.

Algorithm 3: An Iterative Algorithm for MLE

Input: Adjacency matrix A, number of communities k, some initializers z(9,
number of iterations S.
Output: Estimation Z, p, §.
for s=1,2,...,5 do
1 Update p®, ¢ by

k (s=1) (s—1)
(s) _ Zazl Zi<j AiajZi,a Zj,a
= k -1 (1)
Yam12i<i Zia  Zja

and
(s—1) »(s—1)

(s) _ Za;réb ZKJ' Ai,jZi,a Zj,b

- s—1 s—1

Za;ﬁb Zi<j Zi(,a )Z;‘,b )

2 Define
(s) (s) ()
 _ 1. p¥(1-q¢") (o _ 1 1—-¢
t = 3 log 7(1 = @)@ and A\ = 2 log 1, FOR

Then update 7(*) with

79 =1\ (2°7Y),

where h) () is defined as in Equation (38).
end

3 We have 2 = 2(5)7 p= p(s) and ¢ = q(s)-

APPENDIX B: PROOFS OF THEOREMS

In this section, we first establish upper bounds on L{"™ and L5"™ which
are needed in the proof of Theorem 6.1 in Section 6.3.2. Then we validate
Theorem 3.1 where E(Tr(o), 7*) is in a constant order of 7y, which comple-
ments the proof of Theorem 3.1 presented in Section 6.3. In addition, we
give proofs of theorems stated in Section 4, including Theorem 4.1, Theorem
4.2 and Theorem 4.3.
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B.1. Bounds on L{"™ and L3"™ for the Proof of Theorem 6.1.
In this section, we establish upper bounds on L{"™ and L3"™ that are used
in the proof of Theorem 6.1 in Section 6.3.2, i.e., Equations (36) and (37).
Recall the definition of §,; as in Equation (35). We have some properties
on 0,3 which will be useful for the upcoming analysis:

(39) [0apll <2
(40) ueabnl <l = 2%+ llme = 2l < llm = 271l < 7min,
(41) and ZZH%HMS%ZHM Z* ||, < 2k |\m = Z*, .

a=1 b#a

1. Bounds on Li*™.  For any i € [n| such that z; = b, we define

(I +3/2)(ng +mnp)I _g®
amt i’

(42) Lii(a,b,0) 2 H[Si(;{b > —

and L ;(a,b,1) = exp(—I(nq + ny)I/(2m)) L1 (a,b,1) so that

m—1 k

Lium:ZZZZL (a,b,1).

=0 a=1 b#a i:z;=

We are going to obtain EL{"™. By applying Markov inequality, we have

ELy(a,b,1) = P [t*SZ.(;{b > T3 zisza )l Sf*”;jb]
t(1+3/2) (g +mp) ], . . )
<exp | TEBRN Ly 1o S Ay N)i0uly | Bexp |1 320 — Z30) (s — )
J# J#i

Let X ~ Ber(¢*) and Y ~ Ber(p*). Recall that z; = b. We have [{j #i: z; =
a}| =nq and |{j #i: z; = b}| = ny — 1 := nj. Due to the underlying SBM
structure, {A;;};.z;=a; {Am}j:zj:b are independent and identical copies of
X and Y, respectively. Thus,

Eexp |t* Z(Z;,a — ;b)(Ai,j —A)| =exp[—t"Nng — (np — 1))] HEexp(t*(Z;a — ;b)Ai,ﬂ
j#i JF
= exp(—t*A(nq — 1)) [Eexp(t*X)]" [E exp(—t*Y)]"
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From Proposition C.1, we have Eet' X /Ee Y = "} and Eet' XEe Y =
exp(—1). This leads to

Eexp |t*) (Z5,— Z5p)(Aij — M)

JFi
* )k E X # * * na+ngy
= exp(—t* (A = X\*)(ng — ny)) [e_t A B et*Y] [Eet XEet Y} ’
e
a+my)l
= exp(—t* (A — X*)(nq, — ny)) exp [_(n—;nb)} .

Therefore, the logarithm of IEL’M(a, b,1) is upper bounded by

a I
o +m)l oo By (0, b, 1)

l(ng +np)I n (L +3/2)(ng + mnp)I

log [EL} ;(a,b,1)] = —

< — * P .
< o i +t Z(EAW M) [0as)
J#i
/
a I

SO ) (g — ) — (”Z”b)

After combing like terms, we obtain
14+ L - EWE82y 0, gy
(43) log [EL} ;(a,b,1)] < SR 2 J(na + )
— (A = X*)(ng — np) +£° > (BAij — N)[0asl;

J#

We are going to show log[EL} ;(a,b,1)] < —(1 — n")fiminl by some 1" =
o(1). We first present some properties of A\*,¢* and I that will be helpful:

(44) I=(p"—q")?/p",
(45) A€ (¢, p"),
(46) and t* =< (p* —¢")/p".

Here Equations (44) and (45) are proved by Propositions C.2 and C.3 re-
spectively. Equation (46) is due to t* < log(1 + (p* — ¢*)/¢*) < (p* — ¢*)/p*
under the assumption that p*, ¢* = o(1), p* < ¢*.

The first term on the RHS of Equation (43) is upper bounded by —(1 —
7/(8m))fminl by the assumption t*/t = 1 4 o(1). Recall we assume |t*(\ —
A9 < n't*(p* — ¢*). By Equations (44) and (46) the second term is upper
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bounded by 7/fimin up to a constant factor. For the last term on the RHS
of Equation (43), since A — X\*| < 7/(p* — ¢*) we have
t*

<t +t*

D (EA; ;= N)[bap)i
i

D (EA; ;= A [bap)i
i

<@+t P" = ") 10apll;
< (49 (P" — ¢")Yimin
,S 'Yﬁminla

PONEPIIE

JF

where we use Equations (40) and (44) - (46).

As a consequence, there exists a sequence 1" = o(1) that goes to zero
slower than m ™1, v,/ such that the summation of three terms on the RHS
of Equation (43) is upper bounded by —(1 — 7" )fipin . Thus, from Equation
(42) we have

k
EL™ =YY )" > exp [logEL} ;(a,b,1)]
=0

Since 1" goes to 0 slower than m~!, we have n” > m~! > (ﬁminl)% by

Equation (34). Then by applying Markov inequality, we have

N

P [Li“m > nmk exp [—(1 — QU//)ﬁminIH < exp [—n”ﬁminl] < exp [—Q(ﬁmmI)

That is, with probability at least 1 — exp[—2(7iminl )%], Equation (36) holds.
2. Bounds on L3"™. Recall the definition of L§"™ as

sum nmin-[
L3 AZZZH[ —EA; )0y > 4mt].

a=1 b#a i:z;=b

Depending on network being dense or sparse, we consider two scenarios.
(1) Dense Scenario: q* > (logn)/n. In this scenario, we have a sharp
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bound on [|[A — EA||op. First we observe that

D [(Ai. —EA; )0a,)* = 07, Z A )T (A —EA; )00
i:2;=b 112, =
<ol Z —EA; )T (Ai. —EA;)]bap

= 9a’b[(A —EA)T(A- EA)[0qp
By applying Markov inequality, we have
07, (A —EA)T(A—EA))0,
sum < a El
= Z Z (Fimind /(4mit))?

a=1 b#a

Since [|0qpl,, < 2, we have [6apll® < 2||0apll,- Lemma C.3 shows [|A —
EA|op < (/cinp holds with probability at least 1 — n™" for some constants
c1,7 > 0. Together with Equation (41), we have

ZZ@ [(A—EA)T(A-EA)0

Z |4 —EA|Z, 160l
a=1 b#a 1 b#a

IN

ﬁMa ”M»

> " 2e1mp |00,

1 b#a
derknp ||m — Z*H1 .

T

Thus, with probability at least 1 — n™",

derknp |1 — Z*||;
(Pminl /(4mt))?

L;L‘lm S

(2) Sparse Scenario: ¢* < (logn)/n. When the network is sparse, the
previous upper bound on [|[A — EA|/sp, no longer holds. Instead, removing
nodes with large degrees is required to yield provably sharp bound on ||A —
EA|op. Define S = {i € [n],>_; Ai; > 20np*}. We define A, P such that
Ai,j = Az,]ﬂ{l,] ¢ S} and pi,j = (EAz’J)]I{Z,j ¢ S} Then we have the



decomposition as

mmI
Lo(a,b) 2 ZH[ . —EA; )9a,,_”4 t]
< Z I|(A;. — P)0ap > Mnin!
el R
nmlHI
+ DT (A —BA;j)[Bapligl{i € S or j € S} > == o

Giz=b | i
= LQJ((Z, b) + LQQ(CL, b)

Define L§Y™ £ 3°%_ 3, ., La1(a,b). We have
07 y[(A— P)T(A~P)] 2| A — PlI3, 16a,0ll,

k
surn < Z Z nmmI/(Smt z:: ; nmmI/ 8mt))

a=1 b#a

Lemma C.4 shows ||A— P||o, < \/canp holds with probability at least 1—n ="
for some constant co > 0. Then we have

sum 4egknp Hﬂ- - Z*Hl
217 (il /(8mt))?

Lemma C.5 shows >, ;[A4;; — EA;;[I{i € S} < 20n%p* exp(—5np*) holds
with probability at least 1 —exp(—5np*). Then by applying Markov inequal-
ity, we have

;uénﬁz ZLQQCEb

a=1 | b#a

|Aij — EA; j||[0ap)i]1{i € S or j € S}
393

poc ) Tominl /(8Mt)

k 4Zi,j ‘Ai,j - EAZJHI{Z S S}

<
= Tininl /(812

a=1
80n2kp* exp(—5np*)
- Timinl / (8mt)

As a consequence, we have

4eaknp® ||m — Z*||;  80n?kp* exp(—5np*)
(ﬁminl/(8mt))2 ﬁminI/(Smt) ’

sum sum sum
L™ < Ly7" + Ly, <
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with probability at least 1 —n~! —exp(—5np*). By the bounds on L§"™ and
L™ and due to t/t* = 1+ o(1), we obtain Equation (37).

B.2. Proof of Theorem 3.1 for the case where £(7(®), 7*) is in a
constant order of 7i,i,. For any 7 such that £(m, 7*) < ¢ipitfimin, We are
going to show when ¢jy;; is sufficiently small

U, Z*)
27/nl [[wk[n/fmin)?)

with probability at least 1—exp(—nminl/10)—n"" for some constant r > 0. If
it holds, for any 79 such that ¢ (W(O), Z*) = chmin for some constant ¢ < cipit,
the term n exp(—fiminl /25) is dominated by £(7(0), Z*)/\/nI /fwk[n/fimin)?]
which implies

(47)  L(hea(7), Z7) < nexp(—nmind /25) +

n ()] Z*)
VI /[wk[n/uin]?]

(x M, 2*) < nexp(—(1 = ) /fumin)

It also implies /(71| Z*) = 0(7imin), which means after the first iteration,
the results in Section 6.3 can be directly applied and the proof is complete.

The proof of Equation (47) mainly follows that of Theorem 6.1. We have

e (@i = ZE [, <20 1 Aexp |26 (M — mjz,) (Aig — A)
a#z; J#i
Note that the inequality 1 A exp(—z) < f(zo) + I{x > x0} holds for any
xo > 0. By taking xo = (nq + ns,)I1/4, we have

+1 Z(”j,a —jz)(Aij — A) > —

(10 + n2,)
et mr]

[Thea(m)i, = Z ], < 2w > fexp 1

a#z;

and consequently,

|hea(m) — ZF||; < 2wnk exp(—nminl /2)

k
+2wzz Z H[Z(ﬂ'j,a _Wj,b)(Ai,j — )\) > _(na—;tnzi)l]].

a=1 b#a i:z;=b “ j#i
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Define 6, the same way as in Section 6.3, and by the same argument, we
have

k
Ihen(m) = Z*||; < 2wnk exp(—Aminl /2) + 2w > Y1 [(AZ,. —EA; )04y >
a=1 b#a i:z;=b

771111111[
8t

k
r203 Y 3 1] S - 2 -0 = - S e -

a=1 b#a i:z;=b j#i j#i

From Lemma C.1, when ¢t is sufficiently small, with probability at least

1 — €357 we have
t—t* A= AF
(48) max{ *| ” | - | " J } < 24¢pCinit -
(»* —q*)/p*" (p* — q*)

Proposition C.3 shows that A* € (¢* + c¢(p* — ¢*),¢" + (1 — ¢)(p* — ¢*)) for
some positive constant 0 < ¢ < 1/2. Therefore, when c¢n;; is sufficiently
small, we have X\ € (¢*,p*). Thus,

D (BAi; — Nbapli| < 0" = ) 10asll, < (0" = ¢*) |7 = 27|} < Cinit(p" — ¢°)Tinin,
i#i

where we use Equation (40). By Equations (44) - (46), it is smaller than

(ng + nz,)/(8t) when cinit is sufficiently small. As a consequence, we have

k
e () — Z*||; < 2wnk exp(—Timind /2) + QwZZ Z I [(Ai,. —EA; )0, > ”

nminI:|
a=1 b#a i:z;=b

k
+ 2’LUZZ Z H[Z(Zﬂ*ﬂ - ;,b)(Ai,j — )\) > _(na—;tnb)lj|.

a=1b#a i:z;=b “ j#i

sum k * *
Define LT"™ =3/, Zb;ﬁa Zi:zi:bﬂ [Zj;ﬁi(zj,a - Zj,b)(Aiyj —A) = —(na + ”b)I/(St)}
and L3 = Y0 30 Sy LI(Ain — BA; )0qp > Amind /(8t)]. Our anal-
ysis on them is quite similar to that in Section 6.3. By Markov inequality,

k
ELM™ =3 % > P (Za— Z5)(Aij — A) 2 —t*(na + 1)1/ (81)

a=1 b#a i:z;=b jF#i

k *(n, n
<D exp [w — (A = \*)(ng — nb)] Eexp [t°Y (Z5, — Z5p)(Aij —

8t
JF#i

k *(n n e
< ZZZ exp [W O A (g — ) — (+2b)1] |

%)
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By Equations (44) - (46) and (48), when ¢yt is small enough, t*/t < 2 and
#[A — X*| < I/6. Thus

ELT™ < nkexp(—niminl /12).
Hence, with probability at least 1 — exp(—7iminl/24),
L™ < nkexp(—nminl /24).

For L3"™ we use the same argument as in Section 6.3 and obtain

pgun < dezknp”|im = 27, 80n2kp* exp(—5np*)
B (ﬁminl/(8t))2 ﬁminI/(8t) ’

T

with probability at least 1—n~"—exp(—5np*) for some constants r, ¢y, co > 0.

Recall that
|hea(m) — Z%||; < 2wnkexp(—nminl /2) + 2wL™ + 2w L™,

Using the same argument as in Section 6.3, we conclude with

1
2y/nl /[wk[n/fmin]?]

with probability at least 1 — exp(—fminl /10) — n~".

1hex(m) = Z*||y < nexp(—Aminl /25) + lr— 2%,

B.3. Proof of Theorem 4.1. Define t* = %log Z:g:g:g and \* =

L Jog i:gi. By the same simplification we derive in Theorem 2.1, we have

2t

M — argmax f/(m; A),

welly

where

IR ;
fl(m; A) = (A+ X1, — X1,1T 7nTy — . ZKL(Categorical(mv.)HCategorical(ﬂEfl)).

i=1

Recall the definition of h¢)(-) as in Equation (11). A key observation is
that AME = Ry o (7MF), otherwise if there exists some i € [n] such that
(R = (AME)]; . not equal to ﬁZMF This indicates the implementation of CAVI
update on the i-th row of 7 will make change, leading to the decrease of
f'(-; A). This contradicts with the fact that #M¥ is the global minimizer.

The fixed-point property of #MF is the key to our analysis. It involves
three steps.
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e Step One. For any m such that ¢(7w, Z*) = 0(fimin), by the same analysis
as in the proof of Theorem 3.1, we are able to show that there exist
constant r > 0 and sequence 1 = o(1) such that

| — 2"
\/nl/[Wk[n/ﬁmin]Q]’

r

with probability at least 1 — exp[—(Tominl )%] —n".

e Step Two. Lemma C.6 presents some loose upper bound for £(7#M¥F, Z*).
That is, under the assumption pnl/[wk?[n/fimin]?] — oo, with proba-
bility at least 1 — 35", we have

A a= (1) = Z7||; < nexp(—(1 = )Aminl) +

((7ME) Z*) < o(fimin).-

FMF) — ZME

e Step Three. Using the property that h y«(7 , we have

M — Z*||, < nexp(—(1 = n)Aminl) +

v/ [wk[n/fmin]?]

holds with probability at least 1 — exp[—(fiminl )%] —n~". Then we
obtain the desired result by simple algebra.

B.4. Proof of Theorem 4.2. By law of total expectation, we have
(49)
E j(s11) [Hz(sﬂ) _g*

1 ‘A’ Z(O)] =E 1) |:EZ(5+1) [ Hz(SH) _ g

1 ’W(s+1)’A7 Z(O)]

A, Z(O)}

= By [ [ — 2

4.2
1 b )
where the first equation is due to that the conditional expectation of Z(+1)
is 7t We are going to build the connection between 7(*) and #(t1). In
Algorithm 2, there are intermediate steps between 7(*) and 71 as follows:

1) s 2 oy (D (D) Ly (D) Ay plstD)

where we use the plain right arrow (—) to indicate deterministic generation
and the curved right arrow (~) to indicate random generation. Despite a
slight abuse of notation, we define 7(9) = Z(0),

Analogous to the proof of Theorem 3.1 in Section 6.3, we assume K(Z(O), Z*) =
0(Timin). The proof for the case £(Z(0), Z*) in the same order of fiy;, is similar
and thus is omitted.

Let v = o(1) be any sequence goes to 0 when n grows. We define a series
of events as follows:
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e global event F: We define F exactly the same way as we define in the

proof of Theorem 3.1 in Section 6.3 with respect to sequences v and
7', and we have P(F) > 1 — exp[—(ﬁminl)%)] —n~" for some constant
r > 0. We have ' = o(1) whose value will be determined later.
global event G: Consider any Z € II; such that ||Z — Z*||; < Y7fimin-
Define

_aprl‘i‘ZZA,]ZzaZ]a?ﬁp_5prl+zz ]m

a=1 i<j a=1i<j
=P+ Y AijZiaZip, Be =B+ DD (1= Aij)ZiaZi.
a#b i<j a#b i<j

Define G be the event that

max {

holds uniformly over all the eligible Z for some sequence n” = o(1).
Then by the same analysis as in Lemma C.1, we have P(G) > 1—e357 ™.

local events {Hgs 1 We define 7-[ = {Hﬂ' Z*Hl > YMmin/2}.

local events {Hgs o_,: We define ’H;) = {HZ(S Z*Hl > Yfmin }. For
the conditional probability, we have

Qq
7 ag + By

o
ap + Bp

—q" } <7n"(p" —q")

P(HS) = 1) = 0)

Z {HZZ(S) B ZZ* 1

>l

*
-7

|
|

Since H7r(5) -7 *Hl < Yimin/2 given Hgs) = 0 by Bernstein inequality,
we have

> Yiiin — |7 - 2°

(s) _
[T

> Yiimin /2|1 =0

() *
© -z

*
-7

-,
PO = 11 = 0) < exp [_ H (Y7imin)2/8 ]

m(s) — Z"‘H1 + Ymin /6
< €xXp [_3(7ﬁmin)2/16] .

local events {7—[:(38 2_1: We define 7-[3 = {|t)—t*| > o/ (p*—q*)/p*, or |\ —
M| > 1/ (p* — ¢*)}. If the global event G holds and the local event Hgs)
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does not hold, we have

max{ * } S n//(p* _q*)

Note that of ™ + 80 = ot 4 gt b S 2020 > w2k

Using the tall bound of Beta distribution (Lemma C.7) we are able to
show

(s+1)
Olp *

aés-i—l) + 61(78+1)

q

| Ty oy 4
a((]s—i—l) +5§8+1)

‘ a(s+1)

[ (s+1) _ apt! " (s)

P ps s s n(p*—q*)']-[s:()’gzl
( +1) + ﬁp +1) 2

< exp [_n//2n2 (p 2_p:] ) }

<exp [-1"n*1/2],
where the last inequality is due to Proposition C.2. This leads to

Hp s+1 p* Z Qn//(p* o q*)

W = 0.9 =1] < ew [l 2]

And similar result holds for ¢ . Then by the same analysis as in the
proof of Lemma C.1, max{|pt1) — p*|, |¢C+tD) — ¢*[} < 20" (p* — ¢*)

leads to
t(s+1) _ px A(s+HD)=A
max | " " L,’ " ” | < 16¢con”.
* —a*)/p*" p*—q

By taking ' = 16¢on”, we obtain
[P’(H:())s—l-l) _ 1|'Hgs) =0,G=1) < 2exp [—77”27”&21/2] .

Note that events F and G are about the adjacency matrix A. The events
7{(15),7-[;9) and Hésﬂ) are for 7(®), Z() and (ps*t1 ¢(5+1) respectively. With
all the above events defined, we can continue our analysis for Equation (49).
Under the event F NG N (H; ( U Hg )y ’H(SH)) we have

(8 — 7%

)

(50) HHS*U s 1

X < nexp(—(1 —n)Aminl) + cn

where ¢, = [nI/[wk[n/fimin)?]] /2. As a consequence, under the event F N
GN(Il=o 7‘[5 Yy 7{(”) U H:())UH))C, we have

HW(SH) _ g 7

<nexp(—(1—2n)aminl) + ¢, ||7
1

L .
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Therefore, we have

(51)

E (s+1) [HW(SH) - Z* . ’Hgo) =0,F=1,G= 1} < nexp(—(1—2n)minl)

+ e [ =z [T# uny UH:(;’“)’HgO) —0,F=1,G=1].

+ nlP
1

Due to the small value of ¢,, if Hw(s) — Z*H1 < YAumin, Equation (50) imme-
diately implies HW(SH) — Z*H1 < Afmin. This implies that under the event
F UG we have

1D 1D unS unS s > 0,

and consequently,

[T und? ong ™ c @ [T Hs ung ™, vs > 1,
v=0 v=0

Thus,

(52) P [H 1 un U Hg"“)‘HgO) =0,F=1,0 = 1]
v=0

<P [H 1 U Hgv“)\fﬂgm —0,F=1,G= 1]
v=0

<STPHY =11 =0)+ S Py = 1H = 0,6 =1)
v=0 v=0
< (s+1) [exp [~3(VAimin)?/16] + 2exp [-1"*n1/2]] .

Note that IP’(’H%O) =0,F=1,6G=1)> 1—exp[—(ﬁminI)%)]—n""—e35_”—e.
Recall we define 7(0) = Z(0), By Equations (49), (51) and (52), we have

EZ(S+1) |:HZ(S+1) _ g Z(O) _ g

4,20 < nexp(~(1 — 2m)mind) + <,

, + (s + 1)nby,

with probability at least 1 — exp[—(ﬁminl)%)] —n~" —e357 " — ¢, where b, =
exp [—3(YAmin)?/16] + 2exp [—n"?n%1/2].

B.5. Proof of Theorem 4.3. Note the similarity between Algorithm
3 and Algorithm 1. We can prove Theorem 4.3 with almost the identical
argument used in the proof of Theorem 3.1, thus omitted.
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APPENDIX C: STATEMENTS AND PROOFS OF AUXILIARY
LEMMAS AND PROPOSITIONS

We include all the auxiliary propositions and lemmas in this section.

C.1. Statements and Proofs of Lemmas and Propositions for
Theorem 3.1.

LEMMA C.1.  Let cing be some sufficiently small constant. Consider any
7 € Iy such that |1 — Z*||; < cinan/k. Let oy, By, o, By, t, X be the outputs
after one step CAVI iteration from m described in Algorithm 1. That is, they
are defined as Equations (28) - (31). Define

k
dici 2oam1 TiaTjadi Qi aath TiaTipAi
T , and § = .
D i< 2oa=1TiaTja 2icj 2oath TiaTjb
Under the same assumption as in Theorem 3.1, there exists some sequence

€ = o(1) such that with probability at least 1 —e35~ ", the following inequality
holds

{Iﬁ—p*! la—q*| t=t] A=A
max * * 7k * 7 * * * 7 % *
p*—aq* pt =g (p*—q")/p* p*—q

p=

lm— 2",
n/k

}§e+24co

uniformly over all the eligible w. In addition if we further assume cin; goes
to 0, the LHS of the above inequality will be simply upper bounded by €.

PROOF. We are going to obtain tight bounds on |p — p*| and |§ — ¢*| first.
Note that we have the “variance-bias” decomposition as in

k k
i e miaTa(Aiy = BAL |3 Y amt TiaTjaB AL
p—p| < - + -
> icj 2aa=1Ti,aTja Dicj 2aa=1 TiaTja

We have concentration inequality holds for the numerator in the first term
by Lemma C.2. That is, with probability at least 1 — 357", we have

k
Zzﬂi,aﬂ—jva(Ai»j — EAi’j) = ’;(A — EA,F’/TT>‘ S 3n\/np*

i<j a=1
holds uniformly over all = € II;. For the denominator, we have

n? b 1< 5 n?
o > Zzﬂ-i,a'ﬂj,a = Ez ”71--,(1”1 > 2%’
a=1

1<j a=1
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since 22:1 |7.all; = n. Thus, we are able to obtain an upper bound on the
first term as

k
| 2oicj 2oam1 TiaTja(Aij — EAi )| <6,/
- < .
ZK]’ > a=1Ti.aTja "

For the second term, since EA; ; = p* 25:1 ARV AR (R SN+ A

,a7j,a a=1“1,a“7,a

we have

k
2icj 2oa=1 TiaTjalAij o
k
ZK]’ > o=t TiaTja

k k * 7%
ZK]‘ [Za:1 Wi,aﬁj,a] [Za:l 1—- Zi,aZj,a:|
k
Zi<j > am1 TiaTja
}<7r7TT, 117 - Z*Z*T>|
k
Zz’<j > a=1Ti.aTja
‘<7T7TT _ Z*Z*T, 117 — Z*Z*T>|
k
ZZ<] Zazl Trivaﬂ-jza

where in the last inequality we use the orthogonality between Z*Z*T and
117 — z*Z*T | For its numerator, we have

=" —q")

=" —q")

9

=" —q")

’<7T7TT . Z*Z*T,l].T _ Z*z*T)‘ < HTMTT . Z*Z*THl
<=2y (I=lly + 112*]1)
<|m=Z" 22, + llm = Z7,)
< 3nljm - 27|,

This leads to
k * * *
Yicj 2oa=1 TiaTjaBAi < 3nllr — 27|, (0" — ")
Zi<j 2521 Ti,aTj,a B n?/k

< 3kn”'(p" — ¢") |7 = Z7)); -

Thus,
k2p* k2p* 3lm — 27|
H— p¥| < 6 3k =1/ *x % _ Z* < 1 *
lp—p| < — +3knT (" — ) | [l < [ = T njk (p
Similar result holds for |§ — ¢* = R2p Sllm=271,
G — ¢*|. Denote ny = R ATy thus

max{|p —p*|,|q — ¢*[} < mo(p* — ¢").

By the assumption of n/ in Equation (19) and Proposition C.2, we have
n(p* — ¢*)?/(k*p*) < nI/k? — co. Therefore, the first term in 7y goes to 0.
The second term in g is at most 3cin; which implies ng < 4cinit-

q°).
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By the fact that the digamma function satisfies ¢ (z) € (log(z—1/2),log z),Vz >
1/2, we have

w(%) - w(ﬁp) > log %_71/2

Bp
~ log [ N -1/2+ Zz<] Za 1,07 j,a 73} / [qu Za 1 Ti,aTj, a]
L [ b — i< Ea 1 iaTja A ,J} / {ZK] Z -1 Ti,aTja }
P+( o -1/2)/ [Zz’<j Za:l Wi,aﬂm}
= log
L=p+ 6pn/ [Zi<j Z];:l ”i,tﬂj,a}

Recall that we have shown ZK]. Z];:l TiaTjq lies in the interval of (n2/(2k), n2/2).
By Equation (19), there exists a sequence ' = o(1) such that «, 5, <
7 (p* — ¢*)n?/k. Then we have

P —p* —pl—n'(p* —q")

wlaw) =0 ) 2 o8 g o — )

Similar analysis leads to
¢ +1g* =4l +n'(p* — ")
L—q* —|g* —q| —n'(p* — q*)

Y(ag) —¥(By) <

Together we have
pr=Ipt=pl-n'p"—q) 1-q¢" —|¢" =4 -7'(p" —q)
L—p*+p* —pl+7'(p* —¢*) ¢ +l¢* —dql+n'(p*—q*)
A * * 4
[1 = pl (P —q )} pr(1- (J*)] o

—t*

t—t*zlog[

> log

=4log [1— (770+?7)pq_q}

Recall that we assume cop* < ¢* < p*. Thus (no +7')(p* — ¢*)/p* < 5cinitco-
When ciy;t, is sufficiently small, we have (no + 7')(p* — ¢*)/p* < 1/2. Then
using the fact —z > log(1 — x) > —2z,Vx € (0,1/2). We have

t—t" > =8(m +n)p* —q")/q"
Analogously we can obtain the same upper bound on ¢ — t*, and then

1t — 5] < 8eolmo + )=
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Identical analysis can be applied towards bounds on |5\ — A*|. Note that
A i k
B, | 1-p+p"/ [ZK]‘ 2 a=1 Wi,aﬂj,a}
= log : -
ri ri k
p + fp L+ (ap™ + 85/ [Zi<j > ezt Wi,a”j,a}
similarly for ag, 8. Omitting the immediate steps, we end up with

A= X =[[(8q) — ¥(ag + By)l = [(Bp) — v + Bp)] = X" < 8(mo + ') (0" — ¢°).

The proof is complete after we unify and rephrase all the aforementioned
results. O

log

il

LEMMA C.2. Let A € [0,1]™" such that A= AT and A;; = 0,Vi € [n].
Assume {A;;}ic;j are independent random variable, and there exists p < 1
such that 9n~1 < ﬁ >ic; Var(A;j) < p, and then we have

sup [(A — EA,W?TT> < 6n4/np,
welly
with probability at least 1 — e357".
PROOF. This result is a direct consequence of Grothendieck inequality [2]
(see also Theorem 3.1 of [3] for a rephrased statement) on the matrix A—EA.
The Lemma 4.1 of [3] proves that with probability at least 1 — e357",

> (Aig — BAi)sity| < 3ny/np.

i’j

sup
site{—1,1}"

Then by applying Grothendieck inequality we obtain

sup
l|-Xill,<1,Vi€[n]

(Aij —EA ) X[ Xj‘ < 3eny/np,
i

where c¢ is a positive constant smaller than 2. This concludes with

sup [(A — EA,WTFT>‘ < 6n+/np,

welly
O

PrOPOSITION C.1. Assume 0 < g < p < 1. Let X ~ Ber(q) and Y ~

Ber(p). Recall the definition A = log i—:g/log 28:%, t = %log 58:}3 and

I = —2log[\/pq + /(1 —p)(1 — q)]. Then the following two equations hold

1

o (BN X —tY _

(53) e = gow , and Ee'*Ee ™ = exp(—I).
e
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PROOF. The proof is straightforward and all by calculation. Note that
Eexp(tX) = pe! +1 —p and Eexp(tY) = ge! + 1 — q. We can easily obtain

Ee™Ee ™ = (pe! +1—p)(ge '+ 1 —¢q) = (vpg + (1 —p)(1 — q))* = exp(—1I).

We can justify the first part of Equation (53) in a similar way. O

LEMMA C.3. [Theorem 5.2 of [5]] Let A € {0,1}"*"™ be a symmetric bi-
nary matriz with A; ; = 0,Vi € [n], and {A; j}i<; are independent Bernoulli
random variable. If p £ max; j EA; ; > log n/n. Then there exist constants
¢, > 0 such that

A - IEAHOp < cy/np,

T

with probability at least 1 —n~".

The following lemma on the operator norm of sparse networks is from [1].
In the original statement of Lemma 12 in [1], “with probability 1 — o(1)” is
stated. However, its proof in [1] gives explicit form of the probability that

the statement holds, which is at least 1 — n~1.

LeEmMA C.4.  [Lemma 12 of [1]] Suppose M is random symmetric matriz
with zero on the diagonal whose entries above the diagonal are independent
with the following distribution

1 - pij, w.p. pi;
Mz’,j _ Dij P- Di,j
—pij, w.p. 1 —p;;.

Letp = max; ; p;; and M be the matriz obtained from M by zeroing out all
the rows and columns having more than 20np positive entries. Then there
exists some constant ¢ > 0 such that

|4 op < c/mp.

holds with probability at least 1 —n~".

LeMMmA C.5.  Let A € {0, 1}"*™ be a symmetric binary matriz with A; ; =

0,Vi € [n], and {A;;}ic; are independent Bernoulli random variable. Let
p > max; ;EA; ;. Define S = {i € [n],>_; Aij > 20np} and Z; = 3, |A;j —

EA; j|I{i € S}. Then with probability at least 1 — exp(—5np), we have

Z Z; < 20n2pexp(—5np).

2
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Proor. Note that EZJ. |A;; —EA; ;| <2np(1 —p) < 2np. For any s >
20np, we have

P(Zi>s) <P |) |Aij —EAiy| —E)_[Ai; —EAij| > s — 2np

J J
1 2
5(8 —2n
< exp |— 2( . 2
np + 5(s — 2np)
S exp(—8/2),

by implementing Bernstein inequality. Applying Bernstein inequality again
we have

]P’(ZZ > 0) =P ZAi7j > 2071])
J

< P ZAi’j _EZAi’j > 18np
J J

o [ 182
= %P np + 18np/3

< exp(—21np/2).

Thus, we are able to bound EZ; with

20np o)
EZZ-S/ IP’Z>Ods+/ P(Z; > s)d
0 20np

< 20np exp(—21np/2) —i—/ exp(—s/2)
20np

< 20np exp(—10np).

By Markov inequality, we have

E Z; > 20n2pexp(—5np)

7

P Z |A; j — EA; ;[I{i € S} > 20n*pexp(~5np) | =P

1,J

nIE21
~ 20n?pexp(—Hnp)
< exp(—5np).
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ProPOSITION C.2. Under the assumption that 0 < g < p = o(1). For

I=-2log [m—# V(1 =p)(1- q)] we have
I=(1+o(1)(v5 - va*

Consequently, (p — q)%/(4p) < I < (p—q)?/p.

PROOF. It is a partial result of Lemma B.1 in [6]. O

PROPOSITION C.3. Define A\ = log L;g/ log 28:;;. For any p,q > 0 such

that p,q = o(1) and p < q, there exists a constant 0 < ¢ < 1/2 such that
A\ —
279 ¢ (¢,1—c).
p—q
PROOF. First we are going to establish the lower bound. Let z = p — ¢,
and then we can rewrite A\ as

1
A= .
log(1+x/q)
L+ log(1+z/(1—q—=x))

Case I: © > q/10. Define s = (p — q)/q. Since p < q we have s > 1/10 and
also upper bounded by some constant. We have

A—q 1|1 1

_ q log(1+s)
P=a 591+ ggarsg a1 D)

_ 1 [(1=g)log(1 +sq/(1 = (s +1)g)) — qlog(1 + s)
s qlog(1+sq/(1 — (s+1)q)) + qlog(1 + s)
1 (1= @) 7=ty — qlog(1 +5)
s 2qlog(1l + s)
1 1—g¢q
8log(1+s)’

which is lower bounded by some constant ¢ > 0.

Case II: © < q/10. By Taylor theorem, there exist constants 0 < e1,€e9 <
1/10 such that

x r 1—c¢ :1;2
)35
q q 2 q

T x 1—e€ x 2
andlog[l—i— } 2[ ] .

l—qg—=z :1—q—a:_ 2 l—qg—=
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Thus, we have

log(1+7)  q(1—¢)% = [2¢(1 — @) + 552(1 — @)*] & + c12” + o2
log(1+ =) (1 —q) — 52¢%

Y

where ¢; = (1 —€1)(1 — ¢) + ¢ and ¢ = —(1 — €1)/2. Thus,

A-gq _ 1 ¢*(1—q) = *5%¢%

p—a 7 |q1l—q) - Rall— @) + 51— 02 + 552 0 + c1a? + co?
1

[3a(1— @)+ 2*(1 — q) — $(1 — 9)%q] + c1qx + caqa®
q(1—q) — [2¢(1 — ) + 521 — ¢)% + 2352 ¢*| 2 + 12 + cpa®

Note that |c1], [c2] < 1. We have

1
_ 1.1 —
A q24Q( q)21/8_
p—q  29(1—q)

By using exactly the same discussion, we can show (p — \)/(p —q) > ¢
Thus, we proved the desired bound stated in the proposition. ]

C.2. Statements and Proofs of Lemmas and Propositions for
Theorem 4.1.

LEMMA C.6. Let Z* € Ily. Assume p*,q* = o(1l) and p* =< ¢*. Define
t*, X* and #MF the same way as in Theorem 4.1. If nI/[klog kw] — oo, we
have with probability at least 1 — 357",

HZ*Z*T _ ﬁ-MF(ﬁ-MF)Tul g n2/\/ﬂ

If we further assume Z* € H(()p’p/) with arbitrary p, p', and then we have with
probability at least 1 — 357",

(7M7) < p~tnn/E2 ) (nd).

PROOF. Form Lemma C.2, with probability at least 1 — 357", we have
uniformly for all 7 € II;

(54) (A —EA, 7nr")| < 6ny/np*.

In the remaining part of the proof, we always assume the above event holds.
Denote f/(7) = (A+A* L, = A 1,11 7nT) — ()7L Y0 KL(m;,.||7P") for any
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m € II;. Here we adopt the notation KL(7; . [P short for KL(Categorical(m; .) ||Categorical(7r£‘ri)),

and we do it in the same way in the rest part of the proof. Thus,

(EA + X1, — N 1,10 aMEGEMITY > A 4\ 1, — A 1,17 7ME (GMIDTY _ 6y /np*

n
= f/(&MF) — 6ny/np* + (7)1 KL(#T 2P
i=1

n
> f1(Z*) = 6ny/np* + (t*) 71 Y KL(#M |7

i=1

> (EA + XL, — N 1,11, Z2* Z*T) — 12n/np*

n n
+ () Y KLET ) - ()7 Y KL(Z a2
1=1

i=1

where we use Equation (54) twice in the first and last inequality. Note that
for any m € I, we have

\KL(Wi7.|]7r£fi)| < ]Zm,j log 7; | + | Zwm log w£;i| <logk + logw,
J J
where the second inequality is due to 0 > 3, m; jlog m; j = KL(;, E~115) —

log k > —log k, where k~'1; can be explicitly written as a length-k vector
(1/k,1/k,...,1/k). Then we have

n n
D KL [Py = > TKL(Z; ||7P)| < 2nlog kw.
=1

=1

Thus,
(EA + NI, — N1,1L, 7 22T — 7MEGMINTY < 19n, /np* 4 2(t*) " nlog kw.

By Proposition C.4, we have

)\* _ *
(BA + NI, — N 1,18, 7 7°T — MF(GMEYTY 5 9% %) [(1 -2 q*>
P —q

where o = (2°2°T — #MF(RNEYT, 7427 _ 1)/ and 5 = (#MF(RMF)T —
7* 7T 1,11 — 7+ 7*T) /2. By Proposition C.3, there exists a constant ¢ > 0
such that

(55) (EA+ NI, — N1,17, 2* 2T — #MF (GMEYTY > 90" — 0%)(a + 7).

)\*_ *
o+ q’y},

P —q*
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Note that the following inequality holds

2(@ +'7) — HZ*Z*T _ ﬁ_MF( Hl Z*Z*T ﬁ_MF(ﬁ_MF)T’In>/2

These together lead to

HZ*Z*T — gME(GMIT ] [12n\/np* +2(t") " nlog kw + c(p* — q*)n/Q} .

Hl — C(p* _ q*

Note that t* =< (p* — ¢*)/p* when p* =< ¢*. Together by Proposition C.2,
as long as nl/[klogkw] — oo, the last two terms in the RHS of the above
formula is dominated by the first term. Thus,

(MFTH n?
1~\ﬁ

If we further assume Z* € H(()p o’ /), Proposition C.5 and Equation (55) lead
to

+ L — L _ % # > penip —q7) FMF )
EA + N\ V1 15 g*7¥T _ ~MF (2MF\T p (Z;k q )g ~MF 7+
So we have
8k
(7, Z%) P r—— 12n\/np +2(t*)"tnlog kw)
< 192k np* '
pc \| (p* —q*)?

| /\

O

Before we state the remaining lemmas and propositions used in the Proof
of Lemma C.6, we first introduce two definitions. For any 7,7’ € [0, 1]"**,
define a(m; ') = (7' 7 T—nnl 7' 7' T—1,) /2 and y(m;7') = (enl =7’ 7' T, 1,17 —

)2,

PROPOSITION C.4. Define P = Z*BZ*T — pl,,, with B = q1;1% + (p —
q)I.. We have the equation

A A—
(P+ A, = AL,1%, 25 2T — ) = 2(p — q) [(1 - p—Z) a(m; Z%) + Ifgv(ﬂ; Z)
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PRrOOF. Note that Z*BZ*T — pI,, = (p — q)Z*Z*T + q1,1L. We have

A A
(P4+ My — M1, 2227 — 57Ty = (p— ) (2727 — 29 AT 4 27 P ze o7 popTy
pP—q p—q

— (p . q)<Z*Z*T . ImZ*Z*T . 7T7TT>

+ A=), — 1,15, 22 2T — 7rT)
=(p-Nz2T - 1,,2° 2T — 7rT)

+ (A= Q)<Z*Z*T - 1n1£, AV 7T7TT>
=2(p—q)a(m; Z*) + 2(A — q)y(m; Z7).

Consequently, we obtain the desired bound. ]

ProrposiTion C.5. If Z* € Hép’pl), w € Iy, we have

A 145 > — (7w, Z7).
PrROOF. We use a7 instead of a(m; Z*),~(m; Z*) for simplicity. Without
loss of generality we assume |7 — Z*||; = {(m, Z*). Define C, = {i : Z;, = 1}
and L, = Eiecu Ti. We have the equality ), L., = |Cy| and also

a = %Z ‘Cu,Q - Z Zﬂ'i,wﬂj,w = %Z = %Z Z Luuyw L

|CU|2 - Z Li,w
w

u 1,jEC,, W U U wHw
1 1
wd =3 Y Smum =3 2 2 Lulu
uFv 1€Cy,jECy W uFv w

We define [k] into two disjoint subsets S; and Se where
3
S1={ue k] : v #u Luy < 1G]},
3
and Sy = {z €lk]:Fv#u, Ly, > E‘Cu‘}
Define L, = >, ., Luy. For any u € Si, if Lyy > |Cyul/4, we have ICu|? —

>l = Luuly > [CulLy/4. If Lyy < §|Cu| we have [Cul? = >, L2, >
3|Cul?> = |Cu|Ly/4 as well. This leads to

oz 2 3 e - ZLi,w] > 2 el

u€ES] u€eS]
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For any u € Sy there exists a v # u such that L, , > %|Cu|. We must have
Lyw+Lyy > Lyy+ Ly, otherwise |7 — Z*||; = £(m, Z*) does not hold since

we can switch the u-th and v-th columns of = to make |7 — Z*||; smaller.
Consequently, we have Ly, > Ly/2. So we have >, >, LuwLlww >
Ly yLyy > 3|Cy|Ly /8. Then we have

Y > % Z Z ZLu,wLu’,w > g Z |Cu|Lu
u€Se u'#u w u€ Sy
Thus,

1

pn pn * pn *
> =N L, > PN P e~z = P 7.
a+7—16zu:|“| “_16kzu: wZ 1o I I = 7554w 27)

O]

C.3. Statements and Proofs of Lemmas and Propositions for
Theorem 4.2.

LEMMA C.7. Let X ~ Beta(a, ) where a = n?p and 3 = n?(1—p) with
p=o0(1). Let n = o(1). Then we have

P(|X — p| > np) < exp(—n*n’p/2).

PROOF. Note X has the same distribution as Y/(Y + Z) where Y and
Z are independent x? random variables with Y ~ x2(2a) and Z ~ x2(23).
Then by using tail bound of x? distribution (i.e., Proposition C.6)

P(|X —p| > np) < P(]Y — 2n°p| > 2nn®p) + P(|Y + Z — 2n%| > nn?)
< 2exp(—1°n’p/4) + 2exp(—n°n’/16)
< exp(—nznzp/2).

PROPOSITION C.6. Let X ~ x%(k) we have
IP’(]X k> kt) < 2exp(—kt2/8),¥t € (0,1).

PROOF. See Lemma 1 of [4]. O
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APPENDIX D: GENERAL DERIVATIONS OF CAVI FOR
VARIATIONAL INFERENCE

In this section, we provide the derivation from Equation (3) to Equation
(4). First we have

(56)

KL(a(z)[p(z]y)) = Eq() [10g poéff;ﬂ

= Eq()[log q(2)] — Eq(z)[log p(z|y)]

= Eqllog a(2)] — Eq()[log p(x, y)] + log p(y)
v)
)

= —(Eq(o)[logp(7, y)] — q(z y[log q(z)]) + log p(y)
= — [Eq(llog p(y|z)] — KL(q(2)[|p(z))] + log p(y).

Thus, to minimize KL(q(z)||p(z|y)) w.r.t. q(x) is equivalent to maximize

Eq(z) log p(y|z)] — KL(q(2)[[p(z)).

Recall we have independence under both p and q for {z;}}" ;. For sim-
plicity, denote z_; to be {z;},+; and q_; to be H#Z— q;. We have the de-
composition

bi(a;) = Eq(llog P(2,y)] — Eq(s)[log a(z)]

= Eq [Eq_i log p(zi, 2—i, ?J)H — Eq, [EQ—i[log a(zi, -T—z)]]

= Eg, [Eq_i [log p(x;|z_;, y)]] — Eq, [log q;(z;)] + const
log q;(;)

clexp [Eq_, [log p(ai|z_,y)]]

= —Eq, log + const,

where the constant includes all terms not depending on z; and ¢ = ) | 2, €XP [IET
which is also independent of x;. It is obvious that to solve Equation (3) is
equivalent to

q; = arg max b;(q;)
ai

= arg min KL, [qucfl exp DECI—i [log p(:ci]x_i,y)m .
a

Immediately we have §;(z;) = ¢ texp [Eqﬂ [log p(x1|x,1,y)]] Or we may
write it as

Qi(zi) o exp [Eq_, [log p(zilz—i,y)]] -

o llogp(zilz_, y)]]
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