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APPENDIX A: ADDITIONAL ALGORITHMS

In this section, we provide the detailed implementations of the batched
Gibbs sampling and the iterative algorithm of MLE for community detec-
tion.

A.1. Batched Gibbs Sampling.

Algorithm 2: Batched Gibbs Sampling
Input: Adjacency matrix A, number of communities k, hyperparameters

πpri, αpri
p , βpri

p , αpri
q , βpri

q , some initializers Z(0), number of iterations S.

Output: Gibbs sampling Ẑ, p̂, q̂.
for s = 1, 2, . . . , S do

1 Update α
(s)
p , β

(s)
p , α

(s)
q , β

(s)
q by

α(s)
p = αpri

p +

k∑
a=1

∑
i<j

Ai,jZ
(s−1)
i,a Z

(s−1)
j,a , β(s)

p = βpri
p +

k∑
a=1

∑
i<j

(1−Ai,j)Z(s−1)
i,a Z

(s−1)
j,a ,

α(s)
q = αpri

q +
∑
a6=b

∑
i<j

Ai,jZ
(s−1)
i,a Z

(s−1)
j,b , β(s)

q = βpri
q +

∑
a6=b

∑
i<j

(1−Ai,j)Z(s−1)
i,a Z

(s−1)
j,b .

Then generate p(s) ∼ Beta(α
(s)
p , β

(s)
p ) and q(s) ∼ Beta(α

(s)
q , β

(s)
q ) independently.

2 Define

t(s) =
1

2
log

p(s)(1− q(s))
(1− p(s))q(s)

, and λ(s) =
1

2t(s)
log

1− q(s)

1− p(s)
.

Then update π(s) with

π(s) = ht(s),λ(s)(Z
(s−1)),

where ht,λ(·) is defined as in Equation (11). Independently generate each row of
Z(s) from distributions

P(Z
(s)
i,· = ea) = π

(s)
i,a ,∀a ∈ [k],∀i ∈ [n].

end

3 We have ẑ = z(S), p̂ = p(S) and q̂ = q(S).
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A.2. An Iterative Algorithm for Maximum Likelihood Estima-
tion. We first define a mapping h′ : Π0 → Π0 as follows

[h′λ(Z)]i,a = I

a = arg max
b

∑
j 6=i

Zi,b(Ai,j − λ)

 .(38)

Here if the maximizer is not unique, we simply pick the smallest index.

Algorithm 3: An Iterative Algorithm for MLE

Input: Adjacency matrix A, number of communities k, some initializers z(0),
number of iterations S.

Output: Estimation Ẑ, p̂, q̂.
for s = 1, 2, . . . , S do

1 Update p(s), q(s) by

p(s) =

∑k
a=1

∑
i<j Ai,jZ

(s−1)
i,a Z

(s−1)
j,a∑k

a=1

∑
i<j Z

(s−1)
i,a Z

(s−1)
j,a

and

q(s) =

∑
a6=b

∑
i<j Ai,jZ

(s−1)
i,a Z

(s−1)
j,b∑

a6=b
∑
i<j Z

(s−1)
i,a Z

(s−1)
j,b

.

2 Define

t(s) =
1

2
log

p(s)(1− q(s))
(1− p(s))q(s)

, and λ(s) =
1

2t(s)
log

1− q(s)

1− p(s)
.

Then update π(s) with

Z(s) = h′λ(s)(Z
(s−1)),

where h′λ(·) is defined as in Equation (38).
end

3 We have ẑ = z(S), p̂ = p(S) and q̂ = q(S).

APPENDIX B: PROOFS OF THEOREMS

In this section, we first establish upper bounds on Lsum
1 and Lsum

2 which
are needed in the proof of Theorem 6.1 in Section 6.3.2. Then we validate
Theorem 3.1 where `(π(0), π∗) is in a constant order of n̄min, which comple-
ments the proof of Theorem 3.1 presented in Section 6.3. In addition, we
give proofs of theorems stated in Section 4, including Theorem 4.1, Theorem
4.2 and Theorem 4.3.



3

B.1. Bounds on Lsum
1 and Lsum

2 for the Proof of Theorem 6.1.
In this section, we establish upper bounds on Lsum

1 and Lsum
2 that are used

in the proof of Theorem 6.1 in Section 6.3.2, i.e., Equations (36) and (37).
Recall the definition of θa,b as in Equation (35). We have some properties
on θa,b which will be useful for the upcoming analysis:

‖θa,b‖∞ ≤ 2(39)

‖θa,b‖1 ≤
∥∥π·,a − Z∗·,a∥∥1

+
∥∥π·,b − Z∗·,b∥∥1

≤ ‖π − Z∗‖1 ≤ γn̄min,(40)

and
k∑
a=1

∑
b6=a
‖θa,b‖1 ≤ 2k

∑
a

∥∥π·,a − Z∗·,a∥∥1
≤ 2k ‖π − Z∗‖1 .(41)

1. Bounds on Lsum
1 . For any i ∈ [n] such that zi = b, we define

L1,i(a, b, l) , I
[
S

(1)
i,a,b ≥ −

(l + 3/2)(na + nb)I

4mt
− S(3)

i,a,b

]
,(42)

and L′1,i(a, b, l) , exp(−l(na + nb)I/(2m))L1,i(a, b, l) so that

Lsum
1 =

m−1∑
l=0

k∑
a=1

∑
b6=a

∑
i:zi=b

L′1,i(a, b, l).

We are going to obtain ELsum
1 . By applying Markov inequality, we have

EL1,i(a, b, l) = P
[
t∗S

(1)
i,a,b ≥ −

t∗(l + 3/2)(na + nb)I

4mt
− t∗S(3)

i,a,b

]

≤ exp

 t∗(l + 3/2)(na + nb)I

4mt
+ t∗

∑
j 6=i

(EAi,j − λ)[θa,b]j

E exp

t∗∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ)

 .
Let X ∼ Ber(q∗) and Y ∼ Ber(p∗). Recall that zi = b. We have |{j 6= i : zj =
a}| = na and |{j 6= i : zj = b}| = nb − 1 := n′b. Due to the underlying SBM
structure, {Ai,j}j:zj=a, {Ai,j}j:zj=b are independent and identical copies of
X and Y , respectively. Thus,

E exp

t∗∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ)

 = exp [−t∗λ(na − (nb − 1))]
∏
j 6=i

E exp(t∗(Z∗j,a − Z∗j,b)Ai,j)

= exp(−t∗λ(na − n′b)) [E exp(t∗X)]na [E exp(−t∗Y )]n
′
b .
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From Proposition C.1, we have Eet∗X/Ee−t∗Y = et
∗λ∗ and Eet∗XEe−t∗Y =

exp(−I). This leads to

E exp

t∗∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ)


= exp(−t∗(λ− λ∗)(na − n′b))

[
e−t

∗λ∗ Eet∗X

Ee−t∗Y

]na−n′b
2 [

Eet
∗XEe−t

∗Y
]na+n′b

2

= exp(−t∗(λ− λ∗)(na − n′b)) exp

[
−

(na + n′b)I

2

]
.

Therefore, the logarithm of EL′1,i(a, b, l) is upper bounded by

log
[
EL′1,i(a, b, l)

]
= − l(na + nb)I

2m
+ log [EL1,i(a, b, l)]

≤ − l(na + nb)I

2m
+
t∗(l + 3/2)(na + nb)I

4mt
+ t∗

∑
j 6=i

(EAi,j − λ)[θa,b]j

− t∗(λ− λ∗)(na − n′b)−
(na + n′b)I

2
.

After combing like terms, we obtain

log
[
EL′1,i(a, b, l)

]
≤ −

(1 + l
m −

t∗(l+3/2)
2mt )(na + n′b)I

2
(43)

− t∗(λ− λ∗)(na − n′b) + t∗
∑
j 6=i

(EAi,j − λ)[θa,b]j

We are going to show log[EL′1,i(a, b, l)] ≤ −(1 − η′′)n̄minI by some η′′ =
o(1). We first present some properties of λ∗, t∗ and I that will be helpful:

I � (p∗ − q∗)2/p∗,(44)

λ∗ ∈ (q∗, p∗),(45)

and t∗ � (p∗ − q∗)/p∗.(46)

Here Equations (44) and (45) are proved by Propositions C.2 and C.3 re-
spectively. Equation (46) is due to t∗ � log(1 + (p∗ − q∗)/q∗) � (p∗ − q∗)/p∗
under the assumption that p∗, q∗ = o(1), p∗ � q∗.

The first term on the RHS of Equation (43) is upper bounded by −(1−
7/(8m))n̄minI by the assumption t∗/t = 1 + o(1). Recall we assume |t∗(λ−
λ∗)| ≤ η′t∗(p∗ − q∗). By Equations (44) and (46) the second term is upper
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bounded by η′n̄minI up to a constant factor. For the last term on the RHS
of Equation (43), since |λ− λ∗| ≤ η′(p∗ − q∗) we have

t∗
∣∣∣∣∑
j 6=i

(EAi,j − λ)[θa,b]i

∣∣∣∣ ≤ t∗∣∣∣∣∑
j 6=i

(EAi,j − λ∗)[θa,b]i
∣∣∣∣+ t∗

∣∣∣∣∑
j 6=i

(λ∗ − λ)[θa,b]i

∣∣∣∣
≤ (1 + η′)t∗(p∗ − q∗) ‖θa,b‖1
≤ (1 + η′)t∗(p∗ − q∗)γn̄min

. γn̄minI,

where we use Equations (40) and (44) - (46).
As a consequence, there exists a sequence η′′ = o(1) that goes to zero

slower than m−1, γ, η′, such that the summation of three terms on the RHS
of Equation (43) is upper bounded by −(1−η′′)n̄minI. Thus, from Equation
(42) we have

ELsum
1 =

m−1∑
l=0

k∑
a=1

∑
b 6=a

∑
i:zi=b

exp
[
logEL′1,i(a, b, l)

]
≤

m−1∑
l=0

k∑
a=1

∑
b 6=a

∑
i:zi=b

exp(−(1− η′′)n̄minI)

≤ nmk exp
[
−(1− η′′)n̄minI

]
.

Since η′′ goes to 0 slower than m−1, we have η′′ ≥ m−1 ≥ (n̄minI)
1
4 by

Equation (34). Then by applying Markov inequality, we have

P
[
Lsum

1 ≥ nmk exp
[
−(1− 2η′′)n̄minI

]]
≤ exp

[
−η′′n̄minI

]
≤ exp

[
−2(n̄minI)

1
2

]
.

That is, with probability at least 1− exp[−2(n̄minI)
1
2 ], Equation (36) holds.

2. Bounds on Lsum
2 . Recall the definition of Lsum

2 as

Lsum
2 ,

k∑
a=1

∑
b6=a

∑
i:zi=b

I
[
Ai,· − EAi,·)θa,b ≥

n̄minI

4mt

]
.

Depending on network being dense or sparse, we consider two scenarios.
(1) Dense Scenario: q∗ ≥ (log n)/n. In this scenario, we have a sharp



6

bound on ‖A− EA‖op. First we observe that∑
i:zi=b

[(Ai,· − EAi,·)θa,b]2 = θTa,b
∑
i:zi=b

[(Ai,· − EAi,·)T (Ai,· − EAi,·)]θa,b

≤ θTa,b
∑
i

[(Ai,· − EAi,·)T (Ai,· − EAi,·)]θa,b

= θTa,b[(A− EA)T (A− EA)]θa,b.

By applying Markov inequality, we have

Lsum
2 ≤

k∑
a=1

∑
b6=a

θTa,b[(A− EA)T (A− EA)]θa,b

(n̄minI/(4mt))2
.

Since ‖θa,b‖∞ ≤ 2, we have ‖θa,b‖2 ≤ 2 ‖θa,b‖1. Lemma C.3 shows ‖A −
EA‖op ≤

√
c1np holds with probability at least 1 − n−r for some constants

c1, r > 0. Together with Equation (41), we have

k∑
a=1

∑
b 6=a

θTa,b[(A− EA)T (A− EA)]θa,b ≤
k∑
a=1

∑
b 6=a
‖A− EA‖2op ‖θa,b‖

2

≤
k∑
a=1

∑
b 6=a

2c1np ‖θa,b‖1

≤ 4c1knp ‖π − Z∗‖1 .

Thus, with probability at least 1− n−r,

Lsum
2 ≤

4c1knp ‖π − Z∗‖1
(n̄minI/(4mt))2

.

(2) Sparse Scenario: q∗ < (log n)/n. When the network is sparse, the
previous upper bound on ‖A − EA‖op no longer holds. Instead, removing
nodes with large degrees is required to yield provably sharp bound on ‖A−
EA‖op. Define S = {i ∈ [n],

∑
j Ai,j ≥ 20np∗}. We define Ã, P̃ such that

Ãi,j = Ai,jI{i, j /∈ S} and P̃i,j = (EAi,j)I{i, j /∈ S}. Then we have the
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decomposition as

L2(a, b) ,
∑
i:zi=b

I
[
(Ai,· − EAi,·)θa,b ≥

n̄minI

4mt

]
≤
∑
i:zi=b

I
[
(Ãi,· − P̃i,·)θa,b ≥

n̄minI

8mt

]

+
∑
i:zi=b

I

∑
j 6=i

(Ai,j − EAi,j)[θa,b]i,jI{i ∈ S or j ∈ S} ≥ n̄minI

8mt


:= L2,1(a, b) + L2,2(a, b).

Define Lsum
2,1 ,

∑k
a=1

∑
b 6=a L2,1(a, b). We have

Lsum
2,1 ≤

k∑
a=1

∑
b 6=a

θTa,b[(Ã− P̃ )T (Ã− P̃ )]θa,b

(n̄minI/(8mt))2
≤

k∑
a=1

∑
b6=a

2‖Ã− P̃‖2op ‖θa,b‖1
(n̄minI/(8mt))2

.

Lemma C.4 shows ‖Ã−P̃‖op ≤
√
c2np holds with probability at least 1−n−1

for some constant c2 > 0. Then we have

Lsum
2,1 ≤

4c2knp ‖π − Z∗‖1
(n̄minI/(8mt))2

.

Lemma C.5 shows
∑

i,j |Ai,j − EAi,j |I{i ∈ S} ≤ 20n2p∗ exp(−5np∗) holds
with probability at least 1−exp(−5np∗). Then by applying Markov inequal-
ity, we have

Lsum
2,2 ,

k∑
a=1

∑
b6=a

L2,2(a, b)


≤

k∑
a=1

n∑
i,j=1

|Ai,j − EAi,j ||[θa,b]i,j |I{i ∈ S or j ∈ S}
n̄minI/(8mt)

≤
k∑
a=1

4
∑

i,j |Ai,j − EAi,j |I{i ∈ S}
n̄minI/(8mt)

≤ 80n2kp∗ exp(−5np∗)

n̄minI/(8mt)
.

As a consequence, we have

Lsum
2 ≤ Lsum

2,1 + Lsum
2,2 ≤

4c2knp
∗ ‖π − Z∗‖1

(n̄minI/(8mt))2
+

80n2kp∗ exp(−5np∗)

n̄minI/(8mt)
,
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with probability at least 1−n−1− exp(−5np∗). By the bounds on Lsum
1 and

Lsum
2 , and due to t/t∗ = 1 + o(1), we obtain Equation (37).

B.2. Proof of Theorem 3.1 for the case where `(π(0), π∗) is in a
constant order of n̄min. For any π such that `(π, π∗) ≤ cinitn̄min, we are
going to show when cinit is sufficiently small

`(ht,λ(π), Z∗) ≤ n exp(−n̄minI/25) +
`(π, Z∗)

2
√
nI/[wk[n/n̄min]2]

,(47)

with probability at least 1−exp(−n̄minI/10)−n−r for some constant r > 0. If
it holds, for any π(0) such that `(π(0), Z∗) = cn̄min for some constant c ≤ cinit,
the term n exp(−n̄minI/25) is dominated by `(π(0), Z∗)/

√
nI/[wk[n/n̄min]2]

which implies

`(π(1), Z∗) ≤ n exp(−(1− η)/n̄minI) +
`(π(0), Z∗)√

nI/[wk[n/n̄min]2]
.

It also implies `(π(1), Z∗) = o(n̄min), which means after the first iteration,
the results in Section 6.3 can be directly applied and the proof is complete.

The proof of Equation (47) mainly follows that of Theorem 6.1. We have

∥∥[ht,λ(π)]i,· − Z∗i,·
∥∥

1
≤ 2w

∑
a6=zi

1 ∧ exp

2t
∑
j 6=i

(πj,a − πj,zi)(Ai,j − λ)

 .
Note that the inequality 1 ∧ exp(−x) ≤ f(x0) + I{x ≥ x0} holds for any
x0 ≥ 0. By taking x0 = (na + nzi)I/4, we have

∥∥[ht,λ(π)]i,· − Z∗i,·
∥∥

1
≤ 2w

∑
a6=zi

exp

[
−(na + nzi)I

4

]
+ I

∑
j 6=i

(πj,a − πj,zi)(Ai,j − λ) ≥ −(na + nzi)I

8t

 ,
and consequently,

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI/2)

+ 2w

k∑
a=1

∑
b6=a

∑
i:zi=b

I
[∑
j 6=i

(πj,a − πj,b)(Ai,j − λ) ≥ −(na + nzi)I

8t

]]
.
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Define θa,b the same way as in Section 6.3, and by the same argument, we
have

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI/2) + 2w
k∑
a=1

∑
b 6=a

∑
i:zi=b

I
[
(Ai,· − EAi,·)θa,b ≥

n̄minI

8t

]

+ 2w
k∑
a=1

∑
b 6=a

∑
i:zi=b

I
[∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ) ≥ −(na + nb)I

4t
−
∑
j 6=i

(EAi,j − λ)[θa,b]j

]
.

From Lemma C.1, when cinit is sufficiently small, with probability at least
1− e35−n we have

max

{
|t− t∗|

(p∗ − q∗)/p∗
,
|λ− λ∗|
(p∗ − q∗)

}
≤ 24c0cinit.(48)

Proposition C.3 shows that λ∗ ∈ (q∗ + c(p∗ − q∗), q∗ + (1 − c)(p∗ − q∗)) for
some positive constant 0 < c < 1/2. Therefore, when cinit is sufficiently
small, we have λ ∈ (q∗, p∗). Thus,∣∣∣∣∣∣
∑
j 6=i

(EAi,j − λ)[θa,b]j

∣∣∣∣∣∣ ≤ (p∗ − q∗) ‖θa,b‖1 ≤ (p∗ − q∗) ‖π − Z∗‖1 ≤ cinit(p
∗ − q∗)n̄min,

where we use Equation (40). By Equations (44) - (46), it is smaller than
(na + nzi)/(8t) when cinit is sufficiently small. As a consequence, we have

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI/2) + 2w
k∑
a=1

∑
b6=a

∑
i:zi=b

I
[
(Ai,· − EAi,·)θa,b ≥

n̄minI

8t

]

+ 2w
k∑
a=1

∑
b 6=a

∑
i:zi=b

I
[∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ) ≥ −(na + nb)I

8t

]
.

Define Lsum
1 =

∑k
a=1

∑
b 6=a
∑

i:zi=b
I
[∑

j 6=i(Z
∗
j,a − Z∗j,b)(Ai,j − λ) ≥ −(na + nb)I/(8t)

]
and Lsum

2 =
∑k

a=1

∑
b 6=a
∑

i:zi=b
I [(Ai,· − EAi,·)θa,b ≥ n̄minI/(8t)]. Our anal-

ysis on them is quite similar to that in Section 6.3. By Markov inequality,

ELsum
1 =

k∑
a=1

∑
b6=a

∑
i:zi=b

P

t∗∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ) ≥ −t∗(na + nb)I/(8t)


≤

k∑
a=1

∑
b6=a

∑
i:zi=b

exp

[
t∗(na + nb)I

8t
− t∗(λ− λ∗)(na − nb)

]
E exp

t∗∑
j 6=i

(Z∗j,a − Z∗j,b)(Ai,j − λ∗)


≤

k∑
a=1

∑
b6=a

∑
i:zi=b

exp

[
t∗(na + nb)I

8t
− t∗(λ− λ∗)(na − nb)−

(na + nb)I

2

]
.
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By Equations (44) - (46) and (48), when cinit is small enough, t∗/t ≤ 2 and
t∗|λ− λ∗| ≤ I/6. Thus

ELsum
1 ≤ nk exp(−n̄minI/12).

Hence, with probability at least 1− exp(−n̄minI/24),

Lsum
1 ≤ nk exp(−n̄minI/24).

For Lsum
2 we use the same argument as in Section 6.3 and obtain

Lsum
2 ≤

4c2knp
∗ ‖π − Z∗‖1

(n̄minI/(8t))2
+

80n2kp∗ exp(−5np∗)

n̄minI/(8t)
,

with probability at least 1−n−r−exp(−5np∗) for some constants r, c1, c2 > 0.
Recall that

‖ht,λ(π)− Z∗‖1 ≤ 2wnk exp(−n̄minI/2) + 2wLsum
1 + 2wLsum

2 .

Using the same argument as in Section 6.3, we conclude with

‖ht,λ(π)− Z∗‖1 ≤ n exp(−n̄minI/25) +
1

2
√
nI/[wk[n/n̄min]2]

‖π − Z∗‖1 ,

with probability at least 1− exp(−n̄minI/10)− n−r.

B.3. Proof of Theorem 4.1. Define t∗ = 1
2 log p∗(1−q∗)

q∗(1−p∗) and λ∗ =
1

2t∗ log 1−q∗
1−p∗ . By the same simplification we derive in Theorem 2.1, we have

π̂MF = arg max
π∈Π1

f ′(π;A),

where

f ′(π;A) = 〈A+ λ∗In − λ∗1n1Tn , ππ
T 〉 − 1

t∗

n∑
i=1

KL(Categorical(πi,·)‖Categorical(πpri
i,· )).

Recall the definition of ht,λ(·) as in Equation (11). A key observation is
that π̂MF = ht∗,λ∗(π̂

MF), otherwise if there exists some i ∈ [n] such that
[ht∗,λ∗(π̂

MF)]i,· not equal to π̂MF
i,· . This indicates the implementation of CAVI

update on the i-th row of π will make change, leading to the decrease of
f ′(·;A). This contradicts with the fact that π̂MF is the global minimizer.

The fixed-point property of π̂MF is the key to our analysis. It involves
three steps.



11

• Step One. For any π such that `(π, Z∗) = o(n̄min), by the same analysis
as in the proof of Theorem 3.1, we are able to show that there exist
constant r > 0 and sequence η = o(1) such that

‖ht∗,λ∗(π)− Z∗‖1 ≤ n exp(−(1− η)n̄minI) +
‖π − Z∗‖1√

nI/[wk[n/n̄min]2]
,

with probability at least 1− exp[−(n̄minI)
1
2 ]− n−r.

• Step Two. Lemma C.6 presents some loose upper bound for `(π̂MF, Z∗).
That is, under the assumption ρnI/[wk2[n/n̄min]2]→∞, with proba-
bility at least 1− e35−n, we have

`(π̂MF, Z∗) ≤ o(n̄min).

• Step Three. Using the property that ht∗,λ∗(π̂
MF) = π̂MF, we have

∥∥π̂MF − Z∗
∥∥

1
≤ n exp(−(1− η)n̄minI) +

∥∥π̂MF − Z∗
∥∥

1√
nI/[wk[n/n̄min]2]

holds with probability at least 1 − exp[−(n̄minI)
1
2 ] − n−r. Then we

obtain the desired result by simple algebra.

B.4. Proof of Theorem 4.2. By law of total expectation, we have

EZ(s+1)

[ ∥∥∥Z(s+1) − Z∗
∥∥∥

1

∣∣∣A,Z(0)
]

= Eπ(s+1)

[
EZ(s+1)

[ ∥∥∥Z(s+1) − Z∗
∥∥∥

1

∣∣∣π(s+1), A, Z(0)
]∣∣∣∣A,Z(0)

](49)

= Eπ(s+1)

[ ∥∥∥π(s+1) − Z∗
∥∥∥

1

∣∣∣A,Z(0)
]
,

where the first equation is due to that the conditional expectation of Z(s+1)

is π(s+1). We are going to build the connection between π(s) and π(s+1). In
Algorithm 2, there are intermediate steps between π(s) and π(s+1) as follows:

π(s)  Z(s)  (p(s+1), q(s+1))→ (t(s+1), λ(s+1))→ π(s+1),

where we use the plain right arrow (→) to indicate deterministic generation
and the curved right arrow ( ) to indicate random generation. Despite a
slight abuse of notation, we define π(0) = Z(0).

Analogous to the proof of Theorem 3.1 in Section 6.3, we assume `(Z(0), Z∗) =
o(n̄min). The proof for the case `(Z(0), Z∗) in the same order of n̄min is similar
and thus is omitted.

Let γ = o(1) be any sequence goes to 0 when n grows. We define a series
of events as follows:
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• global event F : We define F exactly the same way as we define in the
proof of Theorem 3.1 in Section 6.3 with respect to sequences γ and
η′, and we have P(F) ≥ 1− exp[−(n̄minI)

1
2 )]− n−r for some constant

r > 0. We have η′ = o(1) whose value will be determined later.
• global event G: Consider any Z ∈ Π1 such that ‖Z − Z∗‖1 ≤ γn̄min.

Define

αp = αpri
p +

k∑
a=1

∑
i<j

Ai,jZi,aZj,a, βp = βpri
p +

k∑
a=1

∑
i<j

(1−Ai,j)Zi,aZj,a,

αq = αpri
q +

∑
a6=b

∑
i<j

Ai,jZi,aZj,b, βq = βpri
q +

∑
a6=b

∑
i<j

(1−Ai,j)Zi,aZj,b.

Define G be the event that

max

{∣∣∣∣ αp
αp + βp

− p∗
∣∣∣∣ , ∣∣∣∣ αq

αq + βq
− q∗

∣∣∣∣} ≤ η′′(p∗ − q∗)
holds uniformly over all the eligible Z for some sequence η′′ = o(1).
Then by the same analysis as in Lemma C.1, we have P(G) ≥ 1−e35−n.

• local events {H(s)
1 }Ss=1: We define H(s)

1 = {
∥∥π(s) − Z∗

∥∥
1
≥ γn̄min/2}.

• local events {H(s)
2 }Ss=1: We define H(s)

2 = {
∥∥Z(s) − Z∗

∥∥
1
≥ γn̄min}. For

the conditional probability, we have

P(H(s)
2 = 1|H(s)

1 = 0)

≤ P

[∣∣∣∣∣
n∑
i=1

[∥∥∥Z(s)
i,· − Z

∗
i,·

∥∥∥
1
−
∥∥∥π(s)

i,· − Z
∗
i,·

∥∥∥
1

]∣∣∣∣∣ ≥ γn̄min −
∥∥∥π(s) − Z∗

∥∥∥
1

∣∣∣∣∣H(s)
1 = 0

]

≤ P

[∣∣∣∣∣
n∑
i=1

[∥∥∥Z(s)
i,· − Z

∗
i,·

∥∥∥
1
−
∥∥∥π(s)

i,· − Z
∗
i,·

∥∥∥
1

]∣∣∣∣∣ ≥ γn̄min/2

∣∣∣∣∣H(s)
1 = 0

]

Since
∥∥π(s) − Z∗

∥∥
1
≤ γn̄min/2 given H(s)

1 = 0 by Bernstein inequality,
we have

P(H(s)
2 = 1|H(s)

1 = 0) ≤ exp

[
− (γn̄min)2/8∥∥π(s) − Z∗

∥∥
1

+ γn̄min/6

]
≤ exp

[
−3(γn̄min)2/16

]
.

• local events {H(s)
3 }Ss=1: We defineH(s)

3 = {|t(s)−t∗| ≥ η′(p∗−q∗)/p∗, or |λ(s)−
λ∗| ≥ η′(p∗− q∗)}. If the global event G holds and the local event H(s)

2
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does not hold, we have

max

{∣∣∣∣∣ α
(s+1)
p

α
(s+1)
p + β

(s+1)
p

− p∗
∣∣∣∣∣ ,
∣∣∣∣∣ α

(s+1)
q

α
(s+1)
q + β

(s+1)
q

− q∗
∣∣∣∣∣
}
≤ η′′(p∗ − q∗).

Note that α
(s+1)
p + β

(s+1)
p = αpri

p + βpri
p +

∑k
a=1

∑
i<j Z

(s)
i,aZ

(s)
j,a ≥ n2/k.

Using the tail bound of Beta distribution (Lemma C.7) we are able to
show

P

[∣∣∣∣∣p(s+1) − α
(s+1)
p

α
(s+1)
p + β

(s+1)
p

∣∣∣∣∣ ≥ η′′(p∗ − q∗)
∣∣∣∣∣H(s)

2 = 0,G = 1

]

≤ exp

[
−η′′2n2 (p∗ − q∗)2

2p∗

]
≤ exp

[
−η′′2n2I/2

]
,

where the last inequality is due to Proposition C.2. This leads to

P
[∣∣∣p(s+1) − p∗

∣∣∣ ≥ 2η′′(p∗ − q∗)
∣∣∣H(s)

2 = 0,G = 1
]
≤ exp

[
−η′′2n2I/2

]
.

And similar result holds for q(s+1). Then by the same analysis as in the
proof of Lemma C.1, max{|p(s+1) − p∗|, |q(s+1) − q∗|} ≤ 2η′′(p∗ − q∗)
leads to

max

{
|t(s+1) − t∗|
(p∗ − q∗)/p∗

,
|λ(s+1)−λ∗ |
p∗ − q∗

}
≤ 16c0η

′′.

By taking η′ = 16c0η
′′, we obtain

P(H(s+1)
3 = 1|H(s)

2 = 0,G = 1) ≤ 2 exp
[
−η′′2n2I/2

]
.

Note that events F and G are about the adjacency matrix A. The events

H(s)
1 ,H(s)

2 and H(s+1)
3 are for π(x), Z(s) and (p(s+1), q(s+1)) respectively. With

all the above events defined, we can continue our analysis for Equation (49).

Under the event F ∩ G ∩ (H(s)
1 ∪H

(s)
2 ∪H

(s+1)
3 )C we have∥∥∥π(s+1) − Z∗

∥∥∥
1
≤ n exp(−(1− η)n̄minI) + cn

∥∥∥π(s) − Z∗
∥∥∥

1
,(50)

where cn = [nI/[wk[n/n̄min]2]]−1/2. As a consequence, under the event F ∩
G ∩ (

∏s
v=0H

(v)
1 ∪H

(v)
2 ∪H

(v+1)
3 )C , we have∥∥∥π(s+1) − Z∗

∥∥∥
1
≤ n exp(−(1− 2η)n̄minI) + csn

∥∥∥π(0) − Z∗
∥∥∥

1
.
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Therefore, we have

Eπ(s+1)

[∥∥∥π(s+1) − Z∗
∥∥∥

1

∣∣∣H(0)
1 = 0,F = 1,G = 1

]
≤ n exp(−(1− 2η)n̄minI)

(51)

+ csn

∥∥∥π(0) − Z∗
∥∥∥

1
+ nP

[
s∏

v=1

H(v)
1 ∪H

(v)
2 ∪H

(v+1)
3

∣∣∣H(0)
1 = 0,F = 1,G = 1

]
.

Due to the small value of cn, if
∥∥π(s) − Z∗

∥∥
1
≤ γn̄min, Equation (50) imme-

diately implies
∥∥π(s+1) − Z∗

∥∥
1
≤ γn̄min. This implies that under the event

F ∪ G we have

H(s+1)
1 ⊂ H(s)

1 ∪H
(s)
2 ∪H

(s+1)
3 , ∀s ≥ 0,

and consequently,

s∏
v=0

H(v)
1 ∪H

(v)
2 ∪H

(v+1)
3 ⊂ H(0)

1

s∏
v=0

H(v)
2 ∪H

(v+1)
3 ,∀s ≥ 1.

Thus,

P

[
s∏

v=0

H(v)
1 ∪H

(v)
2 ∪H

(v+1)
3

∣∣∣H(0)
1 = 0,F = 1,G = 1

]
(52)

≤ P

[
s∏

v=0

H(v)
2 ∪H

(v+1)
3

∣∣∣H(0)
1 = 0,F = 1,G = 1

]

≤
s∑

v=0

P(H(v)
2 = 1|H(v)

1 = 0) +

n∑
v=0

P(H(v+1)
3 = 1|H(v)

2 = 0,G = 1)

≤ (s+ 1)
[
exp

[
−3(γn̄min)2/16

]
+ 2 exp

[
−η′′2n2I/2

]]
.

Note that P(H(0)
1 = 0,F = 1,G = 1) ≥ 1−exp[−(n̄minI)

1
2 )]−n−r−e35−n−ε.

Recall we define π(0) = Z(0). By Equations (49), (51) and (52), we have

EZ(s+1)

[ ∥∥∥Z(s+1) − Z∗
∥∥∥

1

∣∣∣A,Z(0)
]
≤ n exp(−(1− 2η)n̄minI) + csn

∥∥∥Z(0) − Z∗
∥∥∥

1
+ (s+ 1)nbn,

with probability at least 1− exp[−(n̄minI)
1
2 )]−n−r − e35−n− ε, where bn =

exp
[
−3(γn̄min)2/16

]
+ 2 exp

[
−η′′2n2I/2

]
.

B.5. Proof of Theorem 4.3. Note the similarity between Algorithm
3 and Algorithm 1. We can prove Theorem 4.3 with almost the identical
argument used in the proof of Theorem 3.1, thus omitted.
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APPENDIX C: STATEMENTS AND PROOFS OF AUXILIARY
LEMMAS AND PROPOSITIONS

We include all the auxiliary propositions and lemmas in this section.

C.1. Statements and Proofs of Lemmas and Propositions for
Theorem 3.1.

Lemma C.1. Let cinit be some sufficiently small constant. Consider any
π ∈ Π1 such that ‖π − Z∗‖1 ≤ cinitn/k. Let αp, βp, αq, βq, t, λ be the outputs
after one step CAVI iteration from π described in Algorithm 1. That is, they
are defined as Equations (28) - (31). Define

p̂ =

∑
i<j

∑k
a=1 πi,aπj,aAi,j∑

i<j

∑k
a=1 πi,aπj,a

, and q̂ =

∑
i<j

∑
a6=b πi,aπj,bAi,j∑

i<j

∑
a6=b πi,aπj,b

.

Under the same assumption as in Theorem 3.1, there exists some sequence
ε = o(1) such that with probability at least 1−e35−n, the following inequality
holds

max

{
|p̂− p∗|
p∗ − q∗

,
|q̂ − q∗|
p∗ − q∗

,
|t− t∗|

(p∗ − q∗)/p∗
,
|λ− λ∗|
p∗ − q∗

}
≤ ε+ 24c0

‖π − Z∗‖1
n/k

,

uniformly over all the eligible π. In addition if we further assume cinit goes
to 0, the LHS of the above inequality will be simply upper bounded by ε.

Proof. We are going to obtain tight bounds on |p̂−p∗| and |q̂−q∗| first.
Note that we have the “variance-bias” decomposition as in

|p̂− p∗| ≤
|
∑

i<j

∑k
a=1 πi,aπj,a(Ai,j − EAi,j)|∑
i<j

∑k
a=1 πi,aπj,a

+

∣∣∣∣∣
∑

i<j

∑k
a=1 πi,aπj,aEAi,j∑

i<j

∑k
a=1 πi,aπj,a

− p∗
∣∣∣∣∣ .

We have concentration inequality holds for the numerator in the first term
by Lemma C.2. That is, with probability at least 1− e35−n, we have∣∣∣∣∣∣

∑
i<j

k∑
a=1

πi,aπj,a(Ai,j − EAi,j)

∣∣∣∣∣∣ =

∣∣∣∣12〈A− EA, ππT 〉
∣∣∣∣ ≤ 3n

√
np∗

holds uniformly over all π ∈ Π1. For the denominator, we have

n2

2
≥
∑
i<j

k∑
a=1

πi,aπj,a =
1

2

k∑
a=1

‖π·,a‖21 ≥
n2

2k
,
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since
∑k

a=1 ‖π·,a‖1 = n. Thus, we are able to obtain an upper bound on the
first term as

|
∑

i<j

∑k
a=1 πi,aπj,a(Ai,j − EAi,j)|∑
i<j

∑k
a=1 πi,aπj,a

≤ 6

√
k2p∗

n
.

For the second term, since EAi,j = p∗
∑k

a=1 Z
∗
i,aZ

∗
j,a+ q∗(1−

∑k
a=1 Z

∗
i,aZ

∗
j,a),

we have∣∣∣∣∣
∑

i<j

∑k
a=1 πi,aπj,aEAi,j∑

i<j

∑k
a=1 πi,aπj,a

− p∗
∣∣∣∣∣ = (p∗ − q∗)

∣∣∣∑i<j

[∑k
a=1 πi,aπj,a

] [∑k
a=1 1− Z∗i,aZ∗j,a

]∣∣∣∑
i<j

∑k
a=1 πi,aπj,a

= (p∗ − q∗)
∣∣〈ππT , 11T − Z∗Z∗T 〉

∣∣∑
i<j

∑k
a=1 πi,aπj,a

= (p∗ − q∗)
∣∣〈ππT − Z∗Z∗T , 11T − Z∗Z∗T 〉

∣∣∑
i<j

∑k
a=1 πi,aπj,a

,

where in the last inequality we use the orthogonality between Z∗Z∗T and
11T − Z∗Z∗T . For its numerator, we have∣∣〈ππT − Z∗Z∗T , 11T − Z∗Z∗T 〉

∣∣ ≤ ∥∥ππT − Z∗Z∗T∥∥
1

≤ ‖π − Z∗‖1 (‖π‖1 + ‖Z∗‖1)

≤ ‖π − Z∗‖1 (2 ‖Z∗‖1 + ‖π − Z∗‖1)

≤ 3n ‖π − Z∗‖1 .

This leads to∣∣∣∣∣
∑

i<j

∑k
a=1 πi,aπj,aEAi,j∑

i<j

∑k
a=1 πi,aπj,a

− p∗
∣∣∣∣∣ ≤ 3n ‖π − Z∗‖1 (p∗ − q∗)

n2/k
≤ 3kn−1(p∗ − q∗) ‖π − Z∗‖1 .

Thus,

|p̂− p∗| ≤ 6

√
k2p∗

n
+ 3kn−1(p∗ − q∗) ‖π − Z∗‖1 ≤

[√
k2p∗

n(p∗ − q∗)2
+

3 ‖π − Z∗‖1
n/k

]
(p∗ − q∗).

Similar result holds for |q̂ − q∗|. Denote η0 =
√

k2p∗

n(p∗−q∗)2 +
3‖π−Z∗‖1

n/k , thus

max{|p̂− p∗|, |q̂ − q∗|} ≤ η0(p∗ − q∗).

By the assumption of nI in Equation (19) and Proposition C.2, we have
n(p∗ − q∗)2/(k2p∗) � nI/k2 →∞. Therefore, the first term in η0 goes to 0.
The second term in η0 is at most 3cinit which implies η0 ≤ 4cinit.
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By the fact that the digamma function satisfies ψ(x) ∈ (log(x−1/2), log x),∀x ≥
1/2, we have

ψ(αp)− ψ(βp) ≥ log
αp − 1/2

βp

= log


[
αpri
p − 1/2 +

∑
i<j

∑k
a=1 πi,aπj,aAi,j

] / [∑
i<j

∑k
a=1 πi,aπj,a

]
1 +

[
βpri
p −

∑
i<j

∑k
a=1 πi,aπj,aAi,j

] / [∑
i<j

∑k
a=1 πi,aπj,a

]


= log

 p̂+ (αpri
p − 1/2)

/ [∑
i<j

∑k
a=1 πi,aπj,a

]
1− p̂+ βpri

p

/ [∑
i<j

∑k
a=1 πi,aπj,a

]
 .

Recall that we have shown
∑

i<j

∑k
a=1 πi,aπj,a lies in the interval of (n2/(2k), n2/2).

By Equation (19), there exists a sequence η′ = o(1) such that αp, βp ≤
η′(p∗ − q∗)n2/k. Then we have

ψ(αp)− ψ(βp) ≥ log
p∗ − |p∗ − p̂| − η′(p∗ − q∗)

1− p∗ + |p∗ − p̂|+ η′(p∗ − q∗)
.

Similar analysis leads to

ψ(αq)− ψ(βq) ≤ log
q∗ + |q∗ − q̂|+ η′(p∗ − q∗)

1− q∗ − |q∗ − q̂| − η′(p∗ − q∗)
.

Together we have

t− t∗ ≥ log

[
p∗ − |p∗ − p̂| − η′(p∗ − q∗)

1− p∗ + |p∗ − p̂|+ η′(p∗ − q∗)
1− q∗ − |q∗ − q̂| − η′(p∗ − q∗)
q∗ + |q∗ − q̂|+ η′(p∗ − q∗)

]
− t∗

≥ log

[[
1− |p

∗ − p̂|+ η′(p∗ − q∗)
q∗

]4 p∗(1− q∗)
q∗(1− p∗)

]
− t∗

= 4 log

[
1− (η0 + η′)

p∗ − q∗

q∗

]
.

Recall that we assume c0p
∗ < q∗ < p∗. Thus (η0 + η′)(p∗− q∗)/p∗ ≤ 5cinitc0.

When cinit is sufficiently small, we have (η0 + η′)(p∗ − q∗)/p∗ ≤ 1/2. Then
using the fact −x ≥ log(1− x) ≥ −2x,∀x ∈ (0, 1/2). We have

t− t∗ ≥ −8(η0 + η′)(p∗ − q∗)/q∗.

Analogously we can obtain the same upper bound on t̂− t∗, and then

|t− t∗| ≤ 8c0(η0 + η′)
p∗ − q∗

p∗
.
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Identical analysis can be applied towards bounds on |λ̂− λ∗|. Note that

log
βp

αp + βp
= log

 1− p̂+ βpri
p

/ [∑
i<j

∑k
a=1 πi,aπj,a

]
1 + (αpri

p + βpri
p )
/ [∑

i<j

∑k
a=1 πi,aπj,a

]
 ,

similarly for αq, βq. Omitting the immediate steps, we end up with

|λ− λ∗| = | [ψ(βq)− ψ(αq + βq)]− [ψ(βp)− ψ(αp + βp)]− λ∗| ≤ 8(η0 + η′)(p∗ − q∗).

The proof is complete after we unify and rephrase all the aforementioned
results.

Lemma C.2. Let A ∈ [0, 1]n×n such that A = AT and Ai,i = 0,∀i ∈ [n].
Assume {Ai,j}i<j are independent random variable, and there exists p ≤ 1
such that 9n−1 ≤ 2

n(n−1)

∑
i<j Var(Ai,j) ≤ p, and then we have

sup
π∈Π1

∣∣∣〈A− EA, ππT 〉
∣∣∣ ≤ 6n

√
np,

with probability at least 1− e35−n.

Proof. This result is a direct consequence of Grothendieck inequality [2]
(see also Theorem 3.1 of [3] for a rephrased statement) on the matrix A−EA.
The Lemma 4.1 of [3] proves that with probability at least 1− e35−n,

sup
s,t∈{−1,1}n

∣∣∣∑
i,j

(Ai,j − EAi,j)sitj
∣∣∣ ≤ 3n

√
np.

Then by applying Grothendieck inequality we obtain

sup
‖Xi‖2≤1,∀i∈[n]

∣∣∣∑
i,j

(Ai,j − EAi,j)XT
i Xj

∣∣∣ ≤ 3cn
√
np,

where c is a positive constant smaller than 2. This concludes with

sup
π∈Π1

∣∣∣〈A− EA, ππT 〉
∣∣∣ ≤ 6n

√
np,

Proposition C.1. Assume 0 < q < p < 1. Let X ∼ Ber(q) and Y ∼
Ber(p). Recall the definition λ = log 1−q

1−p/ log p(1−q)
q(1−p) , t = 1

2 log p(1−q)
q(1−p) and

I = −2 log[
√
pq +

√
(1− p)(1− q)]. Then the following two equations hold

etλ =

(
EetX

Ee−tY

) 1
2

, and EetXEe−tY = exp(−I).(53)
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Proof. The proof is straightforward and all by calculation. Note that
E exp(tX) = pet + 1− p and E exp(tY ) = qet + 1− q. We can easily obtain

EetXEe−tY = (pet + 1− p)(qe−t + 1− q) = (
√
pq +

√
(1− p)(1− q))2 = exp(−I).

We can justify the first part of Equation (53) in a similar way.

Lemma C.3. [Theorem 5.2 of [5]] Let A ∈ {0, 1}n×n be a symmetric bi-
nary matrix with Ai,i = 0,∀i ∈ [n], and {Ai,j}i<j are independent Bernoulli
random variable. If p , maxi,j EAi,j ≥ log n/n. Then there exist constants
c, r > 0 such that

‖A− EA‖op ≤ c
√
np,

with probability at least 1− n−r.

The following lemma on the operator norm of sparse networks is from [1].
In the original statement of Lemma 12 in [1], “with probability 1− o(1)” is
stated. However, its proof in [1] gives explicit form of the probability that
the statement holds, which is at least 1− n−1.

Lemma C.4. [Lemma 12 of [1]] Suppose M is random symmetric matrix
with zero on the diagonal whose entries above the diagonal are independent
with the following distribution

Mi,j =

{
1− pi,j , w.p. pi,j ;

−pi,j , w.p. 1− pi,j .

Let p , maxi,j pi,j and M̃ be the matrix obtained from M by zeroing out all
the rows and columns having more than 20np positive entries. Then there
exists some constant c > 0 such that

‖M̃‖op ≤ c
√
np,

holds with probability at least 1− n−1.

Lemma C.5. Let A ∈ {0, 1}n×n be a symmetric binary matrix with Ai,i =
0,∀i ∈ [n], and {Ai,j}i<j are independent Bernoulli random variable. Let
p ≥ maxi,j EAi,j. Define S = {i ∈ [n],

∑
j Ai,j ≥ 20np} and Zi =

∑
j |Ai,j −

EAi,j |I{i ∈ S}. Then with probability at least 1− exp(−5np), we have∑
i

Zi ≤ 20n2p exp(−5np).
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Proof. Note that E
∑

j |Ai,j − EAi,j | ≤ 2np(1 − p) ≤ 2np. For any s ≥
20np, we have

P(Zi > s) ≤ P

∑
j

|Ai,j − EAi,j | − E
∑
j

|Ai,j − EAi,j | > s− 2np


≤ exp

[
−

1
2(s− 2np)2

np+ 1
3(s− 2np)

]
≤ exp(−s/2),

by implementing Bernstein inequality. Applying Bernstein inequality again
we have

P(Zi > 0) = P

∑
j

Ai,j ≥ 20np


≤ P

∑
j

Ai,j − E
∑
j

Ai,j ≥ 18np


≤ exp

[
− (18np)2/2

np+ 18np/3

]
≤ exp(−21np/2).

Thus, we are able to bound EZi with

EZi ≤
∫ 20np

0
P(Zi > 0) ds+

∫ ∞
20np

P(Zi > s) ds

≤ 20np exp(−21np/2) +

∫ ∞
20np

exp(−s/2)

≤ 20np exp(−10np).

By Markov inequality, we have

P

∑
i,j

|Ai,j − EAi,j |I{i ∈ S} ≥ 20n2p exp(−5np)

 = P

[∑
i

Zi ≥ 20n2p exp(−5np)

]

≤ nEZ1

20n2p exp(−5np)

≤ exp(−5np).
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Proposition C.2. Under the assumption that 0 < q < p = o(1). For

I = −2 log
[√

pq +
√

(1− p)(1− q)
]

we have

I = (1 + o(1))(
√
p−√q)2.

Consequently, (p− q)2/(4p) ≤ I ≤ (p− q)2/p.

Proof. It is a partial result of Lemma B.1 in [6].

Proposition C.3. Define λ = log 1−q
1−p/ log p(1−q)

q(1−p) . For any p, q > 0 such

that p, q = o(1) and p � q, there exists a constant 0 < c < 1/2 such that

λ− q
p− q

∈ (c, 1− c).

Proof. First we are going to establish the lower bound. Let x = p − q,
and then we can rewrite λ as

λ =
1

1 + log(1+x/q)
log(1+x/(1−q−x))

.

Case I: x ≥ q/10. Define s = (p− q)/q. Since p � q we have s ≥ 1/10 and
also upper bounded by some constant. We have

λ− q
p− q

=
1

s

1

q

1

1 + log(1+s)
log(1+sq/(1−(s+1)q))

− 1


=

1

s

[
(1− q) log(1 + sq/(1− (s+ 1)q))− q log(1 + s)

q log(1 + sq/(1− (s+ 1)q)) + q log(1 + s)

]
≥ 1

s

(1− q) sq
1−(s+1)q − q log(1 + s)

2q log(1 + s)

≥ 1

8

1− q
log(1 + s)

,

which is lower bounded by some constant c > 0.

Case II: x < q/10. By Taylor theorem, there exist constants 0 ≤ ε1, ε2 ≤
1/10 such that

log

[
1 +

x

q

]
=
x

q
− 1− ε1

2

[
x

q

]2

,

and log

[
1 +

x

1− q − x

]
=

x

1− q − x
− 1− ε2

2

[
x

1− q − x

]2

.
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Thus, we have

log(1 + x
q )

log(1 + x
1−q−x)

=
q(1− q)2 −

[
2q(1− q) + 1−ε1

2 (1− q)2
]
x+ c1x

2 + c2x
3

q2(1− q)− 3−ε2
2 q2x

,

where c1 = (1− ε1)(1− q) + q and c2 = −(1− ε1)/2. Thus,

λ− q
p− q

=
1

x

[
q2(1− q)− 3−ε2

2 q2x

q(1− q)−
[
2q(1− q) + 1−ε1

2 (1− q)2 + 3−ε2
2 q2

]
x+ c1x2 + c2x3

− q

]

=

[
1
2q(1− q) + ε2

2 q
2(1− q)− ε1

2 (1− q)2q
]

+ c1qx+ c2qx
2

q(1− q)−
[
2q(1− q) + 1−ε1

2 (1− q)2 + 3−ε2
2 q2

]
x+ c1x2 + c2x3

Note that |c1|, |c2| ≤ 1. We have

λ− q
p− q

≥
1
4q(1− q)
2q(1− q)

≥ 1/8.

By using exactly the same discussion, we can show (p − λ)/(p − q) > c.
Thus, we proved the desired bound stated in the proposition.

C.2. Statements and Proofs of Lemmas and Propositions for
Theorem 4.1.

Lemma C.6. Let Z∗ ∈ Π0. Assume p∗, q∗ = o(1) and p∗ � q∗. Define
t∗, λ∗ and π̂MF the same way as in Theorem 4.1. If nI/[k log kw]→∞, we
have with probability at least 1− e35−n,∥∥Z∗Z∗T − π̂MF(π̂MF)T

∥∥
1
. n2/

√
nI.

If we further assume Z∗ ∈ Π
(ρ,ρ′)
0 with arbitrary ρ, ρ′, and then we have with

probability at least 1− e35−n,

`(π̂MF, Z∗) . ρ−1n
√
k2/(nI).

Proof. Form Lemma C.2, with probability at least 1 − e35−n, we have
uniformly for all π ∈ Π1

|〈A− EA, ππT 〉| ≤ 6n
√
np∗.(54)

In the remaining part of the proof, we always assume the above event holds.
Denote f ′(π) = 〈A+λ∗In−λ∗1n1Tn , ππ

T 〉−(t∗)−1
∑n

i=1 KL(πi,·‖πpri
i,· ) for any
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π ∈ Π1. Here we adopt the notation KL(πi,·‖πpri
i,· ) short for KL(Categorical(πi,·)‖Categorical(πpri

i,· )),
and we do it in the same way in the rest part of the proof. Thus,

〈EA+ λ∗In − λ∗1n1Tn , π̂
MF(π̂MF)T 〉 ≥ 〈A+ λ∗In − λ∗1n1Tn , π̂

MF(π̂MF)T 〉 − 6n
√
np∗

= f ′(π̂MF)− 6n
√
np∗ + (t∗)−1

n∑
i=1

KL(π̂MF
i,· ‖π

pri
i,· )

≥ f ′(Z∗)− 6n
√
np∗ + (t∗)−1

n∑
i=1

KL(π̂MF
i,· ‖π

pri
i,· )

≥ 〈EA+ λ∗In − λ∗1n1Tn , Z
∗Z∗T 〉 − 12n

√
np∗

+ (t∗)−1
n∑
i=1

KL(π̂MF
i,· ‖π

pri
i,· )− (t∗)−1

n∑
i=1

KL(Z∗i,·‖π
pri
i,· ),

where we use Equation (54) twice in the first and last inequality. Note that
for any π ∈ Π1, we have

|KL(πi,·‖πpri
i,· )| ≤ |

∑
j

πi,j log πi,j |+ |
∑
j

πi,j log πpri
i,j | ≤ log k + logw,

where the second inequality is due to 0 ≥
∑

j πi,j log πi,j = KL(πi,·‖k−11k)−
log k ≥ − log k, where k−11k can be explicitly written as a length-k vector
(1/k, 1/k, . . . , 1/k). Then we have∣∣∣∣∣

n∑
i=1

KL(π̂MF
i,· ‖π

pri
i,· )−

n∑
i=1

KL(Z∗i,·‖π
pri
i,· )

∣∣∣∣∣ ≤ 2n log kw.

Thus,

〈EA+ λ∗In − λ∗1n1Tn , Z
∗Z∗T − π̂MF(π̂MF)T 〉 ≤ 12n

√
np∗ + 2(t∗)−1n log kw.

By Proposition C.4, we have

〈EA+ λ∗In − λ∗1n1Tn , Z
∗Z∗T − π̂MF(π̂MF)T 〉 ≥ 2(p∗ − q∗)

[(
1− λ∗ − q∗

p∗ − q∗

)
α+

λ∗ − q∗

p∗ − q∗
γ

]
,

where α = 〈Z∗Z∗T − π̂MF(π̂MF)T , Z∗Z∗T − In〉/2 and γ = 〈π̂MF(π̂MF)T −
Z∗Z∗T , 1n1Tn −Z∗Z∗T 〉/2. By Proposition C.3, there exists a constant c > 0
such that

〈EA+ λ∗In − λ∗1n1Tn , Z
∗Z∗T − π̂MF(π̂MF)T 〉 ≥ 2c(p∗ − q∗)(α+ γ).(55)
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Note that the following inequality holds

2(α+ γ) =
∥∥Z∗Z∗T − π̂MF(π̂MF)T

∥∥
1
− 〈Z∗Z∗T − π̂MF(π̂MF)T , In〉/2

≥
∥∥Z∗Z∗T − π̂MF(π̂MF)T

∥∥
1
− n/2.

These together lead to∥∥Z∗Z∗T − π̂MF(π̂MF)T
∥∥

1
≤ 1

c(p∗ − q∗)

[
12n

√
np∗ + 2(t∗)−1n log kw + c(p∗ − q∗)n/2

]
.

Note that t∗ � (p∗ − q∗)/p∗ when p∗ � q∗. Together by Proposition C.2,
as long as nI/[k log kw] → ∞, the last two terms in the RHS of the above
formula is dominated by the first term. Thus,

∥∥Z∗Z∗T − π̂MF(π̂MF)T
∥∥

1
.

n2

√
nI
.

If we further assume Z∗ ∈ Π
(ρ,ρ′)
0 , Proposition C.5 and Equation (55) lead

to

〈EA+ λ∗In − λ∗1n1Tn , Z
∗Z∗T − π̂MF(π̂MF)T 〉 ≥ ρcn(p∗ − q∗)

8k
`(π̂MF, Z∗).

So we have

`(π̂MF, Z∗) ≤ 8k

ρcn(p∗ − q∗)
(12n

√
np∗ + 2(t∗)−1n log kw)

≤ 192k

ρc

√
np∗

(p∗ − q∗)2
.

Before we state the remaining lemmas and propositions used in the Proof
of Lemma C.6, we first introduce two definitions. For any π, π′ ∈ [0, 1]n×k,
define α(π;π′) = 〈π′π′T−ππT , π′π′T−In〉/2 and γ(π;π′) = 〈ππT−π′π′T , 1n1Tn−
π
′
π
′T 〉/2.

Proposition C.4. Define P = Z∗BZ∗T − pIn, with B = q1k1
T
k + (p−

q)Ik. We have the equation

〈P + λIn − λ1n1Tn , Z
∗Z∗T − ππT 〉 = 2(p− q)

[(
1− λ− q

p− q

)
α(π;Z∗) +

λ− q
p− q

γ(π;Z∗)

]
.
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Proof. Note that Z∗BZ∗T − pIn = (p− q)Z∗Z∗T + q1n1Tn . We have

〈P + λIn − λ1n1Tn , Z
∗Z∗T − ππT 〉 = (p− q)〈Z∗Z∗T − λ− q

p− q
1n1Tn +

λ− p
p− q

In, Z
∗Z∗T − ππT 〉

= (p− q)〈Z∗Z∗T − In, Z∗Z∗T − ππT 〉
+ (λ− q)〈In − 1n1Tn , Z

∗Z∗T − ππT 〉
= (p− λ)〈Z∗Z∗T − In, Z∗Z∗T − ππT 〉

+ (λ− q)〈Z∗Z∗T − 1n1Tn , Z
∗Z∗T − ππT 〉

= 2(p− q)α(π;Z∗) + 2(λ− q)γ(π;Z∗).

Consequently, we obtain the desired bound.

Proposition C.5. If Z∗ ∈ Π
(ρ,ρ′)
0 , π ∈ Π1, we have

α(π;Z∗) + γ(π;Z∗) ≥ ρn

16k
`(π, Z∗).

Proof. We use α, γ instead of α(π;Z∗), γ(π;Z∗) for simplicity. Without
loss of generality we assume ‖π − Z∗‖1 = `(π, Z∗). Define Cu = {i : Z∗i,u = 1}
and Lu,v =

∑
i∈Cu πi,v. We have the equality

∑
v Lu,v = |Cu| and also

α =
1

2

∑
u

|Cu|2 − ∑
i,j∈Cu

∑
w

πi,wπj,w

 =
1

2

∑
u

[
|Cu|2 −

∑
w

L2
u,w

]
=

1

2

∑
u

∑
w 6=w′

Lu,wLu,w′

and γ =
1

2

∑
u6=v

∑
i∈Cu,j∈Cv

∑
w

πi,wπj,w =
1

2

∑
u6=v

∑
w

Lu,wLv,w.

We define [k] into two disjoint subsets S1 and S2 where

S1 =
{
u ∈ [k] : ∀v 6= u, Lu,v ≤

3

4
|Cu|
}
,

and S2 =
{
i ∈ [k] : ∃v 6= u, Lu,v >

3

4
|Cu|
}
.

Define Lu =
∑

v 6=u Lu,v. For any u ∈ S1, if Lu,u ≥ |Cu|/4, we have |Cu|2 −∑
w L

2
u,w ≥ Lu,uLu ≥ |Cu|Lu/4. If Lu,u <

1
4 |Cu| we have |Cu|2 −

∑
w L

2
u,w ≥

3
8 |Cu|

2 ≥ |Cu|Lu/4 as well. This leads to

α ≥ 1

2

∑
u∈S1

[
|Cu|2 −

∑
w

L2
u,w

]
≥ 1

8

∑
u∈S1

|Cu|Lu.
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For any u ∈ S2 there exists a v 6= u such that Lu,v >
3
4 |Cu|. We must have

Lu,u+Lv,v ≥ Lu,v+Lv,u otherwise ‖π − Z∗‖1 = `(π, Z∗) does not hold since
we can switch the u-th and v-th columns of π to make ‖π − Z∗‖1 smaller.
Consequently, we have Lv,v ≥ Lu/2. So we have

∑
u′ 6=u

∑
w Lu,wLu′,w ≥

Lu,vLv,v ≥ 3|Cu|Lu/8. Then we have

γ ≥ 1

2

∑
u∈S2

∑
u′ 6=u

∑
w

Lu,wLu′,w ≥
3

8

∑
u∈S2

|Cu|Lu.

Thus,

α+ γ ≥ 1

16

∑
u

|Cu|Lu ≥
ρn

16k

∑
u

Lu ≥
ρn

16k
‖π − Z∗‖1 =

ρn

16k
`(π, Z∗).

C.3. Statements and Proofs of Lemmas and Propositions for
Theorem 4.2.

Lemma C.7. Let X ∼ Beta(α, β) where α = n2p and β = n2(1−p) with
p = o(1). Let η = o(1). Then we have

P(|X − p| ≥ ηp) ≤ exp(−η2n2p/2).

Proof. Note X has the same distribution as Y/(Y + Z) where Y and
Z are independent χ2 random variables with Y ∼ χ2(2α) and Z ∼ χ2(2β).
Then by using tail bound of χ2 distribution (i.e., Proposition C.6)

P(|X − p| ≥ ηp) ≤ P(|Y − 2n2p| ≥ 2ηn2p) + P(|Y + Z − 2n2| ≥ ηn2)

≤ 2 exp(−η2n2p/4) + 2 exp(−η2n2/16)

≤ exp(−η2n2p/2).

Proposition C.6. Let X ∼ χ2(k) we have

P
(
|X − k| ≥ kt

)
≤ 2 exp(−kt2/8), ∀t ∈ (0, 1).

Proof. See Lemma 1 of [4].
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APPENDIX D: GENERAL DERIVATIONS OF CAVI FOR
VARIATIONAL INFERENCE

In this section, we provide the derivation from Equation (3) to Equation
(4). First we have

KL(q(x)‖p(x|y)) = Eq(x)

[
log

q(x)

p(x|y)

](56)

= Eq(x)[log q(x)]− Eq(x)[log p(x|y)]

= Eq(x)[log q(x)]− Eq(x)[log p(x, y)] + log p(y)

= −(Eq(x)[log p(x, y)]− Eq(x)[log q(x)]) + log p(y)

= −
[
Eq(x)[log p(y|x)]−KL(q(x)‖p(x))

]
+ log p(y).

Thus, to minimize KL(q(x)‖p(x|y)) w.r.t. q(x) is equivalent to maximize
Eq(x)[log p(y|x)]−KL(q(x)‖p(x)).

Recall we have independence under both p and q for {xi}ni=1. For sim-
plicity, denote x−i to be {xj}j 6=i and q−i to be

∏
j 6=i qj . We have the de-

composition

bi(qi) , Eq(x)[log p(x, y)]− Eq(x)[log q(x)]

= Eqi

[
Eq−i [log p(xi, x−i, y)]

]
− Eqi

[
Eq−i [log q(xi, x−i)]

]
= Eqi

[
Eq−i [log p(xi|x−i, y)]

]
− Eqi [log qi(xi)] + const

= −Eqi log
log qi(xi)

c−1 exp
[
Eq−i [log p(xi|x−i, y)]

] + const,

where the constant includes all terms not depending on xi and c =
∑

xi
exp

[
Eq−i [log p(xi|x−i, y)]

]
which is also independent of xi. It is obvious that to solve Equation (3) is
equivalent to

q̂i = arg max
qi

bi(qi)

= arg min
qi

KL
[
qi‖c−1 exp

[
Eq−i [log p(xi|x−i, y)]

]]
.

Immediately we have q̂i(xi) = c−1 exp
[
Eq−i [log p(xi|x−i, y)]

]
. Or we may

write it as

q̂i(xi) ∝ exp
[
Eq−i [log p(xi|x−i, y)]

]
.
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