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The mean field variational Bayes method is becoming increasingly pop-
ular in statistics and machine learning. Its iterative coordinate ascent varia-
tional inference algorithm has been widely applied to large scale Bayesian
inference. See Blei et al. (2017) for a recent comprehensive review. Despite
the popularity of the mean field method, there exist remarkably little funda-
mental theoretical justifications. To the best of our knowledge, the iterative
algorithm has never been investigated for any high-dimensional and complex
model. In this paper, we study the mean field method for community detec-
tion under the stochastic block model. For an iterative batch coordinate ascent
variational inference algorithm, we show that it has a linear convergence rate
and converges to the minimax rate within logn iterations. This complements
the results of Bickel et al. (2013) which studied the global minimum of the
mean field variational Bayes and obtained asymptotic normal estimation of
global model parameters. In addition, we obtain similar optimality results for
Gibbs sampling and an iterative procedure to calculate maximum likelihood
estimation, which can be of independent interest.

1. Introduction. A major challenge of large scale Bayesian inference is the calculation
of posterior distribution. For high-dimensional and complex models, the exact calculation
of posterior distribution is often computationally intractable. To address this challenge, the
mean field variational method [2, 19, 29] is used to approximate posterior distributions in a
wide range of applications in many fields including natural language processing [8, 21], com-
putational neuroscience [15, 25] and network science [1, 9, 17]. This method is different from
Markov chain Monte Carlo (MCMC) [14, 27], another popular approximation algorithm. The
variational inference approximation is deterministic for each iterative update, while MCMC
is a randomized sampling algorithm, so that for large-scale data analysis, the mean field vari-
ational Bayes usually converges faster than MCMC [7], which is particularly attractive in the
big data era.

In spite of a wide range of successful applications of the mean field variational
Bayes, its fundamental theoretical properties are rarely investigated. The existing literature
[3, 9, 30, 32, 33] is mostly on low-dimensional parameter estimation and on the global min-
imum of the variational Bayes method. For example, in a recent inspiring paper, Wang and
Blei [31] studied the frequentist consistency of the variational method for a general class of
latent variable models. They obtained consistency for low-dimensional global parameters and
further showed asymptotic normality, assuming the global minimum of the variational Bayes
method can be achieved. However, it is often computationally infeasible to attain the global
minimum when the model is high-dimensional or complex. This motivates us to investigate
the statistical properties of the mean field in high-dimensional settings, and more impor-
tantly, to understand the statistical and computational guarantees of the iterative variational
inference algorithms.
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The success and the popularity of the mean field method in Bayesian inference mainly lies
in the success of its iterative algorithm: Coordinate Ascent Variational Inference (CAVI) [7],
which provides a computationally efficient way to approximate the posterior distribution. It
is important to understand what statistical properties CAVI has and how do they compare to
the optimal statistical accuracy. In addition, we want to investigate how fast CAVI converges
for the purpose of implementation. With the ambition of establishing a universal theory of
the mean field iterative algorithm for general models in mind, in this paper, we consider the
community detection problem [1, 4, 12, 23, 24, 34] under the Stochastic Block Model (SBM)
[4, 18, 20, 28] as our first step.

Community detection has been an active research area in recent years, with the SBM as a
popular choice of model. The Bayesian framework and the variational inference for commu-
nity detection are considered in [1, 3, 9, 13, 17, 26]. For high-dimensional settings, Celisse
et al. [9] and Bickel et al. [3] are arguably the first to study the statistical properties of the
mean field for SBMs. The authors built an interesting connection between full likelihood and
variational likelihood, and then studied the closeness of maximum likelihood and maximum
variational likelihood, from which they obtained consistency and asymptotic normality for
global parameter estimation. From a personal communication with the authors of Bickel et
al. [3], an implication of their results is that the variational method achieves exact community
recovery under a strong signal-to-noise (SNR) ratio. Their analysis idea is fascinating, but it
is not clear whether it is possible to extend the analysis to other SNR conditions under which
exact recovery may never be possible. More importantly, it may not be computationally fea-
sible to maximize the variational likelihood for the SBM, as seen from Theorem 2.1.

In this paper, we consider the statistical and computational guarantees of the iterative vari-
ational inference algorithm for community detection. The primary goal of community de-
tection problem is to recover the community membership in a network. We measure the
performance of the iterative variational inference algorithm by comparing its output with the
ground truth. Denote the underlying ground truth by Z∗. For a network of n nodes and k com-
munities, Z∗ is an n × k matrix with each row a standard Euclidean basis in R

k . The index
of nonzero coordinate of each row {Z∗

i,·}ni=1 gives the community assignment information for
the corresponding node. We propose an iterative algorithm called Batch Coordinate Ascent
Variational Inference (BCAVI), a slight modification of CAVI with batch updates, to make
parallel and distributed computing possible. Let π(s) denote the output of the sth iteration, a
n × k matrix with nonnegative entries. The summation of each row {π(s)

i,· }ni=1 is equal to 1,
which is interpreted as an approximate posterior probability of assigning the corresponding
node of each row into k communities. The performance of π(s) is measured by a �1 loss �(·, ·)
compared with Z∗.

An informal statement of the main result: Let π(s) be the estimation of community mem-
bership from the iterative algorithm BCAVI after s iterations. Under weak regularity condi-
tion, for some cn = on(1), with high probability, we have for all s ≥ 0,

�
(
π(s+1),Z∗) ≤ minimax rate + cn�

(
π(s),Z∗)

.(1)

The main contribution of this paper is equation (1). The coefficient cn is on(1) and is
independent of s, which implies �(π(s),Z∗) decreases at a fast linear rate. In addition, we
show that BCAVI converges to the statistical optimality [34]. It is worth mentioning that after
logn iterations BCAVI attains the minimax rate, up to an error on(n

−a) for any constant
a > 0. The conditions required for the analysis of BCAVI are relatively mild. We allow the
number of communities to grow. The sizes of the communities are not assumed to be of the
same order. The separation condition on global parameters covers a wide range of settings
from consistent community detection to exact recovery.
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To the best of our knowledge, this provides arguably the first theoretical justification for the
iterative algorithm of the mean field variational method in a high-dimensional and complex
setting. Though we focus on the problem of community detection in this paper, we hope the
analysis would shed some light on analyzing other models, which may eventually lead to a
general framework of understanding the mean field theory.

The techniques of analyzing the mean field can be extended to providing theoretical guar-
antees for other iterative algorithms, including Gibbs sampling and an iterative procedure
for maximum likelihood estimation, which can be of independent interest. Results similar to
equation (1) are obtained for both methods under the SBM.

Organization. The paper is organized as follows. In Section 2, we introduce the mean
field theory and the implementation of BCAVI algorithm for community detection. All the
theoretical justifications for the mean field method are in Section 3. Discussions on the con-
vergence of the global minimizer and other iterative algorithms are presented in Section 4.
The proofs of theorems are in Section 6. We include all the auxiliary lemmas and propositions
and their corresponding proofs in the Supplementary Material [35].

Notation. Throughout this paper, for any matrix X ∈ R
n×m, its �1 norm is defined in

analogous to that of a vector. That is, ‖X‖1 = ∑
i,j |Xi,j |. We use the notation Xi,· and X·,i

to indicate its ith row and column, respectively. For matrices X,Y of the same dimension,
their inner product is defined as 〈X,Y 〉 = ∑

i,j Xi,jYi,j . For any set D, we use |D| for its
cardinality. We denote Ber(p) for a Bernoulli random variable with success probability p.
For two positive sequences xn and yn, xn � yn means xn ≤ cyn for some constant c not
depending on n. We adopt the notation xn 	 yn if xn � yn and yn � xn. To distinguish from
the probabilities p,q , we use bold p and q to indicate distributions. The Kullback–Leibler
divergence between two distributions is defined as KL(p‖q) = Eq log(p(x)/q(x)). We use
ψ(·) for the digamma function, which is defined as the logarithmic derivative of Gamma
function, that is, ψ(x) = d

dx
[log�(x)]. In any R

d , we denote {ea}da=1 to be the standard
Euclidean basis with e1 = (1,0,0, . . .), e2 = (0,1,0, . . . ,0), . . . , ed = (0,0,0, . . . ,1). We let
1d be a vector of length d whose entries are all 1. We use [d] to indicate the set {1,2, . . . , d}.
Throughout this paper, the superscript “pri” (e.g., πpri) indicates that this is a hyperparameter
of priors.

2. Mean field method for community detection. In this section, we first give a brief
introduction to the variational inference method in Section 2.1. Then we introduce the com-
munity detection problem and the stochastic block model in Section 2.2. The Bayesian frame-
work is presented in Section 2.3. Its mean field approximation and CAVI updates are given in
Section 2.4 and Section 2.5, respectively. The BCAVI algorithm is introduced in Section 2.6.

2.1. Mean field variational inference. We first present the mean field method in a general
setting and then consider its application to the community detection problem. Let p(x|y) be
an arbitrary posterior distribution for x, given observation y. Here, x can be a vector of latent
variables, with coordinates {xi}. It may be difficult to compute the posterior p(x|y) exactly.
The variational Bayes ignores the dependence among {xi}, by simply taking a product mea-
sure q(x) = ∏

i qi(xi) to approximate it. Usually each qi(xi) is simple and easy to compute.
The best approximation is obtained by minimizing the Kullback–Leibler divergence between
q(x) and p(x|y):

q̂MF = arg min
q∈Q

KL(q‖p),(2)
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where Q is the space of all product measures. Despite the fact that every measure q has a
simple product structure, the global minimizer q̂MF remains computationally intractable.

To address this issue, an iterative Coordinate Ascent Variational Inference (CAVI) is
widely used to approximate the global minimum. It is a greedy algorithm. The value of
KL(q‖p) decreases in each coordinate update:

q̂i = min
qi∈Qi

KL
[
qi

∏
j 
=i

qj‖p
]

∀i.(3)

The coordinate update has an explicit formula

q̂i (xi) ∝ exp
[
Eq−i

[
log p(xi |x−i , y)

]]
,(4)

where x−i indicates all the coordinates in x except xi , and the expectation is over q−i =∏
j 
=i qj (xj ). Equation (4) is usually easy to compute, which makes CAVI computationally

attractive, although CAVI only guarantees to achieve a local minimum.
In summary, the mean field variational inference via CAVI can be represented in the fol-

lowing diagram:

p(x|y)
approx.⇐= q̂MF(x)

approx.⇐= q̂CAVI(x),

where q̂MF(x), the global minimum, serves mainly as an intermediate step in the mean field
methodology. What is implemented in practice to approximate global minimum is an iterative
algorithm like CAVI. This motivates us to consider directly the theoretical guarantees of the
iterative algorithm in this paper.

We refer the readers to a nice review and tutorial by Blei et al. [7] for more detail on
the variational inference and CAVI. The derivation from equation (3) to equation (4) can be
found in many variational inference literatures [6, 7]. We include it in Appendix D in the
Supplementary Material for completeness.

2.2. Community detection and stochastic block model. The Stochastic Block Model
(SBM) has been a popular model for community detection.

Consider an n-node network with its adjacency matrix denoted by A. It is an un-
weighted and undirected network without self-loops, with A ∈ {0,1}n×n, A = AT and
Ai,i = 0,∀i ∈ [n]. Each edge is an independent Bernoulli random variable with EAi,j =
Pi,j ,∀i < j . In the SBM, the value of connectivity probability Pi,j depends on the com-
munities the two endpoints i and j belong to. We assume Pi,j = p if both nodes come from
the same community and Pi,j = q otherwise. There are k communities in the network. We
denote z ∈ [k]n, as the assignment vector, with zi indicating the index of community the ith
node belongs to. Thus, the connectivity probability matrix P can be written as

Pi,j = Bzi,zj
,

where B ∈ [0,1]k×k with diagonal entries as p and off-diagonal entries as q . That is, B =
q1k1T

k + (p − q)Ik . Let Z ∈ �0 be the assignment matrix where

�0 = {
π ∈ {0,1}n×k : ‖πi,·‖0 = 1,∀i ∈ [n]}.

In each row {Zi,·}ni=1, there is only one 1 with all the other coordinates as 0, indicating the
assignment of community for the corresponding node. Then P can be equivalently written as
Pi,j = Zi,·BZT

j,·,∀i < j , or in a matrix form

Pi,j = (
ZBZT )

i,j ∀i < j.
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The goal of community detection is to recover the assignment vector z, or equivalently,
the assignment matrix Z. The equivalence can be seen by observing that there is a bijection
r between z ∈ [k]n and Z ∈ �0 which is defined as follows:

r(z) = Z, where Zi,a = I{a = zi} ∀i ∈ [n], a ∈ [k].(5)

Since they are uniquely determined by each other, in our paper we may use z directly without
explicitly defining z = r−1(Z) (or vice versa) when there is no ambiguity.

2.3. A Bayesian framework. Throughout the whole paper, we assume k, the number of
communities, is known. We observe the adjacency matrix A. The global parameters p and
q and the community assignment Z are unknown. From the description of the model in
Section 2.2, we can write down the distribution of A as follows:

p(A|Z,p,q) = ∏
i<j

B
Ai,j
zi ,zj (1 − Bzi,zj

)1−Ai,j ,(6)

with B = q1k1T
k + (p − q)Ik and z = r−1(Z). We are interested in Bayesian inference for

estimating Z, with prior to be given on both p,q and Z.
We assume that {zi}ni=1 have independent categorical (a.k.a. multinomial with size one)

priors with hyperparameters {πpri
i,· }ni=1, where

∑k
a=1 π

pri
i,a = 1,∀i ∈ [n]. In other words,

{Zi,·}ni=1 are independently distributed by

P
(
Zi,· = eT

a

) = π
pri
i,a ∀a = 1,2, . . . , k,

where {ea}ka=1 are the coordinate vectors. Here, we allow the priors for Zi,· to be different for
different i. If additionally πi,· = πj,· for all i 
= j is assumed, and then this is reduced to the
usual case of i.i.d. priors.

Since {Ai,j }i<j are Bernoulli, it is natural to consider a conjugate Beta prior for p and q .

Let p ∼ Beta(αpri
p ,β

pri
p ) and q ∼ Beta(αpri

q , β
pri
q ). Then the joint distribution is

p(A,Z,p, q) =
[∏

i

π
pri
i,zi

][∏
i<j

B
Ai,j
zi ,zj (1 − Bzi,zj

)1−Ai,j

]

×
[

�(α
pri
p + β

pri
p )

�(α
pri
p )�(β

pri
p )

pα
pri
p −1(1 − p)β

pri
p −1

]

×
[

�(α
pri
q + β

pri
q )

�(α
pri
q )�(β

pri
q )

qα
pri
q −1(1 − q)β

pri
q −1

]
.

(7)

Our main interest is to infer Z, from the posterior distribution p(Z,p, q|A). However, the
exact calculation of p(Z,p, q|A) is computationally intractable.

2.4. Mean field approximation. Since the posterior distribution p(Z,p, q|A) is compu-
tationally intractable, we apply the mean field approximation to approximate it by a product
measure,

qπ,αp,βp,αq,βq (Z,p, q) = qπ(Z)qαp,βp(p)qαq,βq (q),

where {r−1(Zi,·)}ni=1 are independent categorical variables with parameters {πi,·}ni=1, that is,
qπ(Z) = ∏n

i=1 qπi,·(Zi,·) with

qπi,·(Zi,· = ea) = πi,a ∀i ∈ [n], a ∈ [k],
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FIG. 1. Graphical model presentations of full Bayesian inference (left panel) and the mean field approximation
(right panel) for community detection. The edges show the dependence among variables.

and qαp,βp(p) and qαq,βq (q) are Beta with parameters αp,βp,αq,βq due to conjugacy. See
Figure 1 for the graphical presentation of qπ,αp,βp,αq,βq (Z,p, q).

Note that the distribution class of q is fully captured by the parameters (π,αp,βp,αq,βq),
and then the optimization in equation (2) is equivalent to minimize over the parameters as
(8)(

π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q

) = arg min
π∈�1

αp,βp,αq,βq>0

KL
[
qπ,αp,βp,αq,βq (Z,p, q)‖p(Z,p, q|A)

]
,

where

�1 = {
π ∈ [0,1]n×k,‖πi,·‖1 = 1

}
.

Here, �1 can be viewed as a relaxation of �0: it uses a �1 constraint on each row instead of
the �0 constraint used in �0. The global minimizer qπ̂MF(Z) gives approximate probabilities
to classify every node to each community. The optimization in equation (8) can be shown to
be equivalent to a more explicit optimization as follows. Recall ψ(·) is the digamma function
with ψ(x) = d

dx
[log�(x)].

THEOREM 2.1. The mean field estimator (π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q ) defined in equa-
tion (8) is equivalent to(

π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q

) = arg min
π∈�1

αp,βp,αq,βq>0

f (π,αp,βp,αq,βq;A),

where

f (π,αp,βp,αq,βq;A) = t
〈
A − λ1n1T

n + λIn,ππT 〉 + 1

2

[
ψ(αq) − ψ(βq)

]‖A‖1

+ n(n − 1)

2

[
ψ(βq) − ψ(αq + βq)

]

−
n∑

i=1

KL
[
Categorical(πi,·)‖Categorical

(
π

pri
i,·

)]
− KL

[
Beta(αp,βp)‖Beta

(
αpri

p ,βpri
p

)]
− KL

[
Beta(αq,βq)‖Beta

(
αpri

q , βpri
q

)]
,

and

t = [[
ψ(αp) − ψ(βp)

] − [
ψ(αq) − ψ(βq)

]]
/2,(9)

λ = [[
ψ(βq) − ψ(αq + βq)

] − [
ψ(βp) − ψ(αp + βp)

]]
/(2t).(10)
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The explicit formulation in Theorem 2.1 is helpful to understand the global minimizer of
the mean field method. However, the global minimizer π̂MF remains computationally infeasi-
ble as the objective function is not convex. Fortunately, there is a practically useful algorithm
to approximate it.

2.5. Coordinate ascent variational inference. CAVI is possibly the most popular algo-
rithm to approximate the global minimum of the mean field variational Bayes. It is an it-
erative algorithm. In equation (8), there are latent variables {Zi,·}ni=1,p, q . CAVI updates
them one by one. Since the distribution class of q is uniquely determined by the parame-
ters {πi,·}ni=1, αp,βp,αq,βq , equivalently we are updating those parameters iteratively. The-
orem 2.2 gives explicit formulas for the coordinate updates.

THEOREM 2.2. Starting with some π,αp,βp,αq,βq , the CAVI update for each coordi-
nate (i.e., equation (3) and equation (4)) has an explicit expression as follows:

• Update on p:

α′
p = αpri

p + ∑
i<j

k∑
a=1

πi,aπj,aAi,j and β ′
p = βpri

p + ∑
i<j

k∑
a=1

πi,aπj,a(1 − Ai,j ).

• Update on q:

α′
q = αpri

q + ∑
i<j

∑
a 
=b

πi,aπj,bAi,j and β ′
q = βpri

q + ∑
i<j

∑
a 
=b

πi,aπj,b(1 − Ai,j ).

• Update on Zi,·,∀i = 1,2, . . . , n:

π ′
i,a ∝ π

pri
i,a exp

[
2t

∑
j 
=i

πj,a(Ai,j − λ)

]
∀a = 1,2, . . . , k,

where t and λ are defined in equation (9) and equation (10), respectively, and the normaliza-
tion satisfies

∑k
a=1 π ′

i,a = 1.

All coordinate updates in Theorem 2.2 have explicit formulas, which makes CAVI a com-
putationally attractive way to approximate the global optimum q̂MF for the community de-
tection problem.

2.6. Batch coordinate ascent variational inference. The Batch Coordinate Ascent Varia-
tional Inference (BCAVI) is a batch version of CAVI. The difference lies in that CAVI updates
the rows of π sequentially one by one, while BCAVI uses the value of π to update all rows
{π ′

i,·} according to Theorem 2.2. This makes BCAVI especially suitable for parallel and dis-
tributed computing, a nice feature for large scale network analysis.

We define a mapping h : �1 → �1 as follows. For any π ∈ �1, we have

[
ht,λ(π)

]
i,a ∝ π

pri
i,a exp

[
2t

∑
j 
=i

πja(Ai,j − λ)

]
,(11)

with parameters t and λ. For BCAVI, we update π by π ′ = ht,λ(π) in each batch iteration,
with t, λ defined in equations (14) and (15). See Algorithm 1 for the detailed implementation
of BCAVI algorithm.

REMARK 2.1. The definitions of t (s) and λ(s) in equations (14) and (15) involve the
digamma function, which costs a nonnegligible computational resources each time called.
Note that we have ψ(x) ∈ (log(x − 1

2), logx) for all x > 1/2. For the computational purpose,
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Algorithm 1: Batch Coordinate Ascent Variational Inference (BCAVI)
Input: Adjacency matrix A, number of communities k, hyperparameters

πpri, α
pri
p ,β

pri
p ,α

pri
q , β

pri
q , initializer π(0), number of iterations S.

Output: Mean variational Bayes approximation π̂ , α̂p, β̂p, α̂q, β̂q .
for s = 1,2, . . . , S do

1 Update α
(s)
p , β

(s)
p , α

(s)
q , β

(s)
q by

α(s)
p = αpri

p +
k∑

a=1

∑
i<j

Ai,jπ
(s−1)
i,a π

(s−1)
j,a ,

β(s)
p = βpri

p +
k∑

a=1

∑
i<j

(1 − Ai,j )π
(s−1)
i,a π

(s−1)
j,a ,

(12)

α(s)
q = αpri

q + ∑
a 
=b

∑
i<j

Ai,jπ
(s−1)
i,a π

(s−1)
j,b ,

β(s)
q = βpri

q + ∑
a 
=b

∑
i<j

(1 − Ai,j )π
(s−1)
i,a π

(s−1)
j,b .

(13)

2 Define

t (s) = 1

2

[[
ψ

(
α(s)

p

) − ψ
(
β(s)

p

)] − [
ψ

(
α(s)

q

) − ψ
(
β(s)

q

)]]
,(14)

λ(s) = 1

2t (s)

[[
ψ

(
β(s)

q

) − ψ
(
α(s)

q + β(s)
q

)] − [
ψ

(
β(s)

p

) − ψ
(
α(s)

p + β(s)
p

)]]
,(15)

where ψ(·) is the digamma function. Then update π(s) with

π(s) = ht(s),λ(s)

(
π(s−1)),

where the mapping h(·) is defined as in equation (11).
end

3 We have π̂ = π(S), α̂p = α
(S)
p , β̂p = β

(S)
p , α̂q = α

(S)
q , β̂q = β

(S)
q .

we propose to use the logarithmic function instead of digamma function in Algorithm 1, that
is, equations (14) and (15) are replaced by

t (s) = 1

2
log

α
(s)
p β

(s)
q

β
(s)
p α

(s)
q

and λ(s) = 1

2t (s)
log

β
(s)
q (α

(s)
p + β

(s)
p )

(α
(s)
q + β

(s)
q )β

(s)
p

.(16)

Later we show that α
(s)
p , β

(s)
p , α

(s)
q , β

(s)
q are all at least in the order of np, which goes to

infinity, and thus the error caused by using the logarithmic function to replace the digamma
function is negligible. All theoretical guarantees obtained in Section 3 for Algorithm 1 (i.e.,
Theorem 3.1, Theorem 3.2) still hold if we use equation (16) to replace equations (14) and
(15).

REMARK 2.2. The updating order of αp,βp,αq,βq and π in Algorithm 1 can be ex-

changed. With α
(0)
p , β

(0)
p , α

(0)
q , β

(0)
q and π(0) initialized, we can instead update π first, fol-

lowed by the update on αp,βp,αq,βq . Theoretical guarantees including Theorem 3.1 and
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Theorem 3.2 will still hold, under an additional consistency assumption on α
(0)
p , β

(0)
p , α

(0)
q ,

β
(0)
q , which can be met by simple methods, for instance, method of moments [5].

3. Theoretical justifications. In this section, we establish theoretical justifications for
BCAVI for community detection under the stochastic block model. Though Z, p and q are
all unknown, the main interest of community detection is on the recovery of the assignment
matrix Z, while p and q are nuisance parameters. As a result, our main focus is on developing
convergence rate of BCAVI for π .

3.1. Loss function. We use �1 norm to measure the performance of recovering Z. Let 


be the set of all the bijections from [k] to [k]. Then for any Z,Z∗ ∈ �1, the loss function is
defined as

�
(
Z,Z∗) = inf

φ∈


∥∥Z − φ ◦ Z∗∥∥
1 = inf

φ∈


∑
i,a

∣∣Zi,a − Z∗
i,φ(a)

∣∣.(17)

Note that the infimum over 
 addresses the issue of identifiability over the labels. For in-
stance, in the case of n = 4, k = 2, the assignment vector z = (1,1,2,2) and z′ = (2,2,1,1)

give the same partition. In equation (17), two equivalent assignments give the same loss.
There are a few reasons for the choice of the �1 norm. When both Z,Z′ ∈ �0, the �1

distance between Z and Z′ is equal to the �0 norm, that is, the Hamming distance between
the corresponding assignment vectors r−1(Z) and r−1(Z′), which is the default metric used
in community detection literature [12, 34]. The other reason is related to the interpretation of
�1. Since each row of �1 corresponds to a categorical distribution, it is natural to use the �1
norm, the total variation distance, to measure their diffidence.

3.2. Ground truth. We use the superscript asterisk (∗) to indicate the ground truth. The
ground truth of connectivity matrix B∗ is

B∗ = q∗1k1T
k + (

p∗ − q∗)
Ik,

where p∗ is the within community connection probability and q∗ is the between commu-
nity connection probability. Throughout the paper, we assume p∗ > q∗ such that the network
satisfies the so-called “assortative” property, with the within-community connectivity proba-
bility larger than the between-community connectivity probability.

We further assume the network is generated by the true assignment matrix Z∗ in the sense
that Pi,j = (Z∗B∗Z∗T )i,j for all i 
= j . We are interested in deriving a statistical guarantee

of �(π̂ (s),Z∗). Throughout this section, we consider cases Z∗ ∈ �0 or Z∗ ∈ �
(ρ,ρ′)
0 , where

�
(ρ,ρ′)
0 is defined to be a subset of �0 with all the community sizes bounded between ρn/k

and ρ′n/k. That is,

�
(ρ,ρ′)
0 = {

π ∈ �0 : ρn/k ≤ ∣∣{i ∈ [n] : πi,a = 1
}∣∣ ≤ ρ ′n/k,∀a ∈ [k]}.

It is worth mentioning that ρ,ρ′ are not necessarily constants. We allow the community sizes
not to be of the same order in the theoretical analysis.

3.3. Theoretical justifications for BCAVI. In Theorem 3.1, we present theoretic guaran-
tees of the convergence rate of BCAVI when initialized properly. Define

w = max
i∈[n] max

a,b∈[k]π
pri
i,a /π

pri
i,b and n̄min = min

a 
=b
[na + nb]/2,(18)

where na = |{i ∈ [n] : Z∗
i,a = 1}| is the size of ath community for all a ∈ [k]. When w = 1,

the priors for {r−1(Zi,·)}ni=1 are i.i.d. Categorical(1/k,1/k, . . . ,1/k) and n̄min = n/2 when
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there exist only two communities. The following quantity I plays a key role in the minimax
theory [34]:

I = −2 log
[√

p∗q∗ +
√(

1 − p∗)(
1 − q∗)]

,

which is the Rényi divergence of order 1/2 between two Bernoulli distributions: Ber(p∗) and
Ber(q∗). The proof of Theorem 3.1 is deferred to Section 6.3.

THEOREM 3.1. Let Z∗ ∈ �0. Let 0 < c0 < 1 be any constant. Assume 0 < c0p
∗ < q∗ <

p∗ = on(1),

nI/
[
wk[n/n̄min]2] → ∞ and αpri

p ,βpri
p ,αpri

q , βpri
q = on

((
p∗ − q∗)

n2/k
)
.(19)

Let cinit be some sufficiently small constant. For any initializer, π(0) satisfies �(π(0),Z∗) ≤
cinitn̄min with probability at least 1 − ε; there exist some constant c > 0 and some η = on(1)

such that in each iteration for the BCAVI algorithm, we have

�
(
π(s+1),Z∗) ≤ n exp

(−(1 − η)n̄minI
) + �(π(s),Z∗)√

nI/[wk[n/n̄min]2]
∀s ≥ 0,

holds with probability at least 1 − exp[−(n̄minI )
1
2 ] − n−c − ε.

Theorem 3.1 establishes a linear convergence rate for BCAVI algorithm with allowable
initialization. The with-high-probability result holds for all iterations and all allowed initial-
izations. The coefficient [nI/[wk[n/n̄min]2]]−1/2 is independence of s, and goes to 0 when n

grows. The following theorem is an immediate consequence of Theorem 3.1.

THEOREM 3.2. Under the same condition as in Theorem 3.1, for any s ≥ s0 �
[nI/k]/ log[nI/[wk[n/n̄min]2]], we have

�
(
π(s),Z∗) ≤ n exp

(−(1 − 2η)n̄minI
)
,(20)

with probability at least 1 − exp[−(n̄minI )
1
2 ] − n−c − ε.

Theorem 3.2 shows that BCAVI provably attains the n exp(−(1 − o(1))n̄minI ) rate after
at most s0 iterations. When the network is sparse, that is, p∗ and q∗ are at most in an order
of (logn)/n, the quantity s0 can be shown to be o(logn), and then BCAVI converges to be
minimax rate within logn iterations. When the network is dense, that is, p∗ and q∗ are far
bigger than (logn)/n, logn iterations are not enough to attain the minimax rate. However,
�(π(s),Z∗) = o(n−a) for any a > 0 when s ≥ logn, and thus all the nodes can be correctly
clustered with high probability by clustering each note to a community with the highest as-
signment probability. Therefore, it is enough to pick the number of iterations to be logn in
implementing BCAVI.

THEOREM 3.3. Under the assumption nI/(k log k) → ∞, we have

inf
π̂

sup
Z∗∈�

(ρ,ρ′)
0

E�
(
π̂ ,Z∗) ≥

{
n exp

(−(
1 − o(1)

)
ρnI/k

)
, k ≥ 3;

n exp
(−(

1 − o(1)
)
nI/2

)
, k = 2.

Theorem 3.3 gives the minimax lower bound for community detection problems with re-

spect to the �(·, ·) loss. In Theorem 3.2, under the additional assumption that Z∗ ∈ �
(ρ,ρ′)
0 , we
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have n̄min = n/2 when k = 2 and n̄min ≥ ρnI/k when k ≥ 3, leading to the RHS of equation
(20) upper bounded by {

n exp
(−(

1 − o(1)
)
ρnI/k

)
, k ≥ 3;

n exp
(−(

1 − o(1)
)
nI/2

)
, k = 2.

This immediately reveals that BCAVI converges to the minimax rate after s0 iterations. As
a consequence, BCAVI is not only computationally efficient, but also achieves statistical
optimality. The minimax lower bound in Theorem 3.3 is almost identical to the minimaxity
established in [34]. The only difference is that [34] consider a �0 loss function. The proof of
Theorem 3.3 is just a routine extension of that in [34]. Therefore, we omit the proof.

To help understand Theorem 3.1, we add a remark on conditions on model parameters and
priors, and a remark on initialization.

REMARK 1 (Conditions on model parameters and priors). The community sizes are not
necessarily of the same order in Theorem 3.1. If we further assume ρ,ρ′ are constants, and the
prior π

pri
i,a 	 1/k,∀i ∈ [n], a ∈ [k] (for example, uniform prior), and then the first condition

in equation (19) is equivalent to

nI/k3 → ∞,

noting that n/n̄min 	 k and w 	 1. This condition is necessary for consistent community
detection [34] when k is finite. The assumptions in equation (19) is slightly stronger than the
assumption in [22], which is essentially nI ≥ Ck2 logk for a sufficient large constant C.

Under the assumption nI/k3 → ∞, since we have I 	 (p∗ − q∗)2/p∗, it can be shown
that p∗, q∗ are far bigger than n−1, and then the second part of equation (19) can also be
easily satisfied. For instance, we can simply set α

pri
p ,β

pri
p ,α

pri
q , β

pri
q all equals to 1, that is,

consider noninformative priors.

REMARK 2 (Initialization). The requirement on the initializers for BCAVI in Theo-
rem 3.1 is relatively weak. When k is a constant and the community sizes are of the same
order, the condition needed is �(π(0),Z∗) ≤ cn for some small constant c. Many existing
methodologies in community detection literature can be used. One popular choice is spectral
clustering. Established in [10, 12, 20], the spectral clustering has a misclustering error bound
as O(k2/I). From equation (19), the error is o(n̄min), and then the condition that Theorem 3.1
requires for initialization is satisfied. The semidefinite programming (SDP), another popular
method for community detection, also enjoys satisfactory theoretical guarantees [11, 16], and
is suitable as an initializer.

4. Discussion.

4.1. Statistical guarantee of global minimizer. Though it is often challenging to obtain
the global minimizer of the mean field method, it is still interesting to understand the sta-
tistical property of the global minimizer π̂MF. Assume that both p∗ and q∗ are known, the
optimization problem stated in Theorem 2.1 can be further simplified. The posterior distribu-
tion becomes p(Z|A). We use a product measure qπ(Z) = ∏

i qi (πi,·) for approximation, and
then π̂MF = arg minπ∈�1

KL[qπ(Z)‖p(Z|A)]. Theorem 4.1 reveals that π̂MF is rate-optimal,
not surprisingly given the theoretical results obtained for BCAVI, an approximation of π̂MF.

THEOREM 4.1. Let Z∗ ∈ �
(ρ,ρ′)
0 . Assume p∗ and q∗ are known. Under the assumption

ρnI/[wk2[n/n̄min]2] → ∞, there exist some constant c > 0 and η = on(1) such that

�
(
π̂MF,Z∗) ≤ n exp

(−(1 − η)n̄minI
)
,

with probability at least 1 − exp[−(n̄minI )
1
2 ] − n−c.
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4.2. Gibbs sampling. In Section 3.3, we analyze an iterative algorithm, BCAVI, and es-
tablish its linear convergence toward statistical optimality. The framework and methodology
we establish is not limited to BCAVI, but can be extended to other iterative algorithms, in-
cluding Gibbs sampling.

As a popular Markov chain Monte Carlo (MCMC) algorithm, Gibbs sampling has been
widely used in practice to approximate the posterior distribution. There is a strong tie be-
tween Gibbs sampling and the mean field variational inference: both implement coordinate
updates using conditional distributions. Using the general notation introduced in Section 2.1,
to approximate p(x|y), Gibbs sampling obtains the update on xi by a random generation
from the conditional distribution p(xi |x−i , y), while the variational inference updates in a
deterministic way with exp[Eq−i

log p(xi |x−i , y)].
We present a batched version of Gibbs sampling for community detection. It involves

iterative updates with:

• Generate p(s) by sampling from p(p|q(s−1),Z(s−1),A).
• Generate q(s) by sampling from p(q|p(s−1),Z(s−1),A).
• Generate Z

(s)
i,· independently by sampling from p(Z

(s−1)
i,· |Z(s−1)

−i,· ,p(s), q(s),A), for
i ∈ [n].
We include the detailed implementation as Algorithm 2 in the Supplementary Material (Sec-
tion A.1). The similarity between Algorithm 1 and Algorithm 2 makes it possible for us to
analyze the output of Gibbs sampling in a similar way as we did for the variational inference.

THEOREM 4.2. Under the same condition as in Theorem 3.1, for any initializer Z(0)

satisfies �(Z(0),Z∗) ≤ cinitn̄min with probability at least 1 − ε, there exist some constant
c > 0 and some η,η′ = on(1) that go to 0 slowly, such that for all s ≥ 0 of the batched Gibbs
sampling (Algorithm 2), we have

EZ(s+1)

[
�
(
Z(s+1),Z∗)|A,Z(0)] ≤ n exp

(−(1 − η)n̄minI
) + cs

n�
(
Z(0),Z∗) + (s + 1)nbn

holds with probability at least 1 − exp[−(n̄minI )
1
2 )] − n−c − ε, where bn = exp[−η′2n̄2

min] +
exp[−η′2n2I ] and cn = 1/

√
nI/[wk[n/n̄min]2]. Consequently, for s = [nI/k]/ log[nI/

[wk[n/n̄min]2]], we have

EZ(s+1)

[
�
(
Z(s+1),Z∗)|A,Z(0)] ≤ n exp

(−(1 − 2η)n̄minI
)
,

with probability at least 1 − exp[−(n̄minI )
1
2 ] − n−c − ε.

Theorem 4.2 establishes theoretical justification for batched Gibbs sampling for commu-
nity detection. Note that cn is the same as in Theorem 3.1. When s ≤ en, the additional term
(s+1)nbn is dominated by n exp(−(1−η)n̄minI ), indicating that the batched Gibbs sampling
has similar linear convergence as that in Theorem 3.1.

The additional term (s + 1)nbn arises as we attempt to exclude extreme events occur-
ring in each iteration caused by sampling. For instance, even under the assumption that we
have obtained the true parameters p∗, q∗,Z∗, if we sample from the conditional distribution
p(Zi,·|Z∗−i,·,p∗, q∗,A),∀i ∈ [n], there still exists a nonzero probability such that the new Z

generated behaves like a random guess. If this happens, the new Z will be a bad initializa-
tion for the upcoming iterations. Albeit these are extremely small probability events, they
grow with s. When s > en, the term (s + 1)nbn will become dominating. However, as we all
know, the Gibbs sampling often converges to the posterior distribution, which indicates that
the error rate should remain unchanged after sufficient iterations. We hope in the future the
additional term (s + 1)nbn can be removed with more advanced technical tools developed.
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4.3. An iterative algorithm for maximum likelihood estimation. Maximum likelihood es-
timator (MLE) usually yields statistical optimality. However, the maximization of the like-
lihood p(A|Z,p,q) over Z,p,q is computationally infeasible. Inspired by the procedures
proposed in Algorithm 1 and Algorithm 2, we may approach max p(A|Z,p,q) by alternat-
ing maximization. We use a batched coordinate maximization:

• Maximize p(A|p,q(s−1),Z(s−1)) over p to obtain p(s).
• Maximize p(A|p(s−1), q,Z(s−1)) over q to obtain q(s).
• Maximize p(A|p(s−1), q(s−1),Zi,·,Z(s−1)

−i,· ) over Zi,· to obtain Z
(s)
i,· , for each i ∈ [n].

We include its detailed implementation in Algorithm 3 in the Supplementary Material (Sec-
tion A.2). We have the following theoretical guarantee of this iterative algorithm to approxi-
mate the MLE.

THEOREM 4.3. Under the same condition as in Theorem 3.1, for any initializer Z(0)

satisfies �(Z(0),Z∗) ≤ cinitn̄min with probability at least 1−ε, there exist some constant c > 0
and some η = on(1), such that for all s ≥ 0 of the iterative algorithm of MLE (Algorithm 3),
we have

�
(
Z(s+1),Z∗) ≤ n exp

(−(1 − η)n̄minI
) + �(Z(s),Z∗)√

nI/[wk[n/n̄min]2]
holds with probability at least 1 − exp[−(n̄minI )

1
2 ] − n−c − ε.

Algorithm 3 is essentially the same with the procedure proposed in [12]. However, [12] can
only analyze the performance of one single iteration from Z(0) (i.e., �(Z(1),Z∗)), and it re-
quires extra data splitting steps. Theorem 4.3 provides a stronger and cleaner result compared
with that of [12].

4.4. Extension to more general SBMs. In the same way as many other community de-
tection literatures, we assume the network is assortative throughout this paper. However, the
relative value of p∗, q∗ plays a minimal role in the proofs of Theorem 3.1 and others. What
really matters is the key quantity I which captures the difference between p∗ and q∗. All the
theoretical results established in this paper hold if we instead assume the network is disassor-
tative, that is, p∗ < q∗.

The SBM studied in this paper is homogeneous, in the sense that all the within-community
connection probabilities are equally p and all the between-community ones are equally q .
A less restricted model is to allow heterogeneousness. Let pa,b be the probability of con-
nection between two communities a, b ∈ [k]. On the algorithmic side, we can have priors
on {pa,b}a≤b and have them updated analogously to equations (12) and (13). Updates on π

will be more complicated than that in equation (11) as it involves {ta,b}a,b and {λa,b}a,b. On
the theoretical side, we may still assume the network has sort of assortative or disassortative
structure, for instance, maxa<b pa,b ≤ q∗ < p∗ ≤ mina pa,a , so that the quantity I is still
one possible way to measure the difficulty of distinguishing different communities. Further
investigation is beyond the scope of this paper.

5. Numeric studies. In this section, we present numeric performances of BCAVI (Al-
gorithm 1), the batched Gibbs sampling (Algorithm 2) and the iterative algorithm for MLE
(Algorithm 3) on synthetic data. We set n = 2000 and k = 10. The sizes of communities are
equal (thus, nmin = 200). The within-community connection probability p∗ = 0.17 and the
between-community one q∗ = 0.08. We initialize by spectral clustering, and then execute the
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FIG. 2. Numeric performances of Algorithms 1, 2 and 3 on synthetic data. Top: the y-axis is the misclassification
proportation measured by n−1�(Z,Z∗) where �(·, ·) is defined as in equation (17). Bottom: after a logarithm
transformation, that is, log(n−1�(Z,Z∗)). The “init” in the x-axis indicates errors of the initializer (spectral
clustering).

aforementioned algorithms separately, each with 10 iterations. The results are reported in Fig-
ure 2, based on 100 independent draws from the underlying SBM. We run the batched Gibbs
sampling 10 times and report the mean value, as we are interested in its average performance.

In Figure 2, all three algorithms have similar behaviors. Initialized by spectral clustering,
their error rates decrease linearly before convergence. It is interesting to observe that Al-
gorithm 3 has a slightly smaller error rate than Algorithm 1, which is slightly better than
Algorithm 2. Nevertheless, they all achieve the optimal rate which is around exp(−nminI ) ≈
0.022, up to some exp(−o(1)nminI ) factor. Overall, the numeric results presented in Figure 2
are consistent with the theoretical justifications established in Theorems 3.1, 4.2 and 4.3.

6. Proofs of main theorems. In this section, we give proofs of the theorems in Section 2
and Section 3. We first present the proof of Theorem 2.1 in Section 6.1. Then we give the
proof Theorem 2.2 in Section 6.2. The proof of Theorem 3.1 is given in Section 6.3.

6.1. Proof of Theorem 2.1. From equation (8), by some algebra (see equation (56) in
Appendix D for detailed derivation) we have(

π̂MF, α̂MF
p , β̂MF

p , α̂MF
q , β̂MF

q

)
= arg min

π∈�1
αp,βp,αq,βq>0

Eq
[
log p(A|Z,p,q)

] − KL
(
q(Z,p, q)‖p(Z,p, q)

)
,(21)

where we use q instead of qπ,αp,βp,αq,βq for simplicity. From the conditional distribution in
equation (6), the log-likelihood function can be simplified as

log p(A|Z,p,q) = ∑
a,b

∑
i<j

ZiaZjb

[
Ai,j log

Bab

1 − Bab

+ log(1 − Bab)

]
.

Due to the independence of Z and p,q under q, we have

Eq
[
log p(A|Z,p,q)

] = Eq(p,q)

[
Eq(Z)

[∑
a,b

∑
i<j

Zi,aZj,b

[
Ai,j log

Bab

1 − Bab

+ log(1 − Bab)

]]]

= Eq(p,q)

[∑
a,b

∑
i<j

πi,aπj,b

[
Ai,j log

Bab

1 − Bab

+ log(1 − Bab)

]]
.
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Since Ba,a = p,∀a ∈ [k] and Ba,b = q,∀a 
= b, we have

(22)

Eq
[
log p(A|Z,p,q)

] = Eq(p,q)

[∑
a

∑
i<j

πi,aπj,a

[
Ai,j log

p(1 − q)

q(1 − p)
+ log

1 − p

1 − q

]]

+Eq(p,q)

[∑
a,b

∑
i<j

πi,aπj,b

[
Ai,j log

q

1 − q
+ log(1 − q)

]]
.

By properties of Beta distribution, we obtain

Eq(p,q) log
p(1 − q)

q(1 − p)
= Eq(p)

[
logp − log(1 − p)

] −Eq(q)

[
logq − log(1 − q)

]
= [

ψ(αp) − ψ(βp)
] − [

ψ(αq) − ψ(βq)
]

and

Eq(p,q) log
1 − q

1 − p
= Eq(q) log(1 − q) −Eq(p) log(1 − p)

= [
ψ(βq) − ψ(αq + βq)

] − [
ψ(βp) − ψ(αp + βp)

]
.

This leads to

Eq(p,q)

[∑
a

∑
i<j

πi,aπj,a

[
Ai,j log

p(1 − q)

q(1 − p)
+ log

1 − p

1 − q

]]

= 2t

[∑
a

∑
i<j

πi,aπj,a(Ai,j − λ)

]

= t
〈
A − λ1n1T

n + λIn,ππT 〉
.

(23)

Similarly, we can obtain

Eq(p,q)

[∑
a,b

∑
i<j

πi,aπj,b

[
Ai,j log

q

1 − q
+ log(1 − q)

]]

=
[
Eq(q) log

q

1 − q

]∑
i<j

Ai,j

∑
a,b

πi,aπj,b + [
Eq(q) log(1 − q)

]∑
i<j

∑
a,b

πi,aπj,b

= 1

2

[
ψ(αq) − ψ(βq)

]‖A‖1 + n(n − 1)

2

[
ψ(βq) − ψ(αq + βq)

]
,

(24)

where we use the fact that (
∑

a πi,a) = ‖πi,·‖1 = 1,∀i ∈ [n]. Now consider the Kullback–
Leibler divergence between q(Z,p, q) and p(Z,p, q). Due to the independence of p,q and
{Zi,·}ni=1 in both distributions, we have

KL
(
q(Z,p, q)‖p(Z,p, q)

) = KL
(
q(Z)‖p(Z)

) + KL
(
q(p)‖p(p)

) + KL
(
q(q)‖p(q)

)
=

n∑
i=1

KL
[
Categorical(πi,·)‖Categorical

(
π

pri
i,·

)]
+ KL

[
Beta(αp,βp)‖Beta

(
αpri

p ,βpri
p

)]
+ KL

[
Beta(αq,βq)‖Beta

(
αpri

q , βpri
q

)]
.

(25)

By equations (21)–(25), we conclude with the desired result.
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6.2. Proof of Theorem 2.2. Note that

Bzi,zj
=

[
k∑

a=1

Zi,aZj,a

]
p +

[∑
a 
=b

Zi,aZj,b

]
q.

We rewrite the joint distribution p(p, q, z,A) in equation (7) as follows:

(26)

p(p, q,Z,A) =
[

n∏
i=1

π
pri
i,zi

][∏
i<j

[
pAi,j (1 − p)1−Ai,j

]∑k
a=1 Zi,aZj,a

]

×
[∏
i<j

[
qAi,j (1 − q)1−Ai,j

]∑k
a 
=b Zi,aZj,b

]

×
[

�(α
pri
p + β

pri
p )

�(α
pri
p )�(β

pri
p )

pα
pri
p −1(1 − p)β

pri
p −1

]

×
[

�(α
pri
q + β

pri
q )

�(α
pri
q )�(β

pri
q )

qα
pri
q −1(1 − q)β

pri
q −1

]
.

Updates on p and q . From equation (26), p has conditional probability as

p(p|q,Z,A) ∝
[∏
i<j

[
pAi,j (1 − p)1−Ai,j

]∑k
a=1 Zi,aZj,a

][
�(α

pri
p + β

pri
p )

�(α
pri
p )�(β

pri
p )

pα
pri
p −1(1 − p)β

pri
p −1

]
.

Then the CAVI update in equation (4) leads to

q̂(p) ∝ exp
[
Eq(q,Z) log p(p|q,Z,A)

]
∝ exp

[
Eq(Z)

∑
i<j

k∑
a=1

Zi,aZj,a log
[
pAi,j (1 − p)1−Ai,j

]]

×
[

�(α
pri
p + β

pri
p )

�(α
pri
p )�(β

pri
p )

pα
pri
p −1(1 − p)β

pri
p −1

]

= exp

[∑
i<j

k∑
a=1

πi,aπj,a log
[
pAi,j (1 − p)1−Ai,j

]][
�(α

pri
p + β

pri
p )

�(α
pri
p )�(β

pri
p )

pα
pri
p −1(1 − p)β

pri
p −1

]
.

It can be written as

q̂(p) ∝ [
p

∑
i<j

∑k
a=1 πi,aπj,aAi,j (1 − p)

∑
i<j

∑k
a=1 πi,aπj,a(1−Ai,j )]

×
[

�(α
pri
p + β

pri
p )

�(α
pri
p )�(β

pri
p )

pα
pri
p −1(1 − p)β

pri
p −1

]
.

The distribution of p is still Beta p ∼ Beta(α′
p,β ′

p), with

α′
p = αpri

p + ∑
i<j

k∑
a=1

πi,aπj,aAi,j and β ′
p = βpri

p + ∑
i<j

k∑
a=1

πi,aπj,a(1 − Ai,j ).

Similar analysis on q yields updates on α′
q and β ′

q . Hence, its proof is omitted.
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Updates on {Zi,·}ni=1. From equation (26), the conditional distribution on Zi,· is

p(Zi,·|Z−i,·,p, q,A) ∝ π
pri
i,zi

[∏
j 
=i

B
Ai,j
zi ,zj (1 − Bzi,zj

)1−Ai,j

]
.

Consequently, up to a constant not depending on i, we have

logP(Zi,a = 1|Z−i,·,p, q,A)

= logπ
pri
i,a +

[∑
j 
=i

Zj,a

[
Ai,j log

p

1 − p
+ log(1 − p)

]

+ ∑
j 
=i

∑
b 
=a

Zj,b

[
Ai,j log

q

1 − q
+ log(1 − q)

]]

= logπ
pri
i,a +

[∑
j 
=i

Zj,a

[
Ai,j log

p(1 − q)

q(1 − p)
− log

1 − q

1 − p

]

+ ∑
j 
=i

[
Ai,j log

q

1 − q
+ log(1 − q)

]]
.

Then the CAVI update from equation (4) leads to

π ′
i,a = q̂Zi,·(Zi,a = 1)

∝ exp
[
Eq(p,q,z−i ) logP(Zi,a = 1|Z−i,·,p, q,A)

]
= exp

[
Eq(p)Eq(q)Eq(Z−i,·) logP(Zi, = 1|Z−i,·,p, q,A)

]
∝ π

pri
i,a exp

[
Eq(p)Eq(q)

∑
j 
=i

πj,a

[
Ai,j log

p(1 − q)

q(1 − p)
− log

1 − q

1 − p

]]
,

(27)

where we use the property that p,q,Z are all independent of each other under q. Recall that
p ∼ Beta(αp,βp) and q ∼ Beta(αq,βq). It can be shown that

Eq(p) log
p

1 − p
= ψ(αp) − ψ(βp) and Eq(p) log(1 − p) = ψ(βp) − ψ(αp + βp),

where ψ(·) is digamma function. Similar results hold for Eq(q) log(q/(1 − q)) and
Eq(q) log(1 − q). Plug in these expectations to equation (27), we have

π ′
i,a ∝ π

pri
i,a exp

[
2t

∑
j 
=i

πj,a(Ai,j − λ)

]
.

6.3. Proof of Theorem 3.1. Theorem 3.1 gives a theoretical justification for all iterations
in the BCAVI algorithm. Due to the limit of pages, in this section we assume �(π(0),Z∗) =
o(n̄min). The proof of the case �(π(0),Z∗) in a constant order of n̄min is essentially the same
with slight modification, and we defer it to Section B.2 in the Supplementary Material.

PROOF. Let γ = o(1) be any sequence that goes to zero when n grows. Define t∗ and λ∗
as the true counterparts of t and λ, by

t∗ = 1

2
log

p∗(1 − q∗)
q∗(1 − p∗)

and λ∗ = 1

2t∗
log

1 − q∗

1 − p∗ .

The key to prove Theorem 3.1 is to develop a uniform analysis for the mapping h(·) (cf.
equation (11)). In Theorem 6.1, we will show �(·,Z∗) decreases in a desired way for a single
implementation of h(·), uniformly for all π, t, λ that are in some neighborhoods of their true
values.
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THEOREM 6.1 (Uniform analysis for h(·)). Consider any π ∈ �1 such that ‖π − Z∗‖1 ≤
γ n̄min. Let η′ be any sequence such that η′ = o(1). Consider any t and λ with |t − t∗| ≤
η′(p∗ − q∗)/p∗ and |λ − λ∗| ≤ η′(p∗ − q∗). We define F to be the event, that after applying
the mapping ht,λ(·), there exists some η = o(1) such that∥∥ht,λ(π) − Z∗∥∥

1 ≤ n exp
(−(1 − η)n̄minI

) + ‖π − Z∗‖1√
nI/[wk[n/n̄min]2]

,

holds uniformly over all the eligible π, t and λ. Under the same assumption as Theorem 3.1,
we have

P(F) ≥ 1 − exp
[−(n̄minI )

1
2 )

] − n−r

for some constant r > 0.

Once Theorem 6.1 is established, we can extend it to develop a uniform one-step analysis
for BCAVI iterations. For any π ∈ �1, define

αp = αpri
p +

k∑
a=1

∑
i<j

Ai,jπi,aπj,a, βp = βpri
p +

k∑
a=1

∑
i<j

(1 − Ai,j )πi,aπj,a(28)

and

αq = αpri
q + ∑

a 
=b

∑
i<j

Ai,jπi,aπj,b, βq = βpri
q + ∑

a 
=b

∑
i<j

(1 − Ai,j )πi,aπj,b,(29)

and consequently,

t = 1

2

[[
ψ(αp) − ψ(βp)

] − [
ψ(αq) − ψ(βq)

]]
,(30)

λ = 1

2t

[[
ψ(βq) − ψ(αq + βq)

] − [
ψ(βp) − ψ(αp + βp)

]]
.(31)

From Lemma C.1, we have a concentration of t, λ toward t∗, λ∗. That is, there exists some
η′ = o(1), such that with probability at least 1 − e35−n, the following inequalities hold:∣∣t − t∗

∣∣ ≤ η′(p∗ − q∗)
/p∗ and

∣∣λ − λ∗∣∣ ≤ η′(p∗ − q∗)
,

uniformly over all the eligible π such that ‖π − Z∗‖1 ≤ γ n̄min. Therefore, from Theorem 6.1
and Lemma C.1, we have Theorem 6.2 for a single BCAVI iteration.

THEOREM 6.2 (Uniform one-step analysis for BCAVI). Consider any π ∈ �1 such that
‖π − Z∗‖1 ≤ γ n̄min. Define αp,βp,αq,βq, t, λ as functions of π by equations (28)–(31). We
define F to be the event, that after applying the mapping ht,λ(·), there exists some η = o(1)

such that ∥∥ht,λ(π) − Z∗∥∥
1 ≤ n exp

(−(1 − η)n̄minI
) + ‖π − Z∗‖1√

nI/[wk[n/n̄min]2]
,

holds uniformly over all the eligible π . Under the same assumption as Theorem 3.1, we have

P(F) ≥ 1 − exp
[−(n̄minI )

1
2 )

] − n−r

for some constant r > 0.

Theorem 6.2 is sufficient to prove Theorem 3.1. Once the event F defined in Theorem 6.2
holds, we can apply Theorem 6.2 iteratively on BCAVI iterations, and the loss will decrease
in the desired way. �

The only thing left unproved is Theorem 6.1. We provide a proof sketch in Section 6.3.1
and a detailed proof in Section 6.3.2.



MEAN FIELD FOR COMMUNITY DETECTION 2593

6.3.1. Proof sketch of Theorem 6.1. The estimation [ht,λ(π)]i,· is a function of π and
Ai,·. Its error comes from two different sources. The first source is more fundamental. That
is, even if we implement the mapping h(·) on the true value Z∗, we will still make some
mistakes, as we only observe a noisy A. This contributes to the minimax rate. The second
source comes from the fact that we have π instead of Z∗. The magnitude of this error is
related to the deviation ‖π − Z∗‖1. Since these two errors behave differently, we decompose
[ht,λ(π)]i,· − Z∗

i,· accordingly into two parts, using generic notation fi,1, fi,2:∥∥[
ht,λ(π)

]
i,· − Z∗

i,·
∥∥

1 ≤ fi,1
(
Z∗,Ai,·

) + fi,2
(
π − Z∗,Ai,·

)
.

Consequently,

∥∥ht,λ(π) − Z∗∥∥
1 ≤

n∑
i=1

fi,1
(
Z∗,Ai,·

)
︸ ︷︷ ︸

involves Z∗

+
n∑

i=1

fi,2
(
π − Z∗,Ai,·

)
︸ ︷︷ ︸

involves π−Z∗

.(32)

The first term on the RHS of equation (32) leads to the minimax rate n exp(−(1 − η)n̄minI ).
The second term is upper bounded by

n∑
i=1

fi,2
(
π − Z∗,Ai,·

) ≤ s‖A −EA‖2
op

∥∥π − Z∗∥∥
1,

involving the spectral norm of A − EA and the deviation between π and Z∗, where s is not
dependent on π,Z∗ or A. The coefficient s‖A −EA‖2

op will be shown to be smaller than 1.

6.3.2. Proof of Theorem 6.1. Denote z = r−1(Z∗). By the definition of ht,λ(·) in equation
(11), we have

∥∥[
ht,λ(π)

]
i,· − Z∗

i,·
∥∥

1 ≤ 2
∑

a 
=zi
π

pri
i,a exp[2t

∑
j 
=i πj,a(Ai,j − λ)]∑

a π
pri
i,a exp[2t

∑
j 
=i πj,a(Ai,j − λ)]

≤ 2w
∑
a 
=zi

1 ∧ exp
[
2t

∑
j 
=i

(πj,a − πj,zi
)(Ai,j − λ)

]
,

where the last inequality is due to the fact x/(x + y) ≤ x/y
x/y+1 ≤ min{1, x/y},∀x, y > 0 and

that |πpri
i,a /π

pri
i,zi

| ≤ w,∀a by the definition of w in equation (18).
We are going to upper bound f (x) = 1 ∧ exp(−x) by a step function. Let x0 < 0 and m

be some integer, whose values will be determined later. The interval (x0,0] can be divided
into m equal-length and disjoint segments. For each l = 0,1, . . . , (m − 1), the value of f on
((l +1)x0/m, lx0/m] is upper bounded by exp(lx0/m), due to monotonicity. Hence, we have

f (x) ≤ exp(x0) +
m−1∑
l=0

exp
[
lx0

m

]
I

[
x ≥ (l + 1)x0

m

]
.

By taking x0 = −(na + nzi
)I/2 and letting x = 2t

∑
j 
=i(πj,a − πj,zi

)(Ai,j − λ), we have

∥∥[
ht,λ(π)

]
i,· − Z∗

i,·
∥∥

1 ≤ 2w
∑
a 
=zi

exp
[
−(na + nzi

)I

2

]
+ 2w

∑
a 
=zi

m−1∑
l=0

[
exp

[
− l(na + nzi

)I

2m

]

× I

[
2t

∑
j 
=i

(πj,a − πj,zi
)(Ai,j − λ) ≥ −(l + 1)(na + nzi

)I

2m

]]
.
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Summing over i ∈ [n], we obtain

∥∥ht,λ(π) − Z∗∥∥
1 =

n∑
i=1

∥∥[
ht,λ(π)

]
i,· − Z∗

i,·
∥∥

1 =
k∑

b=1

∑
i:zi=b

∥∥[
ht,λ(π)

]
i,· − Z∗

i,·
∥∥

1

≤ 2w

k∑
b=1

∑
i:zi=b

∑
a 
=zi

exp
[
−(na + nb)I

2

]

+ 2w

k∑
b=1

∑
i:zi=b

∑
a 
=b

m−1∑
l=0

[
exp

[
− l(na + nb)I

2m

]

× I

[
2t

∑
j 
=i

(πj,a − πj,b)(Ai,j − λ) ≥ −(l + 1)(na + nb)I

2m

]]
.

Using the fact that mina 
=b(na + bb)/2 ≥ n̄min, we have

(33)

∥∥ht,λ(π) − Z∗∥∥
1 ≤ 2w

n∑
i=1

∑
a 
=zi

exp(−n̄minI ) + 2w

k∑
b=1

∑
a 
=b

m−1∑
l=0

[
exp

[
− l(na + nb)I

2m

]

× ∑
i:zi=b

I

[
2t

∑
j 
=i

(πj,a − πj,b)(Ai,j − λ) ≥ −(l + 1)(na + nb)I

2m

]]

≤ 2wnk exp(−n̄minI ) + 2w

m−1∑
l=0

k∑
a=1

∑
b 
=a

[
exp

[
− l(na + nb)I

2m

]

× ∑
i:zi=b

I

[∑
j 
=i

(πj,a − πj,b)(Ai,j − λ) ≥ −(l + 1)(na + nb)I

4mt

]]
.

Throughout the proof, we choose some m → ∞ slowly such that

m = o(n̄minI ) and m = o
(
wnI/

[
k[n/n̄min]2]1/4)

.(34)

The key to the rest of the analysis is to understand equation (33) through the decomposition
of the critical quantity

∑
j 
=i (πj,a −πj,b)(Ai,j −λ) in the way as we describe in Section 6.3.1.

We will show for any pair of a, b ∈ [k] such that a 
= b, and any i ∈ [n] such that zi = b, it
is equal to a summation of two terms: one only involves the ground truth Z∗, and the other
involves the deviation π − Z∗. The former remains steady along iterations and contributes to
the minimax rate, while the latter is related to ‖π − Z∗‖1.

Let θa,b be a vector of length n such that

[θa,b]j = πj,a − Z∗
j,a + Z∗

j,b − πj,b ∀j ∈ [n].(35)

Then we have∑
j 
=i

(πj,a − πj,b)(Ai,j − λ) = ∑
j 
=i

(
Z∗

j,a − Z∗
j,b

)
(Ai,j − λ)

+ ∑
j 
=i

(
πj,a − Z∗

j,a + Z∗
j,b − πj,b

)
(Ai,j − λ)

= ∑
j 
=i

(
Z∗

j,a − Z∗
j,b

)
(Ai,j − λ) + ∑

j 
=i

(Ai,j − λ)[θa,b]j
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= ∑
j 
=i

(
Z∗

j,a − Z∗
j,b

)
(Ai,j − λ)

︸ ︷︷ ︸
involves Z∗

+ (Ai,· −EAi,·)θa,b

︸ ︷︷ ︸
involves θa,b, that is, π−Z∗

+ ∑
j 
=i

(EAi,j − λ)[θa,b]j
︸ ︷︷ ︸

relatively small

:= S
(1)
i,a,b + S

(2)
i,a,b + S

(3)
i,a,b.

With the help of the above decomposition, the indicator function in equation (33) can be
decomposed accordingly:

I

[∑
j 
=i

(πj,a − πj,b)(Ai,j − λ) ≥ −(l + 1)(na + nb)I

4mt

]

= I

[
S

(1)
i,a,b + S

(2)
i,a,b + S

(3)
i,a,b ≥ −(l + 3/2)(na + nb)I

4mt
+ (na + nb)I/2

4mt

]

≤ I

[
S

(1)
i,a,b ≥ −(l + 3/2)(na + nb)I

4mt
− S

(3)
i,a,b

]
+ I

[
S

(2)
i,a,b ≥ (na + nb)I/2

4mt

]

≤ I

[
S

(1)
i,a,b ≥ −(l + 3/2)(na + nb)I

4mt
− S

(3)
i,a,b

]
+ I

[
S

(2)
i,a,b ≥ n̄minI

4mt

]
,

where in the last equality we use the fact again that mina 
=b(na + bb)/2 ≥ n̄min. As a result,
equation (33) can be written as∥∥ht,λ(π) − Z∗∥∥

1 ≤ 2wnk exp(−n̄minI )

+ 2w

m−1∑
l=0

k∑
a=1

∑
b 
=a

[
exp

[
− l(na + nb)I

2m

]

× ∑
i:zi=b

I

[
S

(1)
i,a,b ≥ −(l + 3/2)(na + nb)I

4mt
− S

(3)
i,a,b

]]

+ 2w

k∑
a=1

∑
b 
=a

[[
m−1∑
l=0

exp
[
− l(na + nb)I

2m

]]
× ∑

i:zi=b

I

[
S

(2)
i,a,b ≥ n̄minI

4mt

]]
.

We further simplify equation (33) by using two quantities Lsum
1 ,Lsum

2 defined as follows:

Lsum
1 �

m−1∑
l=0

k∑
a=1

∑
b 
=a

[
exp

[
− l(na + nb)I

2m

] ∑
i:zi=b

I

[
S

(1)
i,a,b ≥ −(l + 3/2)(na + nb)I

4mt
− S

(3)
i,a,b

]]

and

Lsum
2 �

k∑
a=1

∑
b 
=a

∑
i:zi=b

I

[
S

(2)
i,a,b ≥ n̄minI

4mt

]
.

By equations (19) and (34), the exponent in exp[−l(na + nb)I/(2m)] goes to infinity for all
l ≥ 1, which implies

∑m−1
l=0 exp[−l(na + nb)I/(2m)] ≤ 2. Thus, we have∥∥ht,λ(π) − Z∗∥∥

1 ≤ 2wnk exp(−n̄minI ) + 2wLsum
1︸ ︷︷ ︸

involves Z∗
+ 4wLsum

2︸ ︷︷ ︸
involves π−Z∗

.
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The two quantities Lsum
1 and Lsum

2 correspond to the two sources of errors we describe in
Section 6.3.1. The former one leads to the optimal rate, while the latter one is related to the
deviation between π and Z∗. Upper bounds on Lsum

1 and Lsum
2 are established in Section B.1,

summarized as follows:

• For Lsum
1 , there exists a sequence η′′ = o(1) such that with probability at least 1 −

exp[−2(n̄minI )
1
2 ], we have

Lsum
1 ≤ nmk exp

[−(
1 − 2η′′)n̄minI

]
.(36)

• For Lsum
2 , there exist constants c and r such that with probability at least 1 − n−r −

exp(−5np∗), we have

Lsum
2 ≤ cknp∗‖π − Z∗‖1

(n̄minI/(mt∗))2 + cn2kp∗ exp(−5np∗)
n̄minI/(mt∗)

.(37)

Plugging upper bounds on Lsum
1 and Lsum

2 , we have∥∥ht,λ(π) − Z∗∥∥
1 ≤ 2wnk exp(−n̄minI ) + 2wnmk exp

[−(
1 − 2η′′)n̄minI

]
+ 4cwknp∗‖π − Z∗‖1

(n̄minI/(mt∗))2 + 4cwkn2p∗ exp(−5np∗)
n̄minI/(mt∗)

,

with probability at least 1 − exp[−2(n̄minI )
1
2 ] − n−r − exp(−5np∗).

The last thing to do to complete the proof is to simplify the above with-high-probability
result. By Propositions C.2 and C.3, we have p∗t∗2 	 I , which leads to

wknp∗

(n̄minI/(mt∗))2 = wm2 p∗t∗2

I

n2

n̄2
min

k

nI
	 wm2 n2

n̄2
min

k

nI
= o

[
1√

nI/[wk[n/n̄min]2]

]
,

where the last inequality is due to the relative value of m defined in equation (34). Similarly,
we have

wkn2p∗ exp(−5np∗)
n̄minI/(mt∗)

= wmk

√
p∗t∗2

I

√
np∗

√
nI

n

n̄min
n exp

(−5np∗)

	 wmk

√
np∗

√
nI

n

n̄min
n exp

(−5np∗)
≤ n exp(−5n̄minI ).

Thus, with probability at least 1 − exp[−(n̄minI )
1
2 ] − n−r , there exists some η = o(1), such

that ∥∥ht,λ(π) − Z∗∥∥
1 ≤ n exp

(−(1 − η)n̄minI
) + ‖π − Z∗‖1√

nI/[wk[n/n̄min]2]
.

This completes the proof of Theorem 6.1. Due to the limit of space, we refer readers to
Section B.1 in the Supplementary Material for the establishment of upper bounds on Lsum

1
and Lsum

2 .

SUPPLEMENTARY MATERIAL

Supplement to “Theoretical and computational guarantees of mean field variational
inference for community detection” (DOI: 10.1214/19-AOS1898SUPP; .pdf). In the Sup-
plementary Material [35], we provide the detailed implementations of the batched Gibbs

https://doi.org/10.1214/19-AOS1898SUPP
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sampling and the iterative algorithm for MLE in Algorithm 2 and Algorithm 3, respectively.
We include proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3. Besides, we establish the
upper bounds on Lsum

1 and Lsum
2 which are used in the proof of Theorem 6.1, and study the

case where �(π(0), π∗) is in a constant order of n̄min to complement the proof of Theorem 3.1.
In addition, all the auxiliary propositions and lemmas are also included in the supplement.
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