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APPENDIX A: CHARACTERISTICS OF THE POPULATION QUANTITIES

In this section, we present several propositions that characterize the population quantities
defined in Section 4.1. We first define two matrices related to z∗. Let D ∈Rk×k be a diagonal
matrix with

Dj,j = |{i ∈ [n] : z∗i = j}| , j ∈ [k],

and let Z∗ ∈ {0,1}n×k be a matrix such that

Z∗i,j = I{z∗i = j}, i ∈ [n], j ∈ [k].(40)

PROPOSITION A.1. There exists an orthogonal matrix W ∈Rk×k such that

V = Z∗D−
1

2W.

Consequently, Vi,· = Vj,· for all i, j ∈ [n] such that z∗i = z∗j In addition, we have that

σ1 ≥
√
βn

k

∆

2
.

PROOF. First note that

P = (θ∗1, . . . , θ
∗
k)Z

∗T = (θ∗1, . . . , θ
∗
k)D

1

2D−
1

2Z∗T = (θ∗1, . . . , θ
∗
k)D

1

2

(
Z∗D−

1

2

)T
,

and observe that Z∗D−
1

2 has orthonormal columns. Now, we decompose (θ∗1, . . . , θ
∗
k)D

1

2 =
UΛW T into its SVD. Here W is some orthonomal matrix W ∈Rk×k. Then we have that

P = UΛ
(
Z∗D−

1

2W
)T

,

with Z∗D−
1

2W having orthonormal columns. Hence, we have that Σ = Λ and V =

Z∗D−
1

2W . The structure of Z∗ leads to the second statement presented in the proposition.
Indeed, due to (2), the largest singular value of (θ∗1, . . . , θ

∗
k) must be greater than ∆/2. Since

(θ∗1, . . . , θ
∗
k)D

1

2 = UΣW T , we obtain that

σ1 ≥
√
βn

k

∆

2
.

PROPOSITION A.2. The matrix V satisfies

max
i∈[n]
‖V T ei‖ ≤

√
k

βn
.
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PROOF. By Proposition A.1 we have that

‖V T ei‖= ‖W TD−1/2(Z∗)T ei‖= ‖D−1/2(Z∗)T ei‖,

where we used that W is orthogonal. Hence, we obtain that

max
i∈[n]
‖V T ei‖ ≤

1

minj∈[k]D
1

2

j,j

‖(Z∗)T ei‖=

√
k

βn
.

PROPOSITION A.3. We have that∣∣〈ul, θ∗j 〉∣∣≤ σl
√

k

βn
, ∀j, l ∈ [k].

PROOF. Since P = UΣV T and P·,i = θ∗z∗i , i ∈ [n], we have for any u, l ∈ [k] that〈
ul, θ

∗
j

〉
= σlVi,l, where i ∈ [n] is any index such that z∗i = j.

The proof is completed by applying Proposition A.2.

APPENDIX B: AUXILIARY LEMMAS RELATED TO THE NOISE MATRIX E

In this section, we present three basic lemmas for the control of the noise term E and
empirical singular values and vectors, used in the proof of Theorem 2.1.

LEMMA B.1. For a random matrix E ∈ Rp×n with {Ei,j}
iid∼ N (0,1), define the event

F = {‖E‖ ≤
√

2(
√
n+
√
p)}. We have that

P
(
‖E‖ ≥

√
n+
√
p+ t

)
≤ e−t2/2

and particularly

P (F)≥ 1− e−0.08n.

PROOF. By Theorem 2.13 in [2] we have that E‖E‖ ≤
√
n+
√
p. Moreover, as ‖E‖ =

sup‖u‖=‖v‖=1〈u,Ev〉, we have by Borell’s inequality (e.g. Theorem 2.2.7 in [3]) that
P (‖E‖ ≥ E‖E‖+ t)≤ e−t2/2.

Weyl’s inequality (e.g. Theorem 4.3.1 of [4]), the fact that X = P + E and Lemma B.1
imply the following lemma.

LEMMA B.2. Assume that the random event F holds. We have that

σ̂j ≤ σj +
√

2(
√
n+
√
p), ∀j ∈ [k].

The last lemma included in this section is the Davis-Kahan-Wedin sin(Θ) Theorem, which
characterizes the distance between empirical and population singular vector spaces. We refer
readers to Theorem 21 of [8] for its proof.
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LEMMA B.3 (Davis-Kahan-Wedin sin(Θ) Theorem). Consider any rank-s matri-
ces W,Ŵ . Let W =

∑s
i=1 σiuiv

T
i be its SVD with σ1 ≥ . . . ≥ σs. Similarly, let Ŵ =∑s

i=1 σ̂iûiv̂
T
i be its SVD with σ̂1 ≥ . . .≥ σ̂s. For any 1≤ j ≤ l ≤ s, define V = (vj , . . . , vl)

and V̂ = (v̂j , . . . , v̂l). Then, we have that

inf
O: orthogonal matrix

∥∥∥V̂ − V O∥∥∥≤√2
∥∥∥V̂ V̂ T − V V T

∥∥∥≤ 4
√

2
∥∥∥Ŵ −W∥∥∥

min{σj−1 − σj , σl − σl+1}
,

where we denote σ0 = +∞ and σs+1 = 0.

APPENDIX C: PROOFS OF KEY LEMMAS

In this section, we provide proofs of the lemmas stated in Section 4, except for the proof
of of Lemma 4.3, which is deferred to Appendix F. Throughout this section, for any matrix
W , we denote by span(W ) the space spanned by the columns of W .

PROOF OF LEMMA 4.1. Since P̂·,i = Û Ŷ·,i =
(
Û ÛT

)
Û Ŷ·,i lies in the column space

span(Û) any {θj}kj=1 that achieves the minimum of (11) must also lie in span(Û). In partic-
ular, we have that

min
z∈[k]n,{θj}kj=1∈Rk

∑
i∈[n]

∥∥∥P̂·,i − θzi∥∥∥2
= min
z∈[k]n,{cj}kj=1∈Rk

∑
i∈[n]

∥∥∥Û Ŷ·,i − Ûczi∥∥∥2

= min
z∈[k]n,{cj}kj=1∈Rk

∑
i∈[n]

∥∥∥Ŷ·,i − czi∥∥∥2
,

where the last equation is due to the fact that Û is an orthogonal matrix.

PROOF OF LEMMA 4.2. Due to the fact that P̂ is the best rank-k approximation of X in
spectral norm and P is also rank-k, we have that∥∥∥P̂ −X∥∥∥≤ ‖P −X‖= ‖E‖.

This, the fact that both P̂ and P are at most rank k and the fact that we work on the event F
imply that, ∥∥∥P̂ − P∥∥∥

F
≤ 2
√

2k‖P −X‖= 2
√

2k‖E‖

≤ 4
√
k(
√
n+
√
p),(41)

where the last inequality is due to Lemma B.1. Now, denote by Θ̂ the center matrix after
solving (11). That is, the ith column of Θ̂ is θ̂ẑ′i . Since Θ̂ is the solution to the k-means
objective, we have that ∥∥∥Θ̂− P̂

∥∥∥
F
≤
∥∥∥P̂ − P∥∥∥

F
.

Hence, by the triangle inequality, we obtain that∥∥∥Θ̂− P
∥∥∥

F
≤ 2

∥∥∥P̂ − P∥∥∥
F
≤ 8
√
k(
√
n+
√
p).

Now, define the set S as

S =

{
i ∈ [n] :

∥∥∥θ̂ẑ′i − θ∗z∗i ∥∥∥> ∆

2

}
.
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Since
{
θ̂ẑ′i − θ

∗
z∗i

}
i∈[n]

are exactly the columns of Θ̂− P , we have that

|S| ≤

∥∥∥Θ̂− P
∥∥∥2

F

(∆/2)2 ≤ 256k (n+ p)

∆2
.

Assuming that

β∆2

k2
(
1 + p

n

) ≥ 512,

we have that

|S| ≤ βn

2k
.

We now show that all the data points in SC are correctly clustered. We define

Cj =
{
i ∈ [n] : z∗i = j, i ∈ SC

}
, j ∈ [k].

The following holds:

• For each j ∈ [k], Cj cannot be empty, as |Cj | ≥ |{i : z∗i = j}| − |S|> 0.
• For each pair j, l ∈ [k], j 6= l, there cannot exist some i ∈ Cj , i′ ∈ Cl such that ẑ′i = ẑ′i′ .
Otherwise θ̂ẑ′i = θ̂ẑ′

i′
which would imply∥∥θ∗j − θ∗l ∥∥=

∥∥∥θ∗z∗i − θ∗z∗i′∥∥∥
≤
∥∥∥θ∗z∗i − θ̂ẑ′i∥∥∥+

∥∥∥θ̂ẑ′i − θ̂ẑ′i′∥∥∥+
∥∥∥θ̂ẑ′

i′
− θ∗z∗

i′

∥∥∥<∆,

contradicting (2).

Since ẑ′i can only take values in [k], we conclude that the sets {ẑ′i : i ∈Cj} are disjoint for all
j ∈ [k]. That is, there exists a permutation φ ∈Φ, such that

ẑ′i = φ(j), i ∈Cj , j ∈ [k].

This implies that
∑

i∈SC I{ẑi 6= φ(z∗i )}= 0. Hence, we obtain that

`(ẑ, z∗)≤ |S| ≤ 256k (n+ p)

∆2
.

When the ratio ∆2/
(
k2 (n+ p)

)
is large enough, an immediate implication is that minj∈[k] |{i ∈ [n] : ẑi = j}| ≥

βn
k − |S| ≥

βn
2k . Moreover, in this case we obtain that

max
j

∥∥∥θ̂j − θ∗φ(j)

∥∥∥2
≤

∥∥∥Θ̂− P
∥∥∥2

F
βn
k − |S|

≤ 128k2 (n+ p)

βn

PROOF OF LEMMA 4.4. Recall that M has SVD M = UΣV T where U = (u1, . . . , uk),
V = (v1, . . . , vk) and Σ = diag{σ1, . . . , σk} ∈Rk×k with σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. We denote
S =

{
x ∈ span

(
I − V V T

)
: ‖x‖= 1

}
to be the unit sphere in span

(
I − V V T

)
. We also de-

note O to be the set of all orthonormal matrices in Rn×n and furthermore

O′ = {O ∈O :OV = V } .
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Let V⊥ be an orthogonal extension of V such that (V,V⊥) ∈O. Then for any O ∈O′, due to
the fact that O(V,V⊥) ∈O and O(V,V⊥) = (V,OV⊥), we have that OV⊥ is another orthog-
onal extension of V . This implies that

Ox ∈ span
(
I − V V T

)
∀x ∈ span

(
I − V V T

)
.(42)

Hence O′ includes all rotation matrices in span
(
I − V V T

)
. In the following, we prove the

three assertions of Lemma 4.4 one by one.

Assertion (1). Recall that M̂ = M + E = UΣV T + E and M̂ =
∑p∧n

j=1 σ̂j ûj v̂
T
j and denote

by d
= equality in distribution. For any O ∈ O′, since EOT d

= E, we have that M̂OT =(
UΣV T +E

)
OT = UΣV T +EOT

d
= M̂ . On the other hand, M̂OT has SVD

M̂OT =

p∧n∑
j=1

σ̂j ûj (Ov̂j)
T .

Hence, for any j ∈ [k], we have that v̂j
d
=Ov̂j .

For any x ∈ Rn, we define the mapping f : Rn → S as f(x) = (I − V V T )x/‖(I −
V V T )x‖. Applying f on both v̂j and Ov̂j , we obtain that

(I − V V T )Ov̂j
‖(I − V V T )Ov̂j‖

d
=

(I − V V T )v̂j
‖(I − V V T )v̂j‖

.

Since v̂j = V V T v̂j + (I − V V T )v̂j , we have Ov̂j = V V T v̂j +O(I − V V T )v̂j . By (42), we
have that O(I − V V T )v̂j ∈ span

(
I − V V T

)
. Hence, we obtain that

V V TOv̂j = V V T v̂j(43)

(I − V V T )Ov̂j = (I − V V T )O(I − V V T )v̂j =O(I − V V T )v̂j .(44)

As a consequence of (44), we obtain that

O
(I − V V T )v̂j
‖(I − V V T )v̂j‖

=
O(I − V V T )v̂j
‖O(I − V V T )v̂j‖

d
=

(I − V V T )v̂j
‖(I − V V T )v̂j‖

∀O ∈O′.(45)

In particular, (I − V V T )v̂j/‖(I − V V T )v̂j‖ is contained in S and is rotation-invariant.
Hence, we obtain that (I − V V T )v̂j/‖(I − V V T )v̂j‖ is uniformly distributed on S.

Assertion (2). For any x ∈ Rn, we define another mapping g : Rn → Rn as g(x) =

((V V Tx)T , ((I − V V T )x)T /‖(I − V V T )x‖)T . Recall that v̂j
d
= Ov̂j ∀O ∈ O′. Applying

g on both v̂j and Ov̂j and using (43), (44) and (45), we obtain that(
V V T v̂j

(I−V V T )v̂j
‖(I−V V T )v̂j‖

)
d
=

(
V V T v̂j

O (I−V V T )v̂j
‖(I−V V T )v̂j‖

)
.(46)

Let A be a Borel subset of span(V V T ) and B a Borel subset of S. By (46) we have for any
O ∈O′ that

P
(

(I − V V T )v̂j
‖(I − V V T )v̂j‖

∈ B
∣∣∣V V T v̂j ∈A

)
= P

(
O

(I − V V T )v̂j
‖(I − V V T )v̂j‖

∈ B
∣∣∣V V T v̂j ∈A

)
.

Hence, we obtain that (I−V V T )v̂j
‖(I−V V T )v̂j‖

∣∣V V T v̂j is also uniformly distributed on S, invariant to

the value of V V T v̂j . This implies that (I−V V T )v̂j
‖(I−V V T )v̂j‖ is independent of V V T v̂j .
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Assertion (3). Since ‖(I − V V T )v̂j‖=
√

1− ‖V V T v̂j‖2 is a function of only V V T v̂j , this
is an immediate consequence of the second assertion.

APPENDIX D: EXTENSION OF PROPOSITION 2.1

In this appendix, we provide an extension of Proposition 2.1.

PROPOSITION D.1. Assume the observations {Xi}i∈[n] are generated as follows:

Xi = θ∗z∗i + εi.

Denote E := (ε1, . . . , εn). Assume that ∆/(β−0.5kn−0.5 ‖E‖) ≥ C for some large enough
constant C > 0. Then the output of Algorithm 1, ẑ, satisfies for another constant C ′ > 0

`(ẑ, z∗)≤ C ′k ‖E‖2

n∆2
.(47)

In particular, if {εi}ni=1
iid∼ N (0,Σ) and assuming that ∆/(β−0.5k(‖Σ‖ + (trace(Σ) +

‖Σ‖ log(p+ n))/n)0.5)≥ C , we have for another constant C ′′ > 0 with probability at least
1− exp (−0.08n) that

`(ẑ, z∗)≤ C ′′k (‖Σ‖+ (trace(Σ) + ‖Σ‖ log(p+ n))/n)2

∆2
.(48)

Moreover, if {εi}ni=1
iid∼ subG(σ2) (i.e., sub-Gaussian with variance proxy σ2) and assuming

that ∆/(β−0.5kn0.5σ(1+p/n)−0.5)≥C , we have with probability at least 1−exp (−0.08n)
that

`(ẑ, z∗)≤
C ′′kσ2

(
1 + p

n

)
∆2

.(49)

PROOF. Following the proof of Proposition 2.1 line by line (47) immediately follows.
To obtain (48) and (49), we provide upper bounds for ‖E‖.
When the errors {εi}ni=1 are independent Gaussians with covariance matrix Σ, we bound

‖E‖ by applying Corollary 3.11 in [1]. More precisely, assume that Σ has eigendecom-
position Σ = ΓΛΓT with Λ being a diagonal matrix and Γ an orthogonal matrix. Denote
by Ẽ a p × n matrix with i.i.d. standard Gaussian entries. Then, by rotation invariance
of isotropic Gaussian random variables, we have that E d

= ΓΛ1/2ΓT Ẽ
d
= ΓΛ1/2Ẽ. Hence,

‖E‖ d
= ‖ΓΛ1/2Ẽ‖ ≤ ‖Λ1/2Ẽ‖. The entries of Λ1/2Ẽ are independent and hence we can now

apply Corollary 3.11 in [1] and (48) follows.
When the errors are sub-Gaussian distributed, we bound ‖E‖ by a net argument, see for

instance Theorem 5.39 in [9].

APPENDIX E: PROOF OF THEOREM 2.2

To prove Theorem 2.2, we first note that∑
i∈[n]

‖Ŷ·,i − c̃z̃i‖2 ≤
∑
i∈[n]

‖Ŷ·,i − čži‖2

≤ (1 + ε) inf
{cj}kj=1∈Rk

∑
i∈[n]

min
j∈[k]
‖Ŷ·,i − cj‖2,
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as each iteration of Lloyd’s algorithm is guaranteed to not increase the value of the ob-
jective function. By the same analysis as for ẑ in Proposition 2.1 , z̃ and ž satisfy (13)
with an additional factor of (1 + ε) on the right hand side of the inequality and the centres
{θ̃j}kj=1 = {Û c̃j}kj=1 satisfy (14) with an additional factor of

√
1 + ε on the right hand side

of the inequality. Then the exponential bound (10) follows similarly as the proof of Theorem
2.1 and we line out the necessary modifications below.

In particular, the local optimality guarantee ‖Ŷi− c̃z̃i‖ ≤ ‖Ŷi− c̃j‖,∀i ∈ [n], j 6= z̃i ensures
that the equality in (17) holds. Moreover, by definition of the centres θ̃j we have, similarly as
in (21), that

θ̃j =

∑
ži=j

P̂·,i∑
ži=j

1
=

σ̂l√
|{i ∈ [n] : ži = j}|

and that

|〈ûl, θ̃j〉| ≤
σ̂l√

|{i ∈ [n] : ži = j}|
.

Finally, since ž fulfills (13) with an additional factor of (1 + ε) on the right hand side, we
further have that |{i ∈ [n] : ži = j}| ≥ βn

2k and thus we obtain, as in (23), that

max
j∈[k]

max
r+1≤l≤k

∣∣∣〈ûl, θ̃j〉∣∣∣ I(F)≤ (kρ+ 4)

√
2k

β

(
1 +

p

n

)
.

With these modifications, the rest of the proof is the same as the proof of Theorem 2.1.

APPENDIX F: SPECTRAL PROJECTION MATRIX PERTURBATION THEORY

In this section, we give the proof of Lemma 4.3. Before that, we first introduce two lemmas
used in the proof of Lemma 4.3.

The following lemma gives an upper bound on the operator norm of ‖Sa:b‖. The setting
considered here is slightly more general than that in Lemma 4.3, as E is not necessarily a
Gaussian noise matrix. The proof of Lemma F.1 mainly follows that of Lemma 2 in [6]. It is
included in the later part of this section for completeness.

LEMMA F.1. Consider any rank-k matrix M ∈ Rp×n with SVD M =
∑k

j=1 σjujv
T
j

where σ1 ≥ σ2 . . .≥ σk > 0. Define σ0 = σk+1 = 0.
Consider any matrix E ∈Rp×n. Define M̂ =M +E. Let the SVD of M̂ be

∑p∧n
j=1 σ̂j ûj v̂

T
j

where σ̂1 ≥ σ̂2 ≥ . . .≥ σ̂p∧n.
For any two indexes a, b such that 1 ≤ a ≤ b ≤ k, define Va:b = (va, . . . , vb), V̂a:b =

(v̂a, . . . , v̂b) and V := (v1, . . . , vk). Define the singular value gap ga:b = min{σa−1 − σa, σb − σb+1}.
Define

Sa:b =
(
I − V V T

)(
V̂a:bV̂

T
a:b − Va:bV

T
a:b

)
Va:b −

∑
a≤j≤b

1

σj

(
I − V V T

)
ETujv

T
j Va:b.(50)

Then, we have that

‖Sa:b‖ ≤
(

32(σa − σb)
πga:b

+ 16

)
‖E‖2

g2
a:b

.

Sa:b in Lemma 4.3 and Lemma F.1 depends on E. It can be written as Sa:b(E) with
Sa:b (·) treated as a function of the noise matrix. Lemma F.2 studies the Lipschitz conti-
nuity of Sa:b(·). It slightly generalizes Lemma 2.4 in [7] and its proof follows along the same
arguments. Its proof will be given in the later part of this section for completeness.
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LEMMA F.2. Consider the same setting as in Lemma F.1. Define Sa:b(E) as in (50).
Consider another matrix E′ ∈Rp×n and define M̂ ′ :=M +E′. Define Sa:b(E

′) analogously.
Assuming that max{‖E‖ ,‖E′‖} ≤ ga:b/4, we have that

‖Sa:b(E)− Sa:b(E
′)‖ ≤ 1024

(
1 +

σa − σb
ga:b

)
max{‖E‖,‖E′‖}

g2
a:b

‖E −E′‖.(51)

Applying Lemma F.1 and Lemma F.2, we are able to prove Lemma 4.3. It generalizes
Theorem 1.1 in [7], and its proof follows the same argument.

PROOF OF LEMMA 4.3. Define φ as follows

φ(s) =


1, s≤ 1

3− 2s, 1< s< 3/2

0, s≥ 3/2

and note that φ is Lipschitz with Lipschitz constant 2. As we mention earlier in this section,
we write Sa:b(E) and treat Sa:b(·) as a matrix valued function.

Step 1. Define a function

hδ(E) = 〈Sa:b(E),W 〉φ
(

6‖E‖
δ

)
.

We are going to show that hδ is also Lipschitz for any δ ≤ ga:b/4. We use the notation ‖·‖∗
for the nuclear norm of a matrix.

• First suppose that max{‖E‖,‖E′‖} ≤ δ. Then, by Lemma F.1, Lemma F.2 and the fact
that φ is Lipschitz, we obtain that

|hδ(E)− hδ(E′)|

≤
∣∣〈Sa:b(E)− Sa:b(E

′),W 〉
∣∣φ(6‖E‖

δ

)
+
∣∣〈Sa:b(E

′),W
〉∣∣ ∣∣∣∣φ(6‖E‖

δ

)
− φ

(
6‖E′‖
δ

)∣∣∣∣
≤ ‖Sa:b(E)− Sa:b(E

′)‖‖W‖∗φ
(

6‖E‖
δ

)
+ ‖Sa:b(E

′)‖‖W‖∗
∣∣∣∣φ(6‖E‖

δ

)
− φ

(
6‖E′‖
δ

)∣∣∣∣
≤ 1024

(
1 +

σa − σb
ga:b

)
max{‖E‖,‖E′‖}

g2
a:b

‖E −E′‖‖W‖∗

+ 16

(
1 +

σa − σb
ga:b

)
‖E′‖2

g2
a:b

‖W‖∗
12 |‖E‖ − ‖E′‖|

δ

≤C1

(
1 +

σa − σb
ga:b

)
δ

g2
a:b

‖E −E′‖‖W‖∗,

for some constant C1 > 0 that is independent of E,E′.
• If min{‖E‖,‖E′‖} ≥ δ then h(E) = h(E′) = 0 and the above inequality trivially holds.
• Finally, if ‖E‖< δ ≤ ‖E′‖, by a similar argument as above, we obtain that

|hδ(E)− hδ(E′)|= |hδ(E)|=
∣∣∣∣〈Sa:b(E),W 〉

(
φ

(
6‖E‖
δ

)
− φ

(
6‖E′‖
δ

))∣∣∣∣
≤ ‖Sa:b(E)‖‖W‖∗

∣∣∣∣φ(6‖E‖
δ

)
− φ

(
6‖E′‖
δ

)∣∣∣∣
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≤C1

(
1 +

σa − σb
ga:b

)
δ

g2
a:b

‖E −E′‖‖W‖∗,

and the same bound holds if we switch the places of E and E′ in the last case.

Combining the above cases together, we have shown that for any δ such that δ ≤ ga:b/4, hδ
is a Lipschitz function with Lipschitz constant bounded by

C1

(
1 +

σa − σb
ga:b

)
δ

g2
a:b

‖W‖∗.

Step 2. In the following, for any two sequences {xn} ,{yn}, we adopt the notation xn . yn
meaning there exists some constant c > 0 independent of n, such that xn ≤ cyn.

By lemma B.1, we have that for all t > 0,

P
(
|‖E‖ −E‖E‖| ≥

√
2t
)
≤ exp (−t) .

Set δ = δ(t) = E‖E‖ +
√

2t. We consider the following two scenarios depending on the
values of t.

• We first consider the case where
√

2t ≤ ga:b/24, which implies δ(t) ≤ ga:b/6. By the
definition of hδ(·), we have that hδ(E) = 〈Sa:b(E),W 〉. Denoting by m the median of
〈Sa:b(E),W 〉 we have that

P (hδ(E)≥m)≥ P (hδ(E)≥m,‖E‖ ≤ δ(t)) = P (〈Sa:b(E),W 〉 ≥m,‖E‖ ≤ δ(t))

≥ P(〈Sa:b,W 〉 ≥m)− P(‖E‖> δ(t))≥ 1

2
− 1

2
e−t ≥ 1

4
,

and likewise P (hδ(E)≤m) ≥ 1/4. Hence, since hδ is Lipschitz, we can apply Lemma
2.6 in [7], which is a corollary to the the Gaussian isoperimetric inequality, to show that
with probability at least 1− e−t that

|hδ(E)−m|.
√
t

(
1 +

σa − σb
ga:b

)
δ(t)

g2
a:b

‖W‖∗.(52)

By Lemma B.1, we have that E‖E‖.
√
n+ p. Thus, we obtain that

|hδ(E)−m|.
(

1 +
σa − σb
ga:b

) √
t

ga:b

(√
n+ p+

√
t

ga:b

)
‖W‖∗.

Moreover, the event where ‖E‖ ≤ δ(t) occurs with probability at least 1− e−t and on this
event hδ coincides with 〈Sa:b(E),W 〉. Hence, with probability at least 1− 2e−t

|〈Sa:b(E),W 〉 −m|.
(

1 +
σa − σb
ga:b

) √
t

ga:b

(√
n+ p+

√
t

ga:b

)
‖W‖∗.(53)

• We need to prove a similar inequality in the case
√

2t > ga:b/24. In this case we have that
E‖E‖.

√
t as by assumption E‖E‖ ≤ ga:b/8. Hence, applying lemma F.1, we have that

|〈Sa:b(E),W 〉| ≤ ‖Sa:b(E)‖‖W‖∗ .
(

1 +
σa − σb
ga:b

)
t

g2
a:b

‖W‖∗.(54)

Hence, since t≥ log(4) and e−t ≤ 1/4, we conclude that we can bound

|m|.
(

1 +
σa − σb
ga:b

)
t

g2
a:b

‖W‖∗.(55)

(54) and (55) together immediately imply that the inequality in (53) also holds for
√

2t >
ga:b/24.
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So far we have proved that (53) holds for all t > log 4. Integrating out the tails in the
inequality in (53) we obtain that

|E〈Sa:b(E),W 〉 −m| ≤ E|〈Sa:b(E),W 〉 −m|.
(

1 +
σa − σb
ga:b

)√
n+ p

g2
a:b

‖W‖∗,

and hence we can substitute the median by the mean in the concentration inequality (53).

The last two things left are the proofs of Lemma F.1 and Lemma F.2.

PROOF OF LEMMA F.1. As in the proof of Lemma 4.4, we use self-adjoint dilation. As
before, we define for any matrix W

D (W ) =

(
0 W
W T 0

)
.

Since D(M) is symmetric and because of its relation to M it has eigendecomposition

D(M) =
∑

1≤|i|≤k

σiPi,(56)

where for i ∈ [k],

σ−i =−σi, Pi =
1

2

(
uiu

T
i uiv

T
i

viu
T
i viv

T
i

)
, P−i =

1

2

(
uiu

T
i −uivTi

−viuTi viv
T
i

)
(57)

Similarly, we have that

D(M̂) =
∑

1≤|i|≤p∧n

σ̂iP̂i.,

where for each i ∈ [k], σ̂−i, P̂i and P̂−i are defined analogously. Denote

P =
∑

|i|∈{a,...,b}

Pi, and P̂ =
∑

|i|∈{a,...,b}

P̂i.(58)

Using this notation, we have that(
I − V V T

)(
V̂a:bV̂

T
a:b − Va:bV

T
a:b

)
Va:b =

(
On×p

(
I − V V T

))(
P̂ − P

)(
On×p
Va:b

)
,(59)

where On×p denotes a n × p-matrix consisting of 0’s. We divide the following part of the
proof into three steps.

Step 1. In this step, we decompose
(
I − V V T

)(
V̂a:bV̂

T
a:b − Va:bV

T
a:b

)
Va:b. Denote by [σa, σb]

the corresponding interval on the real axis of the complex plane C. Define γ+ to be a contour
C around the intervals [σa, σb] with distance equal to ga:b/2, i.e.,

γ+ =
{
η ∈C : dist(η, [σa, σb]) =

ga:b

2

}
,(60)

where for any point η ∈ C and interval B ∈ C, dist (η,B) = minη′∈B ‖η− η′‖. Likewise we
define γ− as

γ− =
{
η ∈C : dist(η, [σ−b, σ−a]) =

ga:b

2

}
.(61)
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This way, among the singular values of D(M), only those with index in {a, . . . , b} and
{−b, . . . ,−a} are included in γ+ and γ− respectively, and the remaining ones lie outside
of the contours. By the Riesz representation Theorem for spectral projectors (c.f. page 39 of
[5]), we have that

P̂ =− 1

2πi

∮
γ+

(D(M̂)− ηI)−1dη− 1

2πi

∮
γ−

(D(M̂)− ηI)−1dη.(62)

For any matrix W and any η ∈C, define the resolvent operator

RW (η) = (D(W )− ηI)−1.

Then (62) can be written as

P̂ =− 1

2πi

∮
γ+

RM̂ (η)dη− 1

2πi

∮
γ−
RM̂ (η)dη.

Note that D(M̂) =D(M) +D(E) and that RM (η) = (D(M)− ηI)−1. We expand RM̂ (η)
into its Neumann series:

RM̂ (η) = (D(M)− ηI +D(E))−1 = ((D(M)− ηI)(I +RM (η)D(E)))−1

= (I +RM (η)D(E))−1RM (η) =

∞∑
j=0

(−1)j [RM (η)D(E)]jRM (η)

=RM (η)−RM (η)D(E)RM (η) +

∞∑
j=2

(−1)j [RM (η)D(E)]jRM (η).(63)

Applying the Riesz representation Theorem on P , we have that

P =− 1

2πi

∮
γ+

(D(M)− ηI)−1dη− 1

2πi

∮
γ−

(D(M)− ηI)−1dη

=− 1

2πi

∮
γ+

RM (η)dη− 1

2πi

∮
γ−
RM (η)dη.

As a result, we have the decomposition

P̂ − P = L(E) + S(E)(64)

where L(E) and S(E) are operators on E, defined as

L(E) =
1

2πi

∮
γ+

RM (η)D(E)RM (η)dη+
1

2πi

∮
γ−
RM (η)D(E)RM (η)dη.(65)

and

S(E) =− 1

2πi

∮
γ+

∞∑
j=2

(−1)j [RM (η)D(E)]jRM (η)dη

− 1

2πi

∮
γ−

∞∑
j=2

(−1)j [RM (η)D(E)]jRM (η)dη.(66)

By (59), we have that(
I − V V T

)(
V̂a:bV̂

T
a:b − Va:bV

T
a:b

)
Va:b =

(
On×p

(
I − V V T

))
L(E)

(
On×p
Va:b

)
+
(
On×p

(
I − V V T

))
S(E)

(
On×p
Va:b

)
.
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Step 2. In the following, we show that the first term on the right hand side of the above
formula equals

∑
j

1
σj

(
I − V V T

)
ETuje

T
j , which implies that the second term equals Sa:b.

Define

La:b =
(
On×p

(
I − V V T

))
L(E)

(
On×p
Va:b

)
.(67)

We first simplify L(E). Recalling (57), for any i such that |i| ≤ k, we have that Pi = θiθ
T
i ,

where θi = 1√
2
(uTi , v

T
i )T , θ−i = 1√

2
(uTi ,−vTi )T . We expand this into an orthonormal basis

of Rp+n, {θi, θ−i}i∈[k] ∪ {θj}k+1≤j≤p+n−k. This implies the following:

• For k+ 1≤ j ≤ p+ n− k, we define Pj = θjθ
T
j and decomlpose the identity matrix as

I =
∑

i∈{1,...,p+n−k}∪{−k,...,−1}

Pi

In the rest of the proof, by default we treat {1, . . . , p+ n− k} ∪ {−k, . . . ,−1} to be the
whole set for the index i. We drop it when there is no ambiguity. For instance, the above
equation can be simply written as I =

∑
iPi.

• We define

σj = 0,∀k+ 1≤ j ≤ p+ n− k.(68)

Then (56) can be expressed as

D(M) =
∑
i

σiPi.

• For k + 1 ≤ j ≤ p + n− k, θj is orthogonal to θi − θ−i,∀i ∈ [k]. This implies that the
second part of θj (i.e., from the (p+ 1)th coordinate to the (p+ n)th coordinate) is 0, or
orthogonal to span(v1, . . . , vk). Thus,(

On×p
(
I − V V T

))
Pi =O,∀i s.t. |i| ≤ k,(69)

Pi

(
On×p
Va:b

)
=O,∀i s.t. |i| /∈ {a, . . . , b} .(70)

and (
On×p

(
I − V V T

))∑
i>k

Pi

(
Op×n
OIn×n

)
= I − V V T .(71)

By (56), we have that

RM (η) = (D(M)− ηI)−1 =

(∑
i

σiPi − ηI

)−1

=

(∑
i

(σi − η)Pi

)−1

=
∑
i

1

σi − η
Pi =

∑
i∈{a,...,b}

1

σi − η
Pi +

∑
i/∈{a,...,b}

1

σi − η
Pi,(72)

defined as R+
1 (η) and R+

2 (η) respectively. With this, for the first term of L(E) in (65), we
have that

1

2πi

∮
γ+

RM (η)D(E)RM (η)dη =
1

2πi

∮
γ+

(
R+

1 (η) +R+
2 (η)

)
D(E)

(
R+

1 (η) +R+
2 (η)

)
dη.
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Observe that by the Cauchy-Goursat Theorem,∮
γ+

R+
1 (η)D(E)R+

1 (η)dη

=
∑

i∈{a,...,b}

PiD(E)Pi

∮
γ+

1

(σi − η)2
dη+

∑
i 6=j, i,j∈{a,...,b}

PiD(E)Pj

∮
γ+

1

(σi − η)(σj − η)
dη

=0,

since there is no singularity inside γ+. The identical result holds for
∮
γ+ R

+
2 (η)D(E)R+

2 (η)dη.
Using the Cauchy integral formula, we obtain that

1

2πi

∮
γ+

R+
1 (η)D(E)R+

2 (η)dη =
∑

i∈{a,...,b}

∑
j /∈{a,...,b}

1

2πi

∮
γ+

dη

(σi − η)(σj − η)
PiEPj

=
∑

i∈{a,...,b}

∑
j /∈{a,...,b}

PiEPj
σi − σj

.

A similar result holds for 1
2πi

∮
γ+ R

+
2 (η)D(E)R+

1 (η)dη. Hence, we obain that

1

2πi

∮
γ+

RM (η)D(E)RM (η)dη =
∑

i∈{a,...,b}

∑
j /∈{a,...,b}

PiD(E)Pj + PjD(E)Pi
σi − σj

.

In the same manner, splitting

(73) RM (η) =R−1 (η) +R−2 (η) ,
∑

i∈{−b,...,−a}

Pi
σi − η

+
∑

i/∈{−b,...,−a}

Pi
σi − η

,

we also obtain that
1

2πi

∮
γ−
RM (η)D(E)RM (η)dη =

∑
i∈{−b,...,−a}

∑
j /∈{−b,...,−a}

PiD(E)Pj + PjD(E)Pi
σi − σj

.(74)

Hence, we have that

L(E) =

 ∑
i∈{a,...,b}

∑
j /∈{a,...,b}

+
∑

i∈{−b,...,−a}

∑
j /∈{−b,...,−a}

 PiD(E)Pj + PjD(E)Pi
σi − σj

.(75)

Note that for any i such |i| ∈ {a, . . . , b} and any |j| /∈ {a, . . . , b}, (69) and (70) imply(
On×p

(
I − V V T

))
PiD(E)Pj

(
On×p
Va:b

)
= 0.

Together with (67), this implies that

La:b =

 ∑
i∈{a,...,b}

∑
j /∈{a,...,b}

+
∑

i∈{−b,...,−a}

∑
j /∈{−b,...,−a}

(On×p (I − V V T
)) PjD(E)Pi

σi − σj

(
On×p
Va:b

)

=

 ∑
i∈{a,...,b}

+
∑

i∈{−b,...,−a}

∑
j>k

(
On×p

(
I − V V T

)) PjD(E)Pi
σi

(
On×p
Va:b

)
.
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Recall that for all i≤ k, σ−i =−σi. This yields

La:b =
∑

i∈{a,...,b}

1

σi

(
On×p

(
I − V V T

))∑
j>k

Pj

D(E) (Pi − P−i)
(
On×p
Va:b

)

=
∑

i∈{a,...,b}

1

σi

(
On×p

(
I − V V T

))∑
j>k

Pj

( O E
ET O

)(
O uiv

T
i

vTi ui O

)(
On×p
Va:b

)

=
∑

i∈{a,...,b}

1

σi

(
On×p

(
I − V V T

))∑
j>k

Pj

(Op×n
In×n

)
ETuiv

T
i Va:b

=
∑

i∈{a,...,b}

1

σi

(
I − V V T

)
ETuiv

T
i Va:b,

where the last equation is due to (71). This implies

Sa:b =
(
I − V V T

)(
V̂a:bV̂

T
a:b − Va:bV

T
a:b

)
Va:b −La:b

=
(
On×p

(
I − V V T

))
S(E)

(
On×p
Va:b

)
.(76)

Step 3. In the final step, we upper bound ‖Sa:b‖ by using the formula above. By (72), for any
η ∈ γ+ or η ∈ γ−, we have that

‖RM (η)‖ ≤ 2

ga:b
.(77)

Moreover, we have that

|γ+|= |γ−| ≤ 2(σa − σb) + πga:b.

Recall the definition of S(E) in (66). Note that ‖D(E)‖= ‖E‖.

• Under the assumption that ‖E‖ ≤ ga:b/4, we have that

‖Sa:b‖ ≤ ‖S(E)‖ ≤ |γ
+|+ |γ−|

2π

∞∑
j=2

‖RM (η)‖j+1‖D(E)‖j

≤ 2(σa − σb) + πga:b

π
‖E‖2

(
2

ga:b

)3 ∞∑
j=0

‖E‖j
(

2

ga:b

)j

≤
(

16(σa − σb)
πga:b

+ 8

)
‖E‖2

g2
a:b

∞∑
j=0

‖E‖j
(

2

ga:b

)j

≤
(

32(σa − σb)
πga:b

+ 16

)
‖E‖2

g2
a:b

.(78)

• If ‖E‖> ga:b/4, by (76) we have that

‖Sa:b‖ ≤
∥∥∥V̂a:bV̂

T
a:b − Va:bV

T
a:b

∥∥∥+ ‖La:b‖ .
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The first term is bounded by 2. By the definition of ‖La:b‖, the second term can be bounded
as follows

‖La:b‖=

∥∥∥∥∥∥(I − V V T
)
ET

 ∑
i∈{a,...,b}

1

σi
uiv

T
i

Va:b

∥∥∥∥∥∥≤ ‖E‖
mini∈{a,...,b} σi

≤ ‖E‖
ga:b

.

Hence, we finally obtain that

‖Sa:b‖ ≤ 2 +
‖E‖
ga:b
≤ 16

‖E‖2

g2
a:b

.

Finally, we prove Lemma F.2.

PROOF OF LEMMA F.2. We follow the same decomposition and notation as in the proof
of Lemma F.1. Recall the definition of P̂ and P in (58). In particular, due to (64), we have
that

P̂ − P = L(E) + S(E),

where L(E) and S(E) are defined in (65) and (66), respectively. Define P̂ ′,L(E′), S(E′) in
the same manner for M ′. Then we have that

S(E′)− S(E) = P̂ ′ − P̂ −
(
L(E′)−L(E)

)
.

As a consequence, due to (76), we obtain that

Sa:b(E
′)− Sa:b(E) =

(
On×p

(
I − V V T

)) (
S(E′)− S(E)

)(On×p
Va:b

)
=
(
On×p

(
I − V V T

))(
P̂ ′ − P̂

)(
On×p
Va:b

)
−
(
On×p

(
I − V V T

)) (
L(E′)−L(E)

)(On×p
Va:b

)
.

In the proof of Lemma F.1, we analyze the difference between P̂ and P . By the exactly the
same argument, we analyze the difference between P̂ ′ and P̂ . As in (64), we have that

P̂ ′ − P̂ = L̂(E′ −E) + Ŝ(E′ −E),

where

L̂(E′ −E) =
1

2πi

∮
γ+

RM̂ (η)D(E′ −E)RM̂ (η)dη

+
1

2πi

∮
γ−
RM̂ (η)D(E′ −E)RM̂ (η)dη.(79)

and

Ŝ(E′ −E) =− 1

2πi

∮
γ+

∞∑
j=2

(−1)j [RM̂ (η)D(E′ −E)]jRM̂ (η)dη

− 1

2πi

∮
γ−

∞∑
j=2

(−1)j [RM̂ (η)D(E′ −E)]jRM̂ (η)dη,
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with γ+, γ− defined in (60) and (61). Hence, we have that

Sa:b(E
′)− Sa:b(E) =

(
On×p

(
I − V V T

))
Ŝ(E′ −E)

(
On×p
Va:b

)
+
(
On×p

(
I − V V T

))(
L̂(E′ −E)−

(
L(E′)−L(E)

))(On×p
Va:b

)
,

which implies∥∥Sa:b(E
′)− Sa:b(E)

∥∥≤ ∥∥∥Ŝ(E′ −E)
∥∥∥+

∥∥∥L̂(E′ −E)−
(
L(E′)−L(E)

)∥∥∥ .(80)

We are going to establish upper bounds on the two terms individually.

Step 1. We first bound the second term above. Due to (65), (79) and the fact thatD(E′−E) =
D(E′)−D(E), we have that

L̂(E′ −E)−
(
L(E′)−L(E)

)
=

1

2πi

∮
γ+

(
RM̂ (η)D(E′ −E)RM̂ (η)dη−RM (η)D(E′ −E)RM (η)

)
dη

+
1

2πi

∮
γ−

(
RM̂ (η)D(E′ −E)RM̂ (η)dη−RM (η)D(E′ −E)RM (η)

)
dη.

By Weyl’s inequality (Theorem 4.3.1 of [4]), we have |σ̂i − σi| ≤ ‖E‖ ,∀i ∈ [p∧ n]. Assum-
ing that ‖E‖ ≤ ga:b/4, the minimum distance between γ+, γ− to the points {(σ̂i,0)} is at
least ga:b/2− ‖E‖ ≥ ga:b/4, for all i ∈ [p∧ n]. Similarly as (77), we obtain that∥∥RM̂ (η)

∥∥≤ 4

ga:b
,∀η ∈ γ+, γ−.

Hence, together with the fact that ‖D(E′ −E)‖= ‖E′ −E‖, we have that∥∥∥∥∮
γ+

(
RM̂ (η)D(E′ −E)RM̂ (η)dη−RM (η)D(E′ −E)RM (η)

)
dη

∥∥∥∥
≤
∥∥∥∥∮

γ+

RM̂ (η)D(E′ −E)(RM̂ (η)−RM (η))dη

∥∥∥∥+

∥∥∥∥∮
γ+

(RM̂ (η)−RM (η))D(E′ −E)RM (η)dη

∥∥∥∥
≤ 8|γ+|

gab

‖E′ −E‖ sup
η∈γ+

‖RM̂ (η)−RM (η)‖.

Moreover, by the expansion of the resolvent into a Neumann series in (63), we have that

‖RM̂ (η)−RM (η)‖ ≤
∞∑
j=1

(‖RM (η)‖‖E‖)j‖RM (η)‖ ≤ ‖RM (η)‖2 ‖E‖
∞∑
j=0

(‖RM (η)‖‖E‖)j

≤ 8‖E‖
g2
a:b

,

where the last inequality is due to (77). Hence, as |γ+| ≤ πga:b + 2(σa − σb), we have that∥∥∥∥∮
γ+

(
RM̂ (η)D(E′ −E)RM̂ (η)dη−RM (η)D(E′ −E)RM (η)

)
dη

∥∥∥∥
≤ 64

(
π+

2(σa − σb)
ga:b

)
‖E‖‖E′ −E‖

g2
a:b

.
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The same result holds for the other integral over γ−. Hence, we obtain that∥∥∥L̂(E′ −E)−
(
L(E′)−L(E)

)∥∥∥≤ 64

(
1 +

2(σa − σb)
πga:b

)
‖E‖‖E′ −E‖

g2
a:b

.

Step 2. For the term related to Ŝ, we bound it analogously as in the proof of Lemma F.1.
Following (78), we have that∥∥∥Ŝ(E′ −E)

∥∥∥≤ 64

(
32(σa − σb)

πga:b
+ 16

)
‖E′ −E‖2

g2
a:b

.

Combining the above result with (80), we obtain that∥∥Sa:b(E
′)− Sa:b(E)

∥∥≤ 1024

(
1 +

σa − σb
ga:b

)
max{‖E‖,‖E′‖}

g2
a:b

‖E −E′‖.
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