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Spectral clustering is one of the most popular algorithms to group high-
dimensional data. It is easy to implement and computationally efficient. De-
spite its popularity and successful applications, its theoretical properties have
not been fully understood. In this paper, we show that spectral clustering is
minimax optimal in the Gaussian mixture model with isotropic covariance
matrix, when the number of clusters is fixed and the signal-to-noise ratio is
large enough. Spectral gap conditions are widely assumed in the literature to
analyze spectral clustering. On the contrary, these conditions are not needed
to establish optimality of spectral clustering in this paper.

1. Introduction. Clustering is a central and fundamental problem in statistics and ma-
chine learning. One popular approach to clustering of high-dimensional data is to use a spec-
tral method [60, 65]. It tracks back to [17, 25] and has enjoyed tremendous success. In com-
puter science and machine learning, spectral clustering and its variants have been widely used
to solve many different problems, including parallel computation [29, 59, 63], graph parti-
tioning [8, 10, 13, 15, 24, 45, 54, 67] and explanatory data mining and statistical data analysis
[3, 7, 34, 49]. It also has many real data applications, including image segmentation [46, 58,
69], text mining [11, 12, 51], speech separation [5, 19], and many others. In recent years,
spectral clustering has also been one of the most favored and studied methods for community
detection [4, 6, 18, 31, 40, 55, 57].

Spectral clustering is easy to implement and has remarkably good performance. The idea
behind spectral clustering is dimensionality reduction. First, it performs a spectral decompo-
sition on the dataset, or some related distance matrix, and only keeps the leading few spectral
components. This way the dimensionality of the data is greatly reduced. Then a standard clus-
tering method (e.g., the k-means algorithm) is performed on the low-dimensional denoised
data to obtain an estimate of the cluster assignments. Due to the dimensionality reduction,
spectral clustering is computationally less demanding than many other classical clustering
algorithms.

In spite of its popularity, the theoretical properties of spectral clustering are not fully un-
derstood. One line of theoretical investigation of spectral clustering is to consider the per-
formance under general conditions when applied to eigenvectors of the graph Laplacian. For
instance, [7, 21, 27, 28, 66] provide various forms of asymptotic convergence guarantees for
the graph Laplacian, related spectral properties and spectral clustering. Another approach is
to consider the performance of spectral clustering in a specific statistical model. Particularly,
spectral clustering for community detection in the stochastic blockmodel has been investi-
gated frequently. Papers including [31, 40, 54, 55, 71] show that spectral clustering applied
to the adjacency matrix of the network can consistently recover hidden community structure.
However, their upper bounds on the number of nodes incorrectly clustered are polynomial in
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the signal-to-noise ratio, whereas the optimal rate of community detection is exponential in
the signal-to-noise ratio [70]. Therefore, in the literature spectral clustering is often used as a
way to initialize (i.e., “warm start”) iterative algorithms which eventually achieve the optimal
misclustering error rate.

In this paper, we investigate the theoretical performance of spectral clustering in the
isotropic Gaussian mixture model. In this model, data points are generated from a mixture
of Gaussian distributions with identity covariance each, whose centers are separated from
each other, resulting in a cluster structure. The goal is to recover the underlying true cluster
assignment.

Maximum likelihood estimation for the cluster assignment labels in the isotropic Gaussian
mixture model is equivalent to the k-means algorithm. Finding an exact solution to the k-
means objective has an exponential dependence on the dimension of the data points [30, 44],
and hence is not feasible, even in moderate dimensions. As a result, various approximations
have been used and studied. One direction is to relax the k-means objective by semidefinite
programming (SDP) [16, 23, 53, 56]. These relaxations are more robust to outliers than spec-
tral methods [61], but have a slower running time. Another possibility is to apply Lloyd’s
algorithm [41, 43], which is a greedy iterative method to approximately find a solution to the
k-means objective. Given a sufficiently good initializer, typically provided by spectral clus-
tering [37], Lloyd’s algorithm achieves the optimal misclustering rate [43, 48]. However, we
show that spectral clustering itself is already optimal when the error variance is isotropic and
the dimensionality of the data does not grow faster than the number of samples.

A closely related result about spectral clustering for the Gaussian mixture model is [64].
Under a strong separation condition, spectral clustering is proved to achieve exact recovery
of the underlying cluster structure with high probability. In this paper, we consider also sit-
uations where only partial recovery is possible. We measure the performance of the spectral
clustering output ẑ by the normalized Hamming loss function �(·, ·). We summarize our main
result informally in Theorem 1.1.

THEOREM 1.1 (Informal statement of the main result). For n data points generated from
a Gaussian mixture model with an isotropic covariance matrix, we assume that:

• the number of clusters is finite
• the size of the clusters are of the same order
• the minimum distance among the centers, �, goes to infinity
• the dimension p of each data point is at most of the same order as n.

Then, with high probability, spectral clustering achieves the optimal misclustering rate, which
is

�
(
ẑ, z∗) ≤ exp

(
−(

1 − o(1)
)�2

8

)
.

This provides the first theoretical guarantee on the optimality of spectral clustering in a
general setting. The separation parameter � covers a wide scale of values, ranging from
consistent cluster estimation to exact recovery. We refer readers to Theorem 2.1 for a rigorous
statement and a slightly stronger result, where we allow the number of clusters to grow with
n, the cluster sizes to be not necessarily of the same order and the dimension p to grow
slightly faster than n.

In particular, in Theorem 1.1, no spectral gap (i.e., singular value gap) condition is needed.
This is contrary to the existing literature [2, 31, 40, 55], where various forms of eigenvalue
gap or singular value gap conditions are required to apply matrix perturbation theory. This
does not match the intuition that the difficulty of clustering should be determined by the
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distances between the cluster centers, regardless of the spectral structure. In this paper, we
completely drop any condition on the spectral gap. We achieve this by showing that the
contribution of singular vectors from smaller singular values is negligible.

A recent related paper by Abbe et al. [2] studies community detection in an idealized sce-
nario, where the network has two equal-size communities and the connectivity probabilities
are equal to an−1 logn or bn−1 logn, where a and b are fixed constants. They show that the
performance of clustering on the second leading eigenvector matches with the minimax rate,
by using a leave-one-out technique. The technical tools we use in this paper are different.
We extend spectral operator perturbation theory of [35, 36] and introduce new techniques to
establish optimality of spectral clustering and to remove the spectral gap condition.

Organization. The paper is organized as follows. In Section 2, we first introduce the
Gaussian mixture model, followed by the spectral clustering algorithm, and then state the
main results. We discuss extensions and potential caveats of our analysis in Section 3. The
proof of the main theorem is given in Section 4, which is started with a proof sketch. We
include the proofs of all the lemmas in the Supplementary Material [42].

Notation. For any matrix M , we denote by ‖M‖ and ‖M‖F its operator norm and Frobe-
nius norm, respectively. Mi,· denotes the ith row of M and M·,i its ith column. For matri-
ces M , N of the same dimension, their inner product is defined as 〈M,N〉 = ∑

i,j MijNij .
For any d , we denote by {ea}da=1 the standard Euclidean basis with e1 = (1,0,0, . . .), e2 =
(0,1,0, . . . ,0), . . . , ed = (0,0,0, . . . ,1). We let 1d be a vector of length d whose entries are
all 1. We use [d] to denote the set {1,2, . . . , d} and I{·} to denote the indicator function.
For y1, y2, . . . , yd ∈ R, diag(y1, y2, . . . , yd) denotes the d × d diagonal matrix with diagonal
entries y1, y2, . . . , yd .

2. Main results.

2.1. Gaussian mixture model. We consider an isotropic Gaussian mixture model with k

centers θ∗
1 , . . . , θ∗

k ∈ R
p and a cluster assignment vector z∗ ∈ [k]n. In this model, independent

observations {Xi}i∈[n] are generated as follows:

(1) Xi = θ∗
z∗
i
+ εi, εi ∼N (0, Ip).

The goal of clustering is to recover the cluster assignment z∗. We measure the quality of a
clustering algorithm by the average number of misclustered labels. Since the cluster structure
is invariant to permutation of the label symbols, we define the misclustering error as

�
(
z, z∗) := min

φ∈�

1

n

∑
i∈[n]

I
{
φ(zi) 	= z∗

i

}
,

where � = {φ : φ is a bijection from [k] to [k]}.
The difficulty of clustering is mainly determined by the distances between the centers

{θ∗
1 , . . . , θ∗

k }. If two centers are exactly equal to each other, it is impossible to distinguish the
corresponding two clusters. We define � to be the minimum distance among centers:

(2) � = min
j,l∈[k]:j 	=l

∥∥θ∗
j − θ∗

l

∥∥.
Another quantity that determines the possibility of consistent clustering is the size of the

clusters. When the size of a cluster is small, recovery might be more difficult. We quantify
the size of the smallest cluster by β , defined as

(3) β = minj∈[k] |{i ∈ [n] : z∗
i = j}|

n/k
.

Note that β cannot be greater than 1. We allow the case β = o(1), such that cluster sizes may
differ in magnitude.
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2.2. Spectral clustering. Various forms of spectral clustering have been proposed and
studied in the literature. Spectral clustering is an umbrella term for clustering after a dimen-
sion reduction through a spectral decomposition. The variants differ mostly for the matrix on
which the spectral decomposition is applied, and which spectral components are used for the
subsequent clustering. The clustering method used most commonly is the k-means algorithm.

In the context of community detection, spectral clustering [31, 40, 54, 55, 71] is usually
performed on the eigenvectors of the adjacency matrix. For general clustering settings, [7,
21, 27, 28, 65, 66] first obtain a similarity matrix from the original data points by applying
a kernel function. Then the graph Laplacian is constructed, whose eigenvectors are used for
clustering. In [33, 37], spectral clustering is performed directly on the original data matrix.

The spectral clustering algorithm considered in this paper is presented in Algorithm 1. It
is simple, involves only one singular value decomposition (SVD) and one k-means clustering
step. Despite the simplicity of this approach, it is powerful, as it achieves the optimal mis-
clustering rate. The key step in the algorithm that leads to the optimal rate is to weight the
empirical singular vectors by the corresponding empirical singular values.

As common in the clustering literature, we assume that k, the number of clusters, is known.
The purpose of the SVD is to reduce the dimensionality of the data while preserving under-
lying structure. After SVD, the dimensionality of the data vectors is reduced from p to k.1

This makes the follow-up k-means algorithm computationally feasible compared to apply-
ing it directly onto the columns of X. Finding an exact solution for the k-means objective
of the projected data (i.e., (4)) has computational complexity O(nk2+1) [30], which is poly-
nomial in n if k is constant. In Section 2.5, we show how to modify Algorithm 1, using a
(1 + ε)-solution for the k-means algorithm to achieve linear (in n) complexity.

The idea of weighting singular vectors by the corresponding singular values is natural.
The importance of singular vectors is different: singular vectors with smaller singular val-

Algorithm 1: Spectral clustering

Input: Data matrix X ∈R
p×n, number of clusters k

Output: Clustering assignment vector ẑ ∈ [k]n
1 Perform SVD on X to decompose

X =
p∧n∑
i=1

σ̂i ûi v̂
T
i ,

where σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂p∧n ≥ 0 and {ûi}p∧n
i=1 ∈ R

p, {v̂i}p∧n
i=1 ∈ R

n.
2 Consider the first k singular values and corresponding singular vectors. Define

�̂ := diag(σ̂1, . . . , σ̂k), V̂ := (v̂1, . . . , v̂k), Û := (û1, . . . , ûk) and

Ŷ := ÛT X = �̂V̂ T ∈ R
k×n.

3 Perform k-means on the columns of Ŷ and return an estimator ẑ for the clustering
assignment vector, that is,(

ẑ, {ĉj }kj=1
) = arg min

z∈[k]n,{cj }kj=1∈Rk

∑
i∈[n]

‖Ŷ·,i − czi
‖2.(4)

1Here, we assume p ≥ k. If p < k, then the dimensionality reduction is not needed and Algorithm 1 reduces to
the k-means algorithm. To accommodate both p ≥ k and p < k, Step 2 of Algorithm 1 can be slightly changed by
using the leading min{k,p} singular vectors instead.
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ues should carry relatively less useful information, and consequently deserve less attention.
Clustering on Ŷ instead of V̂ is also the main reason why we are able to remove the spectral
gap condition. In particular, we will show in Lemma 4.1 that Algorithm 1 is equivalent to
Algorithm 3, which performs clustering on the columns of the rank-k matrix approximation
of X. Similar ideas of using low rank matrix approximations for clustering have also been
proposed in [20, 37].

2.3. Consistency. We first present a preliminary result that proves consistency of the es-
timator ẑ obtained in Algorithm 1.

PROPOSITION 2.1. Assume that �/(β−0.5k(1 + p/n)0.5) ≥ C for some large enough
constant C > 0. Then the output of Algorithm 1, ẑ, satisfies for another constant C ′ > 0,

(5) �
(
ẑ, z∗) ≤ C′k(1 + p

n
)

�2

with probability at least 1 − exp(−0.08n).

Proposition 2.1 is an immediate consequence of Lemma 4.1 and Lemma 4.2, which are
stated in Section 4. It is worth mentioning that there is no spectral gap condition assumed. In
addition, Proposition 2.1 can be extended to mixture models where the errors {εi} are not nec-
essarily N (0, Ip) distributed. We include this extension in Appendix D as Proposition D.1.

2.4. Optimality. In the next theorem we establish that Algorithm 1 achieves in fact an
exponential convergence rate in the Gaussian mixture model when the covariance matrix of
the Gaussian noise variables is isotropic.

THEOREM 2.1. Suppose that

(6)
�

k10.5β−0.5(1 + p
n
)(n−k

n
)−0.5

→ ∞.

Then the output of Algorithm 1, ẑ, satisfies

(7) �
(
ẑ, z∗) ≤ exp

(
−

(
1 −

(
�

k10.5β−0.5(1 + p
n
)(n−k

n
)−0.5

)−0.1)
�2

8

)

with probability at least 1 − exp(−�) − 3nk exp(−0.08(n − k)).

In Theorem 2.1, we allow the number of clusters k to grow with n, the cluster sizes not
to be of the same order (quantified by β), and the dimension p to be of larger order than n.
This is slightly stronger than the informal statement we make in Theorem 1.1. In addition,
the proof of Theorem 2.1 yields a version of (7) that holds in expectation:

(8) E�
(
ẑ, z∗) ≤ exp

(
−(

1 − o(1)
)�2

8

)
+ exp

(−(
1 − o(1)

)
0.08n

)
,

where the first term dominates as long as �2 = o(n).
The following minimax lower bound for recovering z∗ in the Gaussian mixture model is

established in [43]:

inf
ẑ

sup
(θ∗

1 ,...,θ∗
k ),z∗

E�
(
ẑ, z∗) ≥ exp

(
−(

1 − o(1)
)�2

8

)
if

�

log(kβ−1)
→ ∞.(9)
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Here, the infimum is taken over all feasible estimators ẑ, and the supremum is taken over all
possible parameters, where the true centers (θ∗

1 , . . . , θ∗
k ) ∈ R

p×k are separated by at least �,
and the true cluster assignment z∗ has a minimum cluster size of βn/k.

When � → ∞, p = o(n�) and k and β are constants, the convergence rate in (7) matches
the minimax lower bound (9) up to a (1 + o(1)) factor in the exponent. Moreover, when
additionally lim infn→∞ �2/(8 logn) > 1, ẑ equals z∗ with high probability and we achieve
exact recovery. This sharply matches the exact recovery threshold [9, 43].

Whereas � → ∞ is a necessary condition for consistent recovery [43, 48], the condition
in (6) is not optimal. The assumption that p = o(n�) is an artifact of our proof technique.
It can be improved to p = o(n�2) under additional assumptions on the singular values of
the population matrix EX. When n�2 = o(p), Algorithm 1 may only achieve suboptimal
convergence rates and we discuss the intuition behind this in Section 3.3. The dependence
on k is suboptimal as well, mainly due to higher order perturbation terms in our proof. In
contrast, [16, 23] only need to assume kp = o(n�2) for their SDP relaxation of k-means to
achieve exponential rates (but with suboptimal constant in the exponent).

We emphasize that, as in Proposition 2.1, there is no spectral gap (i.e., singular value gap)
condition assumed in Theorem 2.1. It is possible that the population matrix EX has a rank
that is smaller than k, such that the smallest singular values of the population matrix EX

are 0 or near 0. For instance, this occurs when some of the centers are (nearly) collinear.
This is contrary to the existing literature [2, 31, 40, 55], where the spectral gap is assumed
to be sufficiently large to apply spectral perturbation theory. The spectral gap condition is
not natural, as the minimax rate in (9) only depends on � and is invariant to any spectral
structure. In Theorem 2.1, we completely drop any spectral gap condition, and our results
match with the intuition that the difficulty of cluster recovery is determined only by �, the
minimum distance among the centers.

2.5. (1 + ε)-Solutions to k-means. Computing the k-means objective in Algorithm 1 has
complexity O(nk2+1) [30] and quickly becomes impractical, even for moderate values of k.
A potential alternative is to use an (1 + ε)-solution. An (1 + ε)-solution is a pair (z̃, {c̃j }kj=1),
such that its k-means objective value is within a factor of (1 + ε) of the global minimum of
the k-means objective. For instance, [38] proposed an (1 + ε)-approximation algorithm with
complexity O(2(k/ε)O(1)

n), which is linear in n when k is constant and polynomial in n as long
as k grows sublogarithmically in n. Proposition 2.1 is still valid when an (1 + ε)-solution is
used. However, (1 + ε)-solutions do not necessarily enjoy a local optimality guarantee for
the estimated labels, that is, ‖Ŷi − c̃z̃i

‖ ≤ ‖Ŷi − c̃j‖, ∀i ∈ [n], j 	= z̃i , which is required in the
proof of Theorem 2.1. To overcome this problem, we propose to run an extra one step Lloyd’s
algorithm [41] as described in Algorithm 2. Consequently, the statement of Theorem 2.1 still
holds for Algorithm 2, which we present below in Theorem 2.2.

THEOREM 2.2. Assume that
�

k10.5β−0.5(1 + p
n
)(n−k

n
)−0.5(1 + ε)0.5

→ ∞

holds. Then the output of Algorithm 2, z̃, satisfies

(10) �
(
z̃, z∗) ≤ exp

(
−

(
1 −

(
�

k10.5β−0.5(1 + p
n
)(n−k

n
)−0.5(1 + ε)0.5

)−0.1)
�2

8

)

with probability at least 1 − exp(−�) − 3nk exp(−0.08(n − k)).

The proof of Theorem 2.2 is almost identical to that of Theorem 2.1 and we sketch the
necessary modifications in Appendix E.
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Algorithm 2: Spectral clustering with (1 + ε)-solution

Input: Data matrix X ∈R
p×n, number of clusters k, approximation level ε

Output: Clustering assignment vector z̃ ∈ [k]n
1 Implement Steps 1-2 of Algorithm 1 to obtain Ŷ ∈R

k×n2 Compute a (1 + ε)-solution

(e.g., [38]) for the k-means algorithm on the columns of Ŷ and return (ž, {čj }kj=1), the
cluster assignment vector and centers, such that∑

i∈[n]
‖Ŷ·,i − čži

‖2 ≤ (1 + ε) inf
{cj }kj=1∈Rk

∑
i∈[n]

min
j∈[k] ‖Ŷ·,i − cj‖2

3 Update the centers

c̃j =
∑

i∈[n] Ŷ·,iI{ži = j}∑
i∈[n] I{ži = j} , j = 1, . . . , k.

4 Update the labels

z̃i = arg min
j∈[k]

‖Ŷ·,i − c̃j‖, i = 1, . . . , n.

3. Discussion.

3.1. Unknown covariance matrix and sub-Gaussian errors. The consistency guarantee
established in Proposition 2.1 can be extended to more general settings where the noise vari-
ables {εi}ni=1 have covariance matrix � or are sub-Gaussian. We include this extension in
Appendix D as Proposition D.1.

In contrast, it is not possible to extend Theorem 2.1 and Theorem 2.2 to either sub-
Gaussian distributed errors or unknown covariance matrices with our current proof tech-
niques. This is due to the fact that the proof is highly reliant on both the isoperimetric inequal-
ity (cf. (52)) and rotation invariance of the singular vectors of the noise matrix (ε1, . . . , εn) (as
in Lemma 4.4). An isoperimetric inequality would also be fulfilled by strongly log-concave
distributed errors [50]. On the other hand, the rotation invariance of the singular vectors of
(ε1, . . . , εn) is equivalent to εi being spherically Gaussian distributed.

3.2. Unknown k. Algorithm 1 and Theorem 2.1 require that the number of clusters, k, is
known. In practice, k might be unknown and might need to be estimated. For this purpose,
several approaches have been developed, including cross-validation [68], the gap-statistic
[62], eigenvalue based heuristics [65] and resampling strategies [47]. However, while these
methods often work well empirically, their theoretical performances are not fully understood,
especially in high-dimensional regimes with growing p and n. One may estimate k by the
aforementioned methods and use the resulting estimate in Algorithm 1, but further investiga-
tion is beyond the scope of this paper.

3.3. Parameter regime n�2 = O(p). Proposition 2.1 and Theorems 2.1 and 2.2 are
limited to the parameter regimes p = o(n�2) and p = o(n�), respectively, beyond which
the performance of Algorithm 1 remains unclear. When n�2 = o(p), Theorem 2.2 in
[14] indicates that, in general, the leading empirical singular values of X are all equal to
(1 + o(1))(

√
n + √

p). As a result, running k-means on Ŷ in Algorithm 1 is the same as on
V̂ , and its performance may depend on the structure of the population singular values [26]. On
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the other hand, [1, 48] consider a simplified model where Xi = z∗
i θ

∗ + εi with z∗ ∈ {−1,1}n
and study a different variant of spectral clustering which utilizes the leading eigenvector of
the hollowed Gram matrix (XT X with its diagonal entries replaced by zero). This approach
leads to a bias reduction and yields optimal misclustering rates in the high-dimensional set-
ting when n�2 = o(p). Likewise, a debiasing step is also employed for SDP relaxations of
k-means [23, 56] to show exponential misclustering rates in this regime. It would be highly
interesting to investigate whether similar debiasing ideas can be used to modify Algorithm 1
and prove optimal convergence rates in the general k-cluster case when n�2 = o(p).

3.4. Adaptive dimension reduction. The population matrix (θ∗
z∗

1
, . . . , θ∗

z∗
n
) might have

smaller rank than k. For instance, when the centers are collinear, the rank of the population
matrix equals one. Hence, in such cases it is conceivable to use a smaller number of singular
vectors in Algorithm 1, as this further reduces the computational burden of computing the
k-means objective. One way to achieve this, while still retaining the theoretical guarantees of
Theorem 2.1, is to use the leading r̂ singular vectors for the projection Step 2 in Algorithm 1,
where r̂ is an empirical version of r defined in (15). This preselection step keeps all the infor-
mative singular vectors without involving the noisy part of the projected data corresponding
to small population singular values and allows to shorten the proof of Theorem 2.1. On the
other hand, estimating r requires the noise level to be known or to be estimated, which adds
additional computational complexity and introduces an additional tuning parameter.

4. Proof of main results. In Section 4.1, we first introduce the population counterparts
of the quantities appearing in Algorithm 1. After that, several key lemmas for the proof are
presented in Section 4.2. Since the proof of Theorem 2.1 is long and involved, we provide
a proof sketch in Section 4.3, followed by its complete and detailed proof in Section 4.4.
Auxiliary lemmas are included in the Supplementary Material [42].

4.1. Population quantities. We define P = EX and E = (ε1, . . . , εn) ∈ R
p×n, such that

we have the matrix representation X = P + E. We define several quantities related to P , the
population version of X. We denote the SVD of P (note that P is at most rank of k ∧ p)

P =
k∑

i=1

σiuiv
T
i = U�V T ,

where σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, � = diag(σ1, . . . , σk), U = (u1, . . . , uk) ∈ R
p×k , V =

(v1, . . . , vk) ∈ R
n×k . Moreover, we define

Y = UT P = �V T ∈R
k×n.

In Appendix A, we provide several propositions (Propositions A.1, A.2 and A.3) to charac-
terize the structure of these population quantities.

4.2. Key lemmas. In this section, we present several key lemmas used in the proof of
Theorem 2.1.

In Lemma 4.1, we show that Algorithm 1 has the same output as Algorithm 3, where
clustering is performed on the columns of Û Ŷ instead of Ŷ . We defer its proof to the Supple-
mentary Material [42].

LEMMA 4.1. Denote by (ẑ, {ĉj }kj=1) and (ẑ′, {θ̂j }kj=1) the outputs of Algorithm 1 and
Algorithm 3, respectively. Then, after a label permutation, ẑ equals ẑ′, that is, there exists a
φ ∈ � such that

ẑ′
i = φ(ẑi) ∀i ∈ [n].
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Algorithm 3: Clustering with rank-k approximation

Input: Data matrix X ∈R
p×n, number of clusters k

Output: Clustering assignment vector ẑ′ ∈ [k]n
1 Implement Steps 1–2 of Algorithm 1 to obtain �̂ ∈ R

k×k, V̂ ∈ R
n×k and Û ∈ R

p×k . In
addition, define

P̂ = Û�̂V̂ T ∈R
p×n.

2 Perform k-means on the columns of P̂ and return the estimated clustering assignment
vector ẑ′ and estimated centers {θ̂j }kj=1, that is,

(11)
(
ẑ′, {θ̂j }kj=1

) = arg min
z∈[k]n,{θj }kj=1∈Rk

∑
i∈[n]

‖P̂·,i − θzi
‖2.

In addition, we have that

θ̂j = Û ĉφ(j) ∀j ∈ [k].

In Lemma 4.2, we show consistency of Algorithm 3 on the following event:

(12) F = {‖E‖ ≤ √
2(

√
n + √

p)
}
.

which occurs with high probability (as proven in Lemma B.1).

LEMMA 4.2. Assume that the event F holds and that �/(β−0.5k(1 + p/n)0.5) ≥ C for
some constant C > 0. Then there exists another constant C′ such that the output of Algo-
rithm 3 (ẑ′, {θ̂j }kj=1) satisfies

�
(
ẑ′, z∗) ≤ C′k(1 + p

n
)

�2 and(13)

min
φ∈�

max
j∈[k]

∥∥θ̂j − θ∗
φ(j)

∥∥ ≤ C′β− 1
2 k

√
1 + p

n
.(14)

Consequently, if the ratio �/(β−0.5k(1 + p/n)0.5) is sufficiently large, we have that
minj∈[k] |{i ∈ [n] : ẑi = j}| ≥ βn

2k
.

The proof of Lemma 4.2 is included in the Supplementary Material [42]. The results of
Lemma B.1, Lemma 4.2 and Lemma 4.1 immediately imply Proposition 2.1.

Lemma 4.3 studies the difference between the empirical spectral projection matrix and its
sample counterpart. It decomposes V̂a:bV̂ T

a:b − Va:bV T
a:binto a linear part of the random noise

matrix E and a remaining part, which can be shown to be negligible. The linear part has a
simple form, and is the main component that leads to the exponent �2/8 in (7). The remain-
ing nonlinear part, though without an explicit expression, is well behaved and concentrates
strongly around 0. Lemma 4.3 is a slight generalization of results due to [35, 36], where
σa, . . . , σb are assumed to be the same. Here, we relax this assumption, by allowing the cor-
responding singular values to vary. The proof of Lemma 4.3 is involved but mainly follows
the line of arguments in [35, 36]. We include the proof in the Supplementary Material [42]
for completeness.
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LEMMA 4.3. Consider any rank-k matrix M ∈ R
p×n with SVD M = ∑k

j=1 σjujv
T
j

where σ1 ≥ σ2 . . . ≥ σk > 0. Define σ0 = +∞ and σk+1 = 0.
Suppose that E is a matrix with i.i.d. Gaussian entries, Ei,j . Define M̂ = M + E and

suppose that M̂ has SVD
∑p∧n

j=1 σ̂j ûj v̂
T
j where σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂p∧n. For any two in-

dices a, b such that 1 ≤ a ≤ b ≤ k, define Va:b = (va, . . . , vb), V̂a:b = (v̂a, . . . , v̂b) and
V = (v1, . . . , vk). Moreover, define the singular value gap ga:b = min{σa−1 − σa, σb − σb+1}
and denote

Sa:b = (
I − V V T )(

V̂a:bV̂ T
a:b − Va:bV T

a:b
)
Va:b − ∑

a≤j≤b

1

σj

(
I − V V T )

ET ujv
T
j Va:b.

Suppose that E‖E‖ ≤ ga:b
8 . Then there exists some constant C > 0 such that with probability

at least 1 − 2e−t

∣∣〈Sa:b −ESa:b,W 〉∣∣ ≤ C

(
1 + σa − σb

ga:b

) √
t

ga:b

(√
n + p + √

t

ga:b

)
‖W‖∗

for any W ∈ R
n×(b−a), any t ≥ log 4 and where ‖ · ‖∗ denotes the nuclear (Schatten-1) norm.

The next lemma, Lemma 4.4, characterizes the distribution of empirical singular vectors.
Similar to Lemma 4.3, Lemma 4.4 holds for matrices with any underlying structure, not
necessarily in the clustering setting, as long as the noise is Gaussian distributed. The most
important implication of Lemma 4.4 is that, for any empirical singular vector v̂j , its compo-
nent that is orthogonal to the true signal V (i.e., (I − V V T )v̂j ) is after normalization Haar
distributed on the sphere spanned by (I − V V T ). This observation appears and is utilized in
[32, 52]. Lemma 4.4 is essentially the same as Theorem 6 of [52]. For completeness, we give
the proof in the Supplementary Material [42].

LEMMA 4.4. Consider a rank-k matrix M ∈ R
p×n with SVD M = ∑k

j=1 σjujv
T
j

where σ1 ≥ σ2 . . . ≥ σk > 0. Suppose that E is a matrix with i.i.d. Gaussian entries,

Ei,j
i.i.d.∼ N (0,1). Define M̂ = M + E and suppose that M̂ has SVD

∑p∧n
j=1 σ̂j ûj v̂

T
j where

σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂p∧n. Define V = (v1, . . . , vk). Then for any j ∈ [k], the following holds:

(1) (I −V V T )v̂j /‖(I − V V T )v̂j‖ is uniformly distributed on the unit sphere spanned by
(I − V V T ), that is,

(I − V V T )v̂j

‖(I − V V T )v̂j‖
d= (I − V V T )w

‖(I − V V T )w‖ where w ∼ N (0, In)

and where
d= denotes equality in distribution. In particular, we have that

E
(I − V V T )v̂j

‖(I − V V T )v̂j‖ = 0.

(2) (I − V V T )v̂j /‖(I − V V T )v̂j‖ is independent of V V T v̂j .
(3) (I − V V T )v̂j /‖(I − V V T )v̂j‖ is independent of ‖(I − V V T )v̂j‖.

4.3. Proof sketch for Theorem 2.1. In this section, we provide a sketch for the proof of
Theorem 2.1. The complete and detailed proof is given in Section 4.4. Throughout the proof,
we assume that the random event F (defined in (12)) holds.
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We use the equivalence between Algorithm 1 and Algorithm 3 (by Lemma 4.1), where
clustering is performed on the columns of P̂ = Û Ŷ . Hence, it is sufficient to study the behav-
ior of (ẑ, {θ̂j }j∈[n]). Particularly, (11) implies a local optimality result of the estimated labels,
that is,

ẑi = arg min
j∈[k]

‖P̂·,i − θ̂j‖2 ∀i ∈ [n].

Then after label permutation, which without loss of generality we assume to be φ = Id,
n�(ẑ, z∗) can be bounded by

n�
(
ẑ, z∗) =

n∑
i=1

I
{
arg min

a∈[k]
‖P̂·,i − θ̂a‖2 	= z∗

i

}

≤
n∑

i=1

∑
a 	=z∗

i

I
{‖P̂·,i − θ̂a‖2 ≤ ‖P̂·,i − θ̂z∗

i
‖2}

.

We divide the remaining proof into four steps, corresponding to Sections 4.4.1 to 4.4.4 in the
complete proof.

Step 1 (Sketch of Section 4.4.1). We decompose �(ẑ, z∗) into two parts: the first part corre-
sponds to the leading large singular values, and the other one is related to the remaining ones.
To achieve this, we split {P̂·,i}i∈[n] and {θ̂j }j∈[k] into two parts. We define r ∈ [k] as follows
(with σk+1 := 0):

(15) r := max
{
j ∈ [k] : σj − σj+1 ≥ ρ(

√
n + √

p)
}
,

where ρ → ∞ is some quantity whose value will be given in the complete proof. There are
two benefits in choosing r this way: singular values with index larger than r are relatively
small and the singular value gap σr − σr+1 is large enough to apply matrix spectral pertur-
bation theory. We split Û into (Û1:r , Û(r+1):k), and hence we obtain that P̂·,i = P̂

(1)
·,i + P̂

(2)
·,i ,

where

P̂
(1)
·,i = Û1:r ÛT

1:r P̂·,i and P̂
(2)
·,i = Û(r+1):kÛT

(r+1):kP̂·,i .

Likewise, we decompose θ̂j = θ̂
(1)
j + θ̂

(2)
j . Then we estimate

(16)

n�
(
ẑ, z∗) ≤

n∑
i=1

∑
a 	=z∗

i

I
{∥∥P̂ (1)

·,i − θ̂ (1)
a

∥∥2 − ∥∥P̂ (1)
·,i − θ̂

(1)

z∗
i

∥∥2 ≤ γ�2}

+
n∑

i=1

∑
a 	=z∗

i

I
{
γ�2 ≤ −∥∥P̂ (2)

·,i − θ̂ (2)
a

∥∥2 + ∥∥P̂ (2)
·,i − θ̂

(2)

z∗
i

∥∥2}

=: ∑
i=1

∑
a 	=z∗

i

Ai,a + ∑
i=1

∑
a 	=z∗

i

Bi,a.

for some γ = o(1) such that γ�/k → ∞. The value of γ will be given in the complete proof.
We now investigate the two double-sums above separately.

Step 2 (Sketch of Section 4.4.2). Here, we consider the terms Ai,a in the first double-sum
above. Lemma 4.2 shows that {θ̂j }j∈[k] are close to their true values {θ∗

j }j∈[k]:

max
j∈[k]

∥∥θ̂j − θ∗
j

∥∥ = o(�).
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Together with the fact that the centers {θ∗
j }kj=1 are separated by � and that maxj≥r+1 σ̂j is

relatively small, we bound

Ai,a = I
{∥∥P̂ (1)

·,i − θ̂ (1)
a

∥∥2 − ∥∥P̂ (1)
·,i − θ̂

(1)

z∗
i

∥∥2 ≤ γ�2}
≤ I

{(
1 − o(1)

)
� ≤ 2

∥∥P̂ (1)
·,i − Û1:r ÛT

1:rθ∗
z∗
i

∥∥}
.

Next, we observe that P̂
(1)
·,i − Û1:r ÛT

1:rθ∗
z∗
i
= Û1:r ÛT

1:r (P̂ −P)ei and show that ‖Û1:r ÛT
1:r (P̂ −

P)V V T ei‖ = o(�) by using that |Vi,j | ≤ √
k/(nβ). Hence, we obtain that

Ai,a ≤ I
{(

1 − o(1)
)
� ≤ 2

∥∥Û1:r ÛT
1:r P̂

(
I − V V T )

ei

∥∥}
= I

{(
1 − o(1)

)
� ≤ 2

∥∥�̂r×r V̂
T
1:r

(
I − V V T )

ei

∥∥}
.

Since the singular values may vary in magnitude, a direct application of spectral pertur-
bation theory on V̂1:r is not sufficient. Instead, we split [r] into disjoint sets

⋃
1≤m≤s Jm,

such that the condition number in each set equals approximately 1, that is, maxj∈Jm σj/

minj∈Jm σj = 1 + o(1), and such that the the singular value gaps among {Jm}m∈[s] are suf-
ficiently large. We carefully explain how to construct these sets in the complete proof. We
define �̂Jm×Jm , V̂Jm , VJm , wJm as the corresponding parts of the related quantities. We first
replace �̂r×r above with �×r . Indeed, using the variational characterization of the Euclidean
norm we have for some w = (wJ1, . . . ,wJs ), ‖w‖ = 1, that

∥∥�̂r×r V̂
T
1:r

(
I − V V T )

ei

∥∥ = ∑
m∈[s]

eT
i

(
I − V V T )

V̂Jm�Jm×JmwJm

= ∑
m∈[s]

eT
i

(
I − V V T )

V̂JmV̂ T
Jm

VJm�Jm×Jmw′
Jm

,

for some w′ ∈ R
r . Since in each set Jm the condition number is bounded by 1 + o(1) and

since ‖(V̂ T
1:rV1:r )−1‖ = 1 + o(1), we can estimate ‖w′‖ ≤ 1 + o(1). Thus, we obtain that

∥∥�̂r×r V̂
T
1:r

(
I − V V T )

ei

∥∥
≤ (

1 + o(1)
)

sup
w∈Rr :‖w‖=1

∑
m∈[s]

eT
i

(
I − V V T )(

V̂JmV̂ T
Jm

− VJmV T
Jm

)
VJm�Jm×JmwJm.

The rest of the proof in this section consists of using spectral perturbation theory to show that
(I −V V T )V̂ T

1:r equals (up to a small order error term) a linear function of the noise matrix E.
Applying Lemma 4.3, we show that the above sum is linear in E (up to a o(�) error term)
and obtain∥∥�r×r V̂

T
1:r

(
I − V V T )

ei

∥∥
= sup

w∈Rr :‖w‖=1

∑
m∈[s]

eT
i

( ∑
l∈Jm

1

σl

(
I − V V T )

ET ulv
T
l VJm + Sm

)
�Jm×JmwJm

= ∥∥UT
1:rE

(
I − V V T )

ei

∥∥ + o(�).

Hence, summarizing, on the event F ∩HG we bound

n∑
i=1

∑
a 	=z∗

i

Ai,a ≤ k

n∑
i=1

I
{(

1 − o(1)
)
� ≤ 2

∥∥UT
1:rE

(
I − V V T )

ei

∥∥}
.
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The tail probability and expectation of ‖UT
1:rE(I − V V T )ei‖2 are bounded by the tail proba-

bility and expectation of a chi-square distributed random variable with k degrees of freedom,

χ2
k . Thus, there exist {ξi}i∈[n]

i.i.d.∼ χ2
k , such that on the event F ∩F ′,

n∑
i=1

∑
a 	=z∗

i

Ai,a ≤ k

n∑
i=1

I
{(

1 − o(1)
)
� ≤ 2

√
ξi

}
.

The tail probability of the square root of a χ2 distribution can be bounded by using Borell’s
inequality, and hence we obtain that

E

n∑
i=1

∑
a 	=z∗

i

Ai,aI
{
F ∩F ′} ≤ nk exp

(−(
1 − o(1)

)
�2/8

)
.

Step 3 (Sketch of Section 4.4.3). We next provide an upper bound on the Bi,a-terms in (16),
corresponding to small singular values. We have that

〈
P̂

(2)
·,i , θ̂ (2)

a − θ̂
(2)

z∗
i

〉 = k∑
l=r+1

σ̂l V̂i,l

(
ûT

l θ̂a − ûT
l θ̂z∗

i

)
,

which, up to some constant scalar, can be upper bounded by
∑k

l=r+1
√

n|V̂i,l| by construction
of r and Weyl’s inequality. Hence, on the event F we obtain that

Bi,a := I
{
γ�2 ≤ −∥∥P̂ (2)

·,i − θ̂ (2)
a

∥∥2 + ∥∥P̂ (2)
·,i − θ̂

(2)

z∗
i

∥∥2}

≤
k∑

l=r+1

I
{
cγ�2/k ≤ √

n
∣∣eT

i v̂l

∣∣}.
We decompose eT

i v̂l = eT
i V V T v̂l +eT

i (I −V V T )v̂l . Since, by Lemma A.2 |Vij | ≤ √
k/(nβ),

the first term in this decomposition is negligible, leaving (I − V V T )v̂T
l as the main term to

be analyzed.
We apply Lemma 4.4 to show that, after normalization, (I − V V T )v̂T

l is Haar distributed
on the unit sphere spanned by I − V V T . Hence, on an event T , eT

i (I − V V T )v̂T
l has a

Gaussian tail and variance at most 3/(n − k). This yields

EBi,aI{F ∩ T } ≤
k∑

l=r+1

EI
{
c′γ�2/k ≤ √

n
∣∣eT

i

(
I − V V T )

v̂l

∣∣}I{T }

≤ k exp
(−c′′(γ�2k−1)2)

.

Step 4 (Sketch of Section 4.4.4). Summarizing the previous two sections, we obtain that

En�(ẑ, z)I{F ∩HG ∩ T } ≤
n∑

i=1

∑
a 	=z∗

i

E(Ai,a + Bi,a)I{F ∩HG ∩ T }

≤ nk exp
(
−(

1 − o(1)
)�2

8

)
+ k2n exp

(−c
(
γ�k−1)2

�2)

= n exp
(
−(

1 − o(1)
)�2

8

)
.

By Markov’s inequality, with high probability, we achieve

�
(
ẑ, z∗)

I{F ∩HG ∩ T } ≤ exp
(−(

1 − o(1)
)
�2/8

)
.

Finally, a union bound with P(F ∩HG ∩ T ) leads to the desired rate for �(ẑ, z∗).
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4.4. Proof of Theorem 2.1. In this section, we are going to give a complete and detailed
proof of Theorem 2.1. We divide this section into four parts, following the same structure
as in the proof sketch (i.e., Section 4.3). In Section 4.4.1, we establish the decomposition
�(ẑ, z∗) ≤ A + B . Then in Section 4.4.2 and Section 4.4.3, we provide upper bounds on EA

and EB , respectively. Finally in Section 4.4.4, we wrap everything up to achieve the desired
rate. Again, throughout the whole proof, we assume the random event F (defined in (12))
holds.

Applying Lemma 4.1, we obtain that it suffices to bound �(ẑ′, z∗) where ẑ′ is the output
of Algorithm 3. Indeed, Lemma 4.1 proves that there exists a label permutation φ0 ∈ � such
that ẑi = φ0(ẑ

′
i ) for all i ∈ [n]. Without loss of generality, we assume that φ0 is the identity

mapping. By definition of the k-means objective in (11), we have that(
ẑ, {θ̂j }kj=1

) = arg min
z∈[k]n,{θj }kj=1∈Rk

∑
i∈[n]

‖P̂·,i − θzi
‖2.

In particular, ẑ fulfills the local optimality condition

ẑi = arg min
j∈[k]

‖P̂·,i − θ̂j‖2 ∀i ∈ [n].

Hence, assuming without loss of generality that φ = Id, we obtain that

n�
(
ẑ, z∗) =

n∑
i=1

I
{
arg min

a∈[k]
‖P̂·,i − θ̂a‖2 	= z∗

i

}
(17)

≤
n∑

i=1

∑
a 	=z∗

i

I
{‖P̂·,i − θ̂a‖2 ≤ ‖P̂·,i − θ̂z∗

i
‖2}

�
n∑

i=1

∑
a 	=z∗

i

Ti,a.(18)

4.4.1. Decomposing �(ẑ, z∗). We decompose {P̂·,i}i∈[n], {θ̂j }j∈[k] into two parts: the first
part corresponds to singular values that are above the detection threshold and where P̂·,i
contains signal and the second part consists of the remainder noise term. We define r ∈ [k] as
(with σk+1 := 0)

(19) r := max
{
j ∈ [k] : σj − σj+1 ≥ ρ

√
n + p

}
,

for a sequence ρ → ∞ to be determined later. We note that if �/(k
3
2 ρβ

1
2 (1 + p/n)

1
2 ) → ∞,

the set {j ∈ [k] : σj − σj+1 ≥ ρ
√

n + p} is not empty. Otherwise, this would imply σ1 ≤
kρ

√
n + p which would contradict Proposition A.1.

Thus, r is the largest index in [k] such that the corresponding singular value gap is greater
than or equal to ρ

√
n + p. An immediate implication is

(20) max
r+1≤j≤k

σj ≤ kρ
√

n + p.

We split Û into (Û1:r , Û(r+1):k) where Û1:r = (û1, . . . , ûr ). Recall that P̂·,i = Û Ŷ·,i and θ̂j =
Û ĉj . We decompose P̂·,i = P̂

(1)
·,i + P̂

(2)
·,i , where

P̂
(1)
·,i = Û1:r ÛT

1:r P̂·,i and P̂
(2)
·,i = Û(r+1):kÛT

(r+1):kP̂·,i .

Similarly, for each j ∈ [k], we decompose θ̂j = θ̂
(1)
j + θ̂

(2)
j , where

θ̂
(1)
j = Û1:r ÛT

1:r θ̂j and θ̂
(2)
j = Û(r+1):kÛT

(r+1):kθ̂j .
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With this notation and due to the orthogonality of {ûl}l∈[k], we obtain that

Ti,a ≤ I
{∥∥P̂ (1)

·,i + P̂
(2)
·,i − θ̂ (1)

a − θ̂ (2)
a

∥∥2 ≤ ∥∥P̂ (1)
·,i + P̂

(2)
·,i − θ̂

(1)

z∗
i

− θ̂
(2)

z∗
i

∥∥2}
= I

{
2
〈
P̂

(1)
·,i − θ̂

(1)

z∗
i

, θ̂
(1)

z∗
i

− θ̂ (1)
a

〉 + ∥∥θ̂ (1)

z∗
i

− θ̂ (1)
a

∥∥2

≤ 2
〈
P̂

(2)
·,i , θ̂ (2)

a − θ̂
(2)

z∗
i

〉 − ∥∥θ̂ (2)
a

∥∥2 + ∥∥θ̂ (2)

z∗
i

∥∥2}
.

We denote by ρ′′ = o(1) another sequence which we will specify later. We split the indicator
function above according to our decomposition and obtain that

Ti,a ≤ I

{∥∥θ̂ (1)

z∗
i

− θ̂ (1)
a

∥∥ −
ρ′′�2 + ‖θ̂ (2)

z∗
i

‖2

‖θ̂ (1)

z∗
i

− θ̂
(1)
a ‖ ≤ 2

∥∥P̂ (1)
·,i − θ̂

(1)

z∗
i

∥∥}

+ I
{
ρ′′�2 ≤ 2

〈
P̂

(2)
·,i , θ̂ (2)

a − θ̂
(2)

z∗
i

〉} =: Ai,a + Bi,a,

where we also used the Cauchy–Schwarz inequality. We now consider Ai,a and Bi,a sepa-
rately.

4.4.2. Upper bounds on EAi,a . By Lemma 4.2, we have on the event F that

maxj∈[k] ‖θ̂j −θ∗
φ′(j)‖ ≤ 8

√
2
√

β−1k2(1 + p/n) for some label permutation mapping φ′ ∈ �.
Without loss of generality, we assume again that φ′ = Id. Define Ẑ ∈ {0,1}n×k to be the es-
timated label matrix, that is, Ẑi,j = I{ẑi = j}. With this notation and by definition of the
k-means objective, we obtain that

(21) θ̂j =
∑

ẑi=j P̂·,i∑
ẑi=j 1

= P̂ Ẑ·,j
|{i ∈ [n] : ẑi = j}| =

∑
l∈[k] σ̂l ûl v̂

T
l Ẑ·,j

|{i ∈ [n] : ẑi = j}| .

Hence, using the above, we obtain that

∣∣〈ûl, θ̂j 〉
∣∣ = |σ̂l v̂

T
l Ẑ·,j |

|{i ∈ [n] : ẑi = j}| ≤ σ̂l‖v̂l‖‖Ẑ·,j‖
|{i ∈ [n] : ẑi = j}| = σ̂l√|{i ∈ [n] : ẑi = j}| .

By (20) and Lemma B.2, we have on the event F that

(22) max
r+1≤j≤k

σ̂j ≤ √
2(

√
n + √

p) + max
r+1≤j≤k

σj ≤ (kρ + 4)
√

n + p.

By Lemma 4.2, we have that |{i ∈ [n] : ẑi = j}| ≥ βn
2k

, and thus we obtain

(23) max
j∈[k] max

r+1≤l≤k

∣∣〈ûl, θ̂j 〉
∣∣I{F} ≤ (kρ + 4)

√
2k

β

(
1 + p

n

)
.

Consequently, we bound, working on the event F ,

(24)

max
j∈[k]

∥∥θ̂ (2)
j

∥∥2 = max
j∈[k]

∑
r+1≤l≤k

〈ûl, θ̂j 〉2

≤ 2k2

β

(
1 + p

n

)
(kρ + 4)2.

Applying Lemma 4.2, we have on the event F for any a 	= b that

‖θ̂b − θ̂a‖ ≥ ∥∥θ∗
b − θ∗

a

∥∥ − ‖θ̂b − θ∗
b ‖ − ‖θ∗

a − θ̂a‖ ≥ � − 16
√

2
√

β−1k2(1 + p/n).
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Hence, using also (24), we have on the event F that

(25)

min
a,b∈[k]:a 	=b

∥∥θ̂ (1)
b − θ̂ (1)

a

∥∥ ≥ min
a,b∈[k]:a 	=b

(‖θ̂b − θ̂a‖ − ∥∥θ̂ (2)
a

∥∥ − ∥∥θ̂ (2)
b

∥∥)

≥ � − (
16

√
2 + 2

√
2(kρ + 4)

)√
β−1k2

(
1 + p

n

)
.

Therefore, by the above, we obtain that

Ai,aI{F} ≤ I

{(
� − (

16
√

2 + 2
√

2(kρ + 6)
)√

β−1k2
(

1 + p

n

))

− ρ′′�2 + 2k2

β
(1 + p

n
)(kρ + 4)2

� − (16
√

2 + 2
√

2(kρ + 4))
√

β−1k2(1 + p
n
)

≤ 2
∥∥P̂ (1)

·,i − θ̂
(1)

z∗
i

∥∥}
I{F}.

For simplicity, define

η :=
√

1 + p/n.

Since by construction ρ → ∞ and by assumption �/(k2ρβ−1/2η) → ∞, there exists some
constant c1 > 0, such that the above can be simplified into

Ai,aI{F} ≤ I

{(
1 − c1ρ

′′ − c1k
2ρβ− 1

2 η

�

)
� ≤ 2

∥∥P̂ (1)
·,i − θ̂

(1)

z∗
i

∥∥}
I{F}.

Still working on the event F , we further bound∥∥P̂ (1)
·,i − θ̂

(1)

z∗
i

∥∥ ≤ ∥∥P̂ (1)
·,i − Û1:r ÛT

1:rθ∗
z∗
i

∥∥ + ∥∥θ̂ (1)

z∗
i

− Û1:r ÛT
1:rθ∗

z∗
i

∥∥
≤ ∥∥P̂ (1)

·,i − Û1:r ÛT
1:rθ∗

z∗
i

∥∥ + ∥∥θ̂z∗
i
− θ∗

z∗
i

∥∥
≤ ∥∥P̂ (1)

·,i − Û1:r ÛT
1:rθ∗

z∗
i

∥∥ + 8
√

2

√
β−1k2

(
1 + p

n

)
,

where the last inequality is due to Lemma 4.2. Since θ∗
z∗
i

= P·,i , we have that P̂
(1)
·,i −

Û1:r ÛT
1:rθ∗

z∗
i
= (Û1:r ÛT

1:r P̂ − Û1:r ÛT
1:rP )ei . Thus, we obtain that

P̂
(1)
·,i − Û1:r ÛT

1:rθ∗
z∗
i
= Û1:r ÛT

1:r (P̂ − P)V V T ei + Û1:r ÛT
1:r P̂

(
I − V V T )

ei.

We first bound Û1:r ÛT
1:r (P̂ −P)V V T ei . Indeed, by Proposition A.1 and Lemma 4.2 we have

on the event F that
∥∥Û1:r ÛT

1:r (P̂ − P)V V T ei

∥∥ ≤ ‖P̂ − P‖F

∥∥V T ei

∥∥ ≤ 4
√

β−1k2
(

1 +
√

p

n

)
.

Thus, there exists some constant c2 > 0 such that

Ai,aI{F} ≤ I

{(
1 − c1ρ

′′ − c2k
2ρβ− 1

2 η

�

)
� ≤ 2

∥∥Û1:r ÛT
1:r P̂

(
I − V V T )

ei

∥∥}
I{F}

= I

{(
1 − c1ρ

′′ − c2k
2ρβ− 1

2 η

�

)
� ≤ 2

∥∥�̂r×r V̂
T
1:r

(
I − V V T )

ei

∥∥}
I{F},

where we define �̂r×r = diag{σ̂1, . . . , σ̂r} and V̂1:r = (v̂1, . . . , v̂r ). We define the correspond-
ing population counterparts analogue.
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For any unit vector w ∈ R
r , define w′ = �−1

r×r �̂r×rw. This yields the identity �r×rw
′ =

�̂r×rw. By definition of r and Lemma B.2, we obtain that

max
j∈[r]

σ̂j

σj

≤ max
j∈[r]

σj + 4
√

n + p

σj

≤ 1 + 6ρ−1

and, therefore, ‖w′‖ ≤ 1+6ρ−1. Thus, using the variational characterization of the Euclidean
norm, we bound

AiI{F} ≤ I

{(
1 − c1ρ

′′ − c2k
2ρβ− 1

2 η

�

)
� ≤ 2 sup

w:‖w‖≤1
eT
i

(
I − V V T )

V̂1:r �̂r×rw

}
I{F}

≤ ∑
i∈[n]

I

{1 − c1ρ
′′ − c2k

2ρβ
− 1

2 η
�

1 + 6ρ−1 � ≤ 2
∥∥�r×r V̂

T
1:r

(
I − V V T )

ei

∥∥}
I{F}.

We further investigate eT
i (I − V V T )V̂1:r�r×rw. First, we partition the leading [r] singular

values. Define s as

(26) s :=
∣∣∣∣
{
l ∈ [r] : σl − σl+1

σl+1
≥ 1

ρ′k

}∣∣∣∣,
for some ρ′ → ∞ whose value will be specified later. We denote its entries by j ′

1 < j ′
2 <

· · · < j ′
s . Due to (20), we have that j ′

s = r . We define j ′
0 = 0,

jm = j ′
m−1 + 1, m ∈ [s]

and split [r] into disjoint sets {Jm}sm=1, where Jm = {jm, jm + 1, . . . , j ′
m}. This partition has

the following properties:

• Defining the singular value gaps gm := min{σj ′
m−1

− σjm, σj ′
m

− σjm+1}, m ∈ [s], with
js+1 = r + 1 and σ0 = +∞, we obtain by (26) for any m ∈ [s − 1] that

σj ′
m

− σjm+1 = σj ′
m

− σj ′
m+1 ≥ σj ′

m+1

ρ′k
≥ σr

ρ′k
≥ ρ

√
n + p

ρ′k
.

Hence, we obtain that

(27) min
m∈[s]gm ≥ ρ

√
n + p

ρ′k
.

• The set defined in (26) has an alternative representation, that is,{
l ∈ [r] : σl − σl+1

σl+1
≥ 1

ρ′k

}
=

{
l ∈ [r] : σl

σl+1
> 1 + 1

ρ′k

}
.

Therefore, and since ρ′ → ∞, we obtain that

(28) max
m∈[s]

σjm

σj ′
m

≤
(

1 + 1

ρ′k

)|Jm|
≤

(
1 + 1

ρ′k

)k

≤ 1 + 2

ρ′ .

• Due to (26), we have that

max
m∈[s]

σj ′
m

σj ′
m

− σj ′
m+1

≤ max
m∈[s]

1 + σj ′
m+1

σj ′
m

− σj ′
m+1

≤ 1 + ρ′k.

Hence, using also (28) and since ρ ′ → ∞, we obtain that

(29) max
m∈[s]

σjm − σj ′
m

gm

≤ 2

ρ′ max
m∈[s]

σj ′
m

σj ′
m

− σj ′
m+1

≤ 2

ρ′
(
1 + ρ′k

) ≤ 3k,
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and

(30) max
m∈[s]

σjm

gm

≤
(

1 + 2

ρ′
)

max
m∈[s]

σj ′
m

σj ′
m

− σj ′
m+1

≤ 1 + 2ρ ′k.

Now, consider any fixed w ∈ R
r . For m ∈ [s], we denote V̂Jm = (v̂jm, . . . , v̂j ′

m
), VJm =

(vjm, . . . , vj ′
m
), �Jm×Jm = diag{σjm, . . . , σj ′

m
}, and wJm = (wjm, . . . ,wj ′

m
). Applying this no-

tation, we have that

(31) eT
i

(
I − V V T )

V̂1:r�r×rw = ∑
m∈[s]

eT
i

(
I − V V T )

V̂Jm�Jm×JmwJm.

For any m ∈ [s], by the Davis–Kahan–Wedin sin(�) Theorem (see Lemma B.3), there exists
an orthonormal matrix Om ∈R

|Jm|×|Jm| such that

(32)

‖V̂Jm − VJmOm‖ ≤ √
2
∥∥V̂JmV̂ T

Jm
− VJmV T

Jm

∥∥
≤ 4

√
2‖E‖
gm

≤ 16
√

2ρ′k
ρ

,

where we use (27) in the last inequality. Moreover, we have that

(33)
∥∥V̂ T

Jm
VJmOm − I

∥∥ ≤ ‖V̂Jm − VJmOm‖ ≤ 16
√

2ρ′k
ρ

,

and hence, choosing ρ and ρ ′ such that ρ/(ρ′k) > 16
√

2, we obtain that V T
Jm

V̂Jm is invertible
and

(34)
∥∥(

V T
Jm

V̂Jm

)−1∥∥ ≤
(

1 − 16
√

2ρ′k
ρ

)−1
.

Now, for fixed wJm we define

(35) w′
Jm

= �−1
Jm×Jm

(
V̂ T

Jm
VJm

)−1
�Jm×JmwJm ∀m ∈ [s].

Plugging the above into (31), we obtain that

eT
i

(
I − V V T )

V̂1:r�r×rw = ∑
m∈[s]

eT
i

(
I − V V T )

V̂JmV̂ T
Jm

VJm�Jm×Jmw′
Jm

.

By definition of w′
Jm

, we have that

max
m∈[s]

‖w′
Jm

‖
‖wJm‖ ≤ max

m∈[s]
∥∥�−1

Jm×Jm

(
V̂ T

Jm
VJm

)−1
�Jm×Jm

∥∥

≤ (
1 + 2ρ′−1)(

1 − 16
√

2ρ′k
ρ

)−1
,

where we used in the last inequality that maxm∈[s] ‖�−1
Jm×Jm

‖‖�Jm×Jm‖ ≤ 1 + 2ρ ′−1 by (28)

and the upper bound (34). Hence, using also that (I − V V T )VJm = 0, we obtain that

sup
w:‖w‖≤1

wT �r×r V̂
T
1:r

(
I − V V T )

ei

≤ 1 + 2ρ′−1

1 − 16
√

2ρ′kρ−1
sup

w:‖w‖≤1

∑
m∈[s]

eT
i

(
I − V V T )(

V̂JmV̂ T
Jm

− VJmV T
Jm

)
VJm�Jm×JmwJm.
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We further evaluate the term on the right-hand side above. Applying Lemma 4.3, we obtain
that

eT
i

(
I − V V T )(

V̂JmV̂ T
Jm

− VJmV T
Jm

)
VJm�Jm×JmwJm

= ∑
l∈Jm

wle
T
i

(
I − V V T )

ET ul + eT
i ESm�Jm×JmwJm + eT

i (Sm −ESm)�Jm×JmwJm.

We next show that ESm = 0. Indeed, we have that

ESm = (
I − V V T )

E

( ∑
j∈Jm

v̂j v̂
T
j

)
VJm = ∑

j∈Jm

E
((

I − V V T )
v̂j

)(
V T

Jm
v̂j

)T

= ∑
j∈Jm

E

(
(I − V V T )v̂j

‖(I − V V T )v̂j‖
)(∥∥(

I − V V T )
v̂j

∥∥V T
Jm

V V T v̂j

)T
.

Applying Lemma 4.4, we obtain that (I − V V T )v̂j /‖(I − V V T )v̂j‖ and ‖(I − V V T )v̂j‖ ×
V T

Jm
V V T v̂j are independent. Hence, using Lemma 4.4 again, we obtain that

ESm = ∑
j∈Jm

E

(
(I − V V T )v̂j

‖(I − V V T )v̂j‖
)
E

(∥∥(
I − V V T )

v̂j

∥∥V T
Jm

V V T v̂j

)T = 0.

Hence, we obtain that

sup
w∈Rr :‖w‖≤1

∑
m∈[s]

eT
i

(
1 − V V T )(

V̂JmV̂ T
Jm

− VJmV T
Jm

)
VJm�Jm×JmwJm

≤ sup
w∈Rr :‖w‖≤1

eT
i

(
I − V V T )

ET U1:rw + sup
w∈Rr :‖w‖≤1

∑
m∈[s]

eT
i (Sm −ESm)�Jm×JmwJm.

Summarizing, we obtain that

Ai,a ≤ I

{
1 − 16

√
2ρ′kρ−1

(1 + 6ρ−1)(1 + 2ρ ′−1)

(
1 − c1ρ

′′ − c2k
2ρβ− 1

2 η

�

)
�

≤ 2
∥∥UT

1:rE
(
I − V V T )

ei

∥∥ + sup
w∈Rr :‖w‖≤1

∑
m∈[s]

eT
i (Sm −ESm)�Jm×JmwJm

}
.

We next bound the higher order perturbation term on the right-hand side. Applying
Lemma B.1 and by construction of the partition, we obtain that gm ≥ 8E‖E‖, and hence
we can apply Lemma 4.3. Note that ‖�Jm×JmwJmeT

i ‖∗ = ‖�Jm×JmwJm‖‖eT
i ‖ ≤ σjm‖wJm‖.

Together with (27), (29) and (30), for some constant c0 > 0, we have with probability at least
1 − 2e−(�2∧n) that ∣∣eT

i (Sm −ESm)�Jm×JmwJm

∣∣
≤ c0

(
1 + σjm − σj ′

m

gm

)
�

g

(√
n + p

g

)
σjm‖wJm‖

≤ 16c0ρ
−1k3ρ′2�‖wJm‖.

Taking a union bound over Jm and since
∑

m ‖wJm‖ ≤ √
k‖w‖ = √

k we obtain with proba-
bility at least 1 − 2k exp(−(�2 ∧ n)) that∑

m∈[s]
eT
i (Sm −ESm)�Jm×JmwJm ≤ 16c0ρ

−1k
7
2 ρ′2�.
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By applying a standard ε-net argument with a union bound, we obtain with probability at
least 1 − 2kek exp(−(�2 ∧ n)) that

(36) sup
w∈Rr :‖w‖≤1

∑
m∈[s]

eT
i (Sm −ESm)�Jm×JmwJm ≤ 32c0ρ

−1k
7
2 ρ′2�.

We denote by Hi the event where (36) above holds and note that P(Hi ) ≥ 1 − 2kek ×
exp(−(�2 ∧ n)). To avoid that � ∧ n (instead of �) appears in the convergence rate, we
further introduce the global event

HG :=
{
{� >

√
n}

n⋂
i=1

Hi

}
∪ {� ≤ √

n}

and note that

(37) P(HG) ≥ 1 − 2nke−n+k.

We are finally ready to bound Ai,a . Indeed, by the above we obtain that

EAi,aI{F ∩HG} ≤ EI

{
(1 − 16

√
2ρ′kρ−1)(1 − c1ρ

′′ − c2k
2ρβ

− 1
2 η

�
)

(1 + 6ρ−1)(1 + 2ρ′−1)
�

− 32c0ρ
−1k

7
2 ρ′2� ≤ 2

∥∥UT
1:rE

(
I − V V T )

ei

∥∥}

+EI{Hi ∩ {� <
√

n}}.
We observe that UT

1:rE(I − V V T )ei ∼ N (0,‖(I − V V T )ei‖2Ir×r ). Moreover, since ‖(I −
V V T )ei‖ ≤ 1, we have that

P
(∥∥UT

1:rE
(
I − V V T )

ei

∥∥2
> t

) ≤ P(ξi > t),

where by ξi we denote a chi-square distributed random variable with k degrees of freedom.
Hence, assuming additionally that ρ ′ → ∞, ρ/(k7/2ρ′2) → ∞ and �/(k2ρβ−1/2η) → ∞,
there exists a constant c3 > 0, such that

EAi,aI{F ∩HG}

≤ I

{(
1 − c3ρ

′′ − c3k
2ρβ− 1

2 η

�
− c3k

7
2 ρ′2

ρ

)
� ≤ 2

√
ξi

}
+ 2ke−�2+k

≤ exp
(
−1

8

(
1 − c3ρ

′′ − c3k
2ρβ− 1

2 η

�
− c3k

7
2 ρ′2

ρ
− 2

√
k

�

)2
�2

)
+ 2ke−�2+k,

where we used Jensen’s inequality and Borell’s inequality (e.g., Theorem 2.2.7 in [22]) to
bound P(

√
ξi > t) ≤ exp(−(t − √

k)2).

4.4.3. Upper bounds on EBi,a . We now bound

Bi,a := I
{
ρ′′�2 ≤ 2

〈
P̂

(2)
·,i , θ̂ (2)

a − θ̂
(2)

z∗
i

〉}
.

We recall that P̂
(2)
·,i = (Û(r+1):kÛT

(r+1):k)P̂·,i = ∑k
l=r+1 ûl Ŷl,i = ∑k

l=r+1 ûl σ̂l V̂i,l and θ̂
(2)
a −

θ̂
(2)

z∗
i

= (Û(r+1):kÛT
(r+1):k)(θ̂a − θ̂z∗

i
). Hence, we obtain that

〈
P̂

(2)
·,i , θ̂ (2)

a − θ̂
(2)

z∗
i

〉 = k∑
l=r+1

σ̂l V̂i,l

(
ûT

l θ̂a − ûT
l θ̂z∗

i

)
.
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Note that |ûT
l θ̂a − ûT

l θ̂z∗
i
| ≤ 2 maxj∈[k] maxr+1≤l≤k |〈ûl, θ̂j 〉|. Using (22) and (23), we have

that

∣∣〈P̂ (2)
·,i , θ̂ (2)

a − θ̂
(2)

z∗
i

〉∣∣ ≤ 2(kρ + 4)2

√
2nk

β

(
1 + p

n

)2 k∑
l=r+1

|V̂i,l|,(38)

and hence we bound

∑
a 	=z∗

i

Bi,aI{F} ≤ kI

{
ρ′′�2 ≤ 4(kρ + 4)2

√
2nk

β

(
1 + p

n

)2 k∑
l=r+1

|V̂i,l|
}

≤ k

k∑
l=r+1

I

{
ρ′′�2 ≤ 4k(kρ + 4)2

√
2nk

β

(
1 + p

n

)2
|V̂i,l|

}
=: k

k∑
l=r+1

Ci,l.

We bound each Ci,l separately, by showing that V̂i,l is, approximately, univariate Gaussian
with variance 1/n. We first apply Proposition A.2 to obtain that

|V̂i,l| ≤
∥∥V T ei

∥∥ + ∣∣eT
i

(
I − V V T )

v̂l

∣∣ ≤
√

β−1k/n + ∣∣eT
i

(
I − V V T )

v̂l

∣∣.
Hence, assuming that �2ρ′′/(k4ρ2β−1(1 + p/n)) is large enough and afterwards applying
Lemma 4.4, we obtain that for some constant c4 > 0,

Ci,l ≤ I

{
c4

ρ′′�2

k
7
2 ρ2β− 1

2 (1 + p
n
)

≤ √
n
|eT

i (I − V V T )v̂l|
‖(I − V V T )v̂l‖

}

d= I

{
c4

ρ′′�2

k
7
2 ρ2β− 1

2 (1 + p
n
)

≤ √
n
|eT

i (I − V V T )ζi,l|
‖(I − V V T )ζi,l‖

}
,

where d= denotes equality in distribution and where ζi,l∼N (0, In). We next provide a lower
bound for the denominator above. Indeed, since (I − V V T )ζi,l ∼ N (0, (I − V V T )), we see
that ‖(I −V V T )ζi,l‖2 is chi-square distributed with at least n−k degrees of freedom. Hence,
using tail-bounds for the lower tail of chi-square distributed random variables (e.g., Lemma 1
in [39]), we obtain that the event T defined below occurs with high probability, that is,

(39) P(T ) := P

(⋂
i,l

{∥∥(
I − V V T )

ζi,l

∥∥2 ≥ (n − k)

3

})
≥ 1 − nk exp

(
−(n − k)

9

)
.

Hence, working on the event T ∩F , we bound

ECi,lI{T ∩F} ≤ EI

{
c4

ρ′′�2

k
7
2 ρ2β− 1

2 (1 + p
n
)

√
n − k

3n
≤ ∣∣eT

i

(
I − V V T )

ζi,l

∣∣}

≤ 2 exp
(
−1

2

(
c4

ρ′′�
k

7
2 ρ2β− 1

2 (1 + p
n
)

√
n − k

3n

)2
�2

)
,

where we used that eT
i (I − V V T ζi,l) is univariate Gaussian with variance bounded by 1.

4.4.4. Obtaining the final result. Combining the above upper bounds together, we have
that

E�
(
ẑ, z∗)

I{F ∩HG ∩ T }

≤ 1

n

n∑
i=1

∑
a 	=z∗

i

EAi,aI{F ∩HG} + k

n

n∑
i=1

k∑
l=r+1

ECi,lI{F ∩ T }
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≤ k exp
(
−1

8

(
1 − c3ρ

′′ − c3k
2ρβ− 1

2 η

�
− c3k

7
2 ρ′2

ρ
− 2

√
k

�

)2
�2

)
+ 2k2e−�2+k

+ 2k2 exp
(
−1

2

(
c4

ρ′′�
k

7
2 ρ2β− 1

2 η2

√
n − k

3n

)2
�2

)
.

Since, by assumption, �

k10.5β−0.5η2( n−k
n

)−0.5 → ∞, recalling that η = √
1 + p/n and denoting

λ = (n−k
n

)−0.5 we can choose

ρ = k
7
2

8c3

(
�

k10.5β−0.5η2λ

)0.3
, ρ′ = 1

8c3

(
�

k10.5β−0.5η2λ

)0.1
and

ρ′′ = 1

8c3

(
�

k10.5β−0.5η2λ

)−0.1
,

to obtain that

E�
(
ẑ, z∗)

I{F ∩HG ∩ T } ≤ exp
(
−

(
1 − 1

2

(
�

k10.5β−0.5η2λ

)−0.1)
�2

8

)
.

Applying Markov’s inequality, we obtain that

�
(
ẑ, z∗)

I{F ∩HG ∩ T } ≤ exp
(
−

(
1 −

(
�

k10.5β−0.5η2λ

)−0.1)
�2

8

)
,

with probability at least 1 − exp(−�). Finally, the proof is completed by using a union
bound accounting for the events F , HG and T , where P(F ∩HG ∩T ) ≥ 1 − exp(−0.08n)−
3nk exp(−0.08(n − k)) by (37), (39) and Lemma B.1.

To obtain the in-expectation result (8), there is no need to apply Markov’s inequality and
a union bound is sufficient:

E�
(
ẑ, z∗) ≤ E�

(
ẑ, z∗)

I{F ∩HG ∩ T } + (
1 − P(F ∩HG ∩ T )

)
≤ exp

(
−

(
1 − 1

2

(
�

k10.5β−0.5η2λ

)−0.1)
�2

8

)

+ exp(−0.08n) + 3nk exp
(−0.08(n − k)

)
= exp

(
−(

1 − o(1)
)�2

8

)
+ exp

(−(
1 − o(1)

)
0.08n

)
.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimality of spectral clustering in the Gaussian mixture model”
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some propositions that characterize the population quantities in Appendix A. Then in Ap-
pendix B, we give several auxiliary lemmas related to the noise matrix E. In Appendix C, we
include proofs of Lemma 4.1, Lemma 4.2 and Lemma 4.4. We give an extension of Proposi-
tion 2.1 in Appendix D and prove Theorem 2.2 in Appendix E. The proof of Lemma 4.3 is
given in Appendix F.
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