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APPENDIX A: ADDITIONAL PROOFS

In this appendix we provide the proofs of Lemma 5.2, Proposition 5.1,
Proposition 5.2, Theorem 2.1 and Theorem 3.1.

A.1. Proof of Lemma 5.2. Let p(z) be the probability mass function
of Zi, and M(t) be the moment generating function of Zi. That is
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This gives I = � logM(t?) = maxt(� logM(t)). Let � be a positive number

which may depend on n. Denote Sn0 =
Pn0

i=1

Zi and Sn0(z) =
Pn0

i=1

zi. Then
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where we use the fact that exp(n0t?�) � exp(t?
P
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Q
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Note that q(w) is a probability mass function, as
P

w
exp(t?w)p(w)

M(t?) = 1. Let
W

1

,W
2

, . . . ,Wn0 be i.i.d random variable with probability mass function
q(w), then
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.

A closer look on W
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gives

P(W
1

= 1) = P(W
1

= �1) =
1

M(t?)

r

a

n

b

n
(1� a

n
)(1� b

n
),
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Denote V = Var(
Pn0

i=1

Wi/n
0) = Var(W

1

)/n0. By Proposition A.1 we have
I/(t?

p
V ) ⇣

p

nI/K. Consider the following two cases.
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Together with t?� = o(I) we get P(Sn0 > 0) � exp(�(1 + o(1))n0I).
(2) If nI/K = O(1) is in a constant order then there exist constants

c
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We can choose c
3

large enough such that V/�2  c
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< 1 for some constant
c
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> 0. Then by applying the Chebyshev’s inequality as in case (1) we obtain
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Thus P(Sn0 > 0) is lower bounded by some positive constant.
(3) If nI/K = o(1), we can use coupling to convert it into case (2). By

Lemma B.1 we have nI/K ⇣ (a � b)2/(aK). We can find an a0 > a such
that (a0 � b)2/(a0K) ⇣ 1 or a b0 < b such that (a� b0)2/(aK) ⇣ 1. Thus by
coupling the probability

P(
n0
X
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Xi �
n0
X
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Yi) � P(
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Xi �
n0
X
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i )

is lower bounded by a positive constant, where {Y 0
i }n

0
i=1

iid⇠ Ber(a
0

n ). Similar
coupling trick can also be applied on b0.

Proposition A.1. Define I, t? and M(t?) as in Equation (1.2), Equa-
tion (3.3) and Equation (A.1). Let
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Under the assumption that 0 < b < a < (1� c)n for any constant c > 0 we
have I2/((t?)2V ) ⇣ nI

K .

Proof. By the definition of M(t?) we have M(t?) ⇣ 1, which implies

V . K
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p
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By Lemma B.1, we have I ⇣ (a � b)2/(na). We consider the following two
cases.
(1) If a ⇣ b, we have t? ⇣ (a� b)/a. Then
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A.2. Proof of Proposition 5.1. Together with Equation (5.4) and
Equation (5.5) we have

P(T (�) � T (�
0

))  P
⇣

�
X

i=1

Ui �
↵
X

i=1

Vi � �(� � ↵)
⌘

,

where {Ui}�i=1

, {Vi}↵i=1

are independent random variables and Ui ⇠ Ber(qi),
Vi ⇠ Ber(pi) with some {qi}�i=1

, {pi}↵i=1

such that min pi � a/n and
max qi  b/n. By coupling, we have
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,

with independent variables {Xi}�i=1

iid⇠ Ber( bn) and {Yi}↵i=1

iid⇠ Ber( an). As an
application of Markov inequality,
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holds for any t > 0 and any w 2 [0, 1]. Choose t = t?. Then by the definition
of t? in Equation (3.3), we obtain Eet?X1Ee�t?Y1 = e�I , and by the definition

of � in Equation (3.4), we have (Eet?X1
)

1�w

(Ee�t?Y1
)

w e�t?� exactly equal to 1. Thus

P(T (�) � T (�
0

))  e�(↵^�)I .

A.3. Proof of Proposition 5.2. Without loss of generality we assume
that dH(�,�

0

) = d(�,�
0

). Then � assigns m nodes with di↵erent values from
�
0

, and there are K possible values for each node. Thus

�

�

�

n

� : 9� 2 � s.t. d(�,�
0

) = m
o

�

�

�


✓

n
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Km 
✓

enK

m
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.

In addition, since each node has at most K possible choices, we have a naive
bound for the cardinality of � as |{�}|  Kn.

A.4. Proof of Theorem 2.1.
(1) For K = 2, the least favorable case for ⇥ is still ⇥0. The proof is

identical to that of Theorem 2.2.
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(2) For K = 3, it is always possible to have � 2 ⇥ such that a constant
proportion of communities have size b n

�K c, and another constant proportion
have size d n

�K e, with the rest communities have much larger size. Define

⇥L to contain all such �. Then with identical arguments used to establish
Lemma 5.1 and Lemma 5.2 we have

inf
�̂

sup
⇥

Er(�, �̂) � inf
�̂

sup
�2⇥L

B⌧ (�̂(1))

� cP
⇣

bn/�Kc
X

u=1

Xu �
bn/�Kc
X

u=1

Yu

⌘

� exp(�(1 + o(1))nI/�K).

A.5. Proof of Theorem 3.1 (K = 2). Without loss of generality
we assume n

2

= bn
2

c throughout this section. For arbitrary �,�
0

2 ⇥ with
d(�,�

0

) = m, we can define ↵(�;�
0

) and �(�;�
0

) the same way as in Section
5.2. Note that m  n

2

since d(�,�
0

) = min{dH(�,�
0

), n � dH(�,�
0

)}. Let
{Xi}

iid⇠ Ber( bn) and {Yi}
iid⇠ Ber( an), and {Xi} ? {Yi}. By the proof of

Proposition 5.1, we have

P(T (�) � T (�))  P
 

�
X

i=1

Xi �
↵
X

i=1

Yi � �(� � ↵)

!

.

Note that in K = 2 we have a specific equality as ↵+ � = m(n�m). Recall

that � = � 1

2t? log
�

a
n exp(�t?)+1� a

n
b
n exp(t?)+1� b

n

�

. By the Cherno↵ bound,

P(T (�) � T (�
0

)) 
�

Eet?Xi
���Ee�t?Yi

�↵
e�t?�(��↵)

=
�

Eet?XiEe�t?Yi
�

m(n�m)
2

⇣ Eet?Xi

Ee�t?Yi
e�2t?�0

⌘��m(n�m)
2

= exp
⇣

� m(n�m)I

2

⌘

,

where we use Eet?XiEe�t?Yi = exp(�I) and e2t
?�0

= Eet?Xi

Ee�t?Yi
. The proof is

similar to that of Theorem 3.2. Here we only include the key quantities and
omit the details. Assume 0 < ✏ < 1/8. Consider the following three cases:
(1) If nI/2 > (1 + ✏) log n, define m

0

= 1 and m0 = ✏n/2. Then P
1


n exp(�(n� 1)I/2). Denote R = n exp(�(n� 1)I/2). We have

Pm 
(

(2en
2

)m exp(�m(n�m)I
2

)  Rn�✏m/4, for m
0

< m  m0

(2en✏n )m exp(�nmI
4

)  R exp(�n(m�4)I
8

), for m0 < m  n/2.
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Then nEr(�, �̂) 
Pn/2

m=1

mPm = (1 + o(1))R.
(2) If nI/2 < (1 � ✏) log n, define m

0

= n exp(�(1 � e�✏nI/2)nI/2) and
m0 = n exp(�nI/8). We have

Pm 
(

(2enm0
)m exp(�m(n�m0

)I
2

) = exp(�e�
✏nI
2 nmI

4

), for m
0

< m  m0,

(2enm0 )m exp(�nmI
4

)  exp(�nmI
16

), for m0 < m  n/2.

Then Er(�, �̂)  m
0

/n+
Pn/2

m>m0
Pm = (1 + o(1))m

0

/n.

(3) If nI
2 logn ! 1, there exists a positive sequence w ! 0 such that | nI

2 logn �
1| ⌧ w and 1p

logn
 w. Define m

0

= n exp(�(1� w)nI/2) and m0 = w2n.

Pm 
(

(2enm0
)m exp(�m(n�m0

)I
2

)  exp(�wnmI
4

), for m
0

< m  m0

(2enm0 )m exp(�nmI
4

)  exp(�nmI
8

), for m0 < m  n/2.

Then Er(�, �̂)  m
0

/n+
Pn/2

m>m0
Pm = (1 + o(1))m

0

/n.

A.6. Proof of Theorem 3.1 (K � 3). For the upper bound, we need
the following lemma in replace of Lemma 5.3. Other than that, the proof is
identical to that for Theorem 3.2 and thus omitted.

Lemma A.1. Assume 1  � <
q

5

3

. Let � 2 ⇥ be an arbitrary assign-

ment satisfying d(�,�
0

) = m, where 0 < m < n is a positive integer. Then

↵(�;�
0

) ^ �(�;�
0

) �
(

nm
K� �m2, if m  n

2K ,
c�nm
K , if m > n

2K ,

where c� = (5�3�2
)

2

2�(1+3(5�3�2
)

2
)

.

Proof of Lemma A.1. It is su�cient to show the equality for �(�;�
0

).
First consider the case m  n

2�K . Without loss of generosity, let � satisfy

�(i) = k, 8i 2
"

k�1

X

j=1

n0
j + 1,

k
X

j=1

n0
j

#

.

Here {n0
k} are sizes of all communities in �. Assume dH(�,�

0

) = m, then
m = |{i : �(i) 6= �

0

(i)}|. Define mk = |{i : �(i) = k,�
0

(i) 6= k}| then
m =

P

k mk. For k 2 [K], define

�k(�;�0) = |{(i, j) : �(i) = �(j) = k,�
0

(i) 6= �
0

(j), i < j}|

=
�

�

�

n

(i, j) : �
0

(i) 6= �
0

(j),
k�1

X

j=1

n0
j + 1  i < j 

k
X

j=1

n0
j

o

�

�

�

.
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We see that �(�;�
0

) =
PK

k=1

�k(�;�0). We have mk  n
2�K  n0

k
2

, and
also �k(�;�0) � |{i : �(i) = k,�

0

(i) = k}||{i : �(i) = k,�
0

(i) 6= k}| =
mk(nk �mk). Then

�(�;�
0

) �
X

k

mk(nk �mk) �
mn

�K
�m2.

Now consider the case that m > n
2�K . Define mk,k0 = |{i : �(i) = k,�

0

(i) =

k0}| for any k, k0 2 [K]. We see that equations mk =
P

k0 6=k mk,k0 and
n0
k = mk +mk,k and nk0 =

P

k mk,k0 hold for all k, k0 2 [K].
For each k 2 [K], we want to obtain the value of �k(�;�0). We divide

k 2 [K] into the following three categories:
(1) We say k 2 K

1

if for all k0 6= k, mk,k0  2

3

n0
k. For a given mk, we have

�k(�;�0)

n0
kmk

=
1

2

(n
0
2

k �
P

k0 m
2

k,k0)

n0
kmk

,

with mk =
P

k0 6=k mk,k0 . When mk  2

3

n0
k, it is easy to check

�k(�;�0)

n0
kmk

�
1

2

(n
0
2

k � (n0
k �mk)2 �m2

k)

n0
kmk

=
n0
k �mk

n0
k

� 1

3
.

When mk > 2

3

n0
k,

�k(�;�0)

n0
kmk

�
1

2

(n
0
2

k � (n0
k �mk)2 � (mk � 2

3

n0
k)

2 � (2
3

n0
k)

2)

n0
kmk

�
mk(n0

k �mk) +
2

3

n0
k(mk � 2

3

n0
k)

n0
kmk

� 2

9
.

Thus �k(�;�0) � 2nmk
9�K in both cases.

(2) We say k 2 K
2

if exists k0 6= k such that mk,k0 >
2

3

n0
k. Claim mk0,k0 >

1

3

n0
k. Otherwise, from � we can exchange the labels k and k0 to obtain a

new estimator �0. This helps to correctly recover at least mk,k0 � mk,k �
mk0,k0 > 2

3

n0
k � 1

3

n0
k � 1

3

n0
k > 0 more nodes. Since �0 2 �(�), this implies

m = d(�
0

,�)  dH(�
0

,�0) < dH(�
0

,�) = m, which leads to a contradiction.
On the other hand, we have mk0 = n0

k0 � mk0,k0 � n0
k0 � (nk0 � mk,k0) �

n
�K � �n

K + 2n
3�K � (5�3�2

)n
3�K > 0. This implies

�k(�;�0) + �k0(�;�0)

mk +mk0
� �k0(�;�0)

mk +mk0
�

mk0,k0mk0

mk +mk0
�

1

3

n0
k

mk
mk0

+ 1
�

n
3�K

�
(5�3�)2/(3�)

+ 1
.
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Thus we have �k(�;�0) + �k0(�;�0) �
2c�n(mk+mk0 )

K � 2c�nmk

K .
Apparently [K] = K

1

[K
2

and K
1

\K
2

= ;. Claim for any k 2 K
1

, there
exists at most one k0 6= k such that mk0,k > 2

3

n0
k0 . Otherwise if there exists

another k00 6= k0 such that k00 6= k and mk00,k > 2

3

n0
k00 . Since k0, k00 2 K

2

, this
leads to mk,k � 1

3

(n0
k _n0

k0). Then nk � mk0,k+mk00,k+mk,k > n0
k0 +

2

3

n0
k00 �

5n
3�K > �n

K which leads to a contradiction. Note that c�  2

9

. Thus

�(�;�
0

) =
1

2

X

k2[K]

2�k(�;�0)

� 1

2

0

@

X

k2K1

2nmk

9�K
+
X

k2K2

2c�nmk

K

1

A

�
c�nm

K
.

APPENDIX B: ASYMPTOTIC EEQUIVALENCE OF I

Lemma B.1. Let a and b satisfy 0 < a, b < n and |a � b|/n  1 � c for
any constant 1 > c > 0. We have

I ⇣ (a� b)2

nmin{a+ b, 2n� a� b}

When b  a  (1� c)n we have I ⇣ (a� b)2/(na). In addition if a = o(n),
we have I = (1 + o(1))(

p
a�

p
b)2/n.

Proof. Without loss of generality we assume b  a. Write

I = � log

  

r

a

n

b

n
+

r

1� a

n

r

1� b

n

!

2

!

= � log

 

1�
⇣a

n
+

b

n

⌘

+ 2

r

ab

n2

 

r

⇣

1� a

n

⌘⇣

1� b

n

⌘

+

r

ab

n2

!!

= � log

 

1�
 

r

a

n
�
r

b

n

!

2

� 2

r

ab

n2

 

1�
r

ab

n2

�
r

⇣

1� a

n

⌘⇣

1� b

n

⌘

!!

.

Note that
q

a
n

b
n +

q

1� a
n

q

1� b
n � b

n + 1 � a
n � c bounded away from 0,

we have

I ⇣
 

r

a

n
�
r

b

n

!

2

+ 2

r

ab

n2

 

1�
r

ab

n2

�
r

⇣

1� a

n

⌘⇣

1� b

n

⌘

!

.(B.1)
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We consider the following two cases:
(1) When 1� b/n � a/n, i.e. n� b � a, we have

1�
r

ab

n2

�
r

⇣

1� a

n

⌘⇣

1� b

n

⌘

=

⇣

1�
q

ab
n2

⌘

2

�
�

1� a
n

��

1� b
n

�

1�
q

ab
n2 +

q

�

1� a
n

��

1� b
n

�

=

⇣

q

a
n �

q

b
n

⌘

2

1�
q

ab
n2 +

q

�

1� a
n

��

1� b
n

�

,

where the denominator is in a constant order, which implies that there is
some constant c

1

> 0,

I ⇣
⇣

1 + 2c
1

r

ab

n2

⌘(
p
a�

p
b)2

n
⇣ (

p
a�

p
b)2

n
.(B.2)

Note that

(
p
a�

p
b)2

n
=

(a� b)2

n(
p
a+

p
b)2

⇣ (a� b)2

n(a+ b)
,

which yields I ⇣ (a�b)2

n(a+b) .

(2) If b/n > 1� a/n, i.e. n� b < a, we have

1�
r

ab

n2

�
r

⇣

1� a

n

⌘⇣

1� b

n

⌘

=

⇣

1�
r

⇣

1� a
n

⌘⇣

1� b
n

⌘⌘

2

� ab
n2

1�
r

⇣

1� a
n

⌘⇣

1� b
n

⌘

+
q

ab
n2

=

⇣

q

1� a
n �

q

1� b
n

⌘

2

1�
r

⇣

1� a
n

⌘⇣

1� b
n

⌘

+
q

ab
n2

,

where the denominator is in a constant order. This implies that for some
constant c

2

> 0,

I ⇣
⇣

1 + 2c
2

r

ab

n2

⌘⇣

r

1� a

n
�
r

1� b

n

⌘

2

⇣
⇣

r

1� a

n
�
r

1� b

n

⌘

2

.

Note that

⇣

r

1� a

n
�
r

1� b

n

⌘

2

⇣
( an � b

n)
2

⇣

q

1� a
n +

q

1� b
n

⌘

2

⇣ (a� b)2

n((n� b) + (n� a))
,
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which yields I ⇣ (a�b)2

n(2n�a�b) .

When b  a  (1 � c)n, we immediately obtain I ⇣ (a � b)2/(na) since
a ⇣ (a+b) . (2n�a�b). In addition if a = o(n), the proof is nearly identical
with case (1), except that (

p
a�

p
b)2/n = o(1) and ab/n2 = o(1). Note that

I is equal to the right hand side of Equation (B.1) up to a (1+ o(1)) factor.
Then Equation (B.2) leads to I = (1 + o(1))(

p
a�

p
b)2/n.
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