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MINIMAX RATES OF COMMUNITY DETECTION IN STOCHASTIC
BLOCK MODELS

BY ANDERSON Y. ZHANG AND HARRISON H. ZHOU

Yale University

Recently, network analysis has gained more and more attention in statis-
tics, as well as in computer science, probability and applied mathematics.
Community detection for the stochastic block model (SBM) is probably the
most studied topic in network analysis. Many methodologies have been pro-
posed. Some beautiful and significant phase transition results are obtained
in various settings. In this paper, we provide a general minimax theory for
community detection. It gives minimax rates of the mis-match ratio for a
wide rage of settings including homogeneous and inhomogeneous SBMs,
dense and sparse networks, finite and growing number of communities. The
minimax rates are exponential, different from polynomial rates we often see
in statistical literature. An immediate consequence of the result is to estab-
lish threshold phenomenon for strong consistency (exact recovery) as well as
weak consistency (partial recovery). We obtain the upper bound by a range
of penalized likelihood-type approaches. The lower bound is achieved by a
novel reduction from a global mis-match ratio to a local clustering problem
for one node through an exchangeability property.

1. Introduction. Network science [10, 18, 25, 29] has become one of the
most active research areas over the past few years. It has applications in many dis-
ciplines, for example, physics [24], sociology [30], biology [4] and the Internet [2].
Detecting and identifying communities is fundamentally important to understand
the underlying structure of the network [13]. Many models and methodologies
have been proposed for community detection from different perspectives, includ-
ing RatioCut [14], Ncut [27], and spectral method [17, 20, 26] from computer sci-
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ence, Newman–Girvan modularity [13] from physics, semi-definite programming
[7, 15] from engineering and maximum likelihood estimation [3, 6] from statistics.

Deep theoretical developments have been actively pursued as well. Recently,
celebrated works of Mossel et al. [21, 22] and Massoulie [19] considered balanced
two-community sparse networks, and discovered the threshold phenomenon for
both weak and strong consistency of community detection. Further extensions to
slowly growing number of communities have been made in [1, 8, 15, 23]. Recently,
in statistical literature, theoretical properties of various methods had been investi-
gated as well in [5, 8, 9, 17, 26, 32], usually under weaker conditions and better
suited for real data applications, but the convergence rates may often be subopti-
mal.

Despite recent active and significant developments in network analysis, assump-
tions and conclusions can be very different in different papers. There is not an in-
tegrated framework on optimal community detection. In this paper, we attempt to
give a fundamental and unified understanding of the community detection problem
for the Stochastic Block Model (SBM). Our framework is quite general, including
homogeneous and inhomogeneous SBMs, dense and sparse networks, equal and
nonequal community sizes and finite and growing number of communities. For ex-
ample, the connection probability can be as small as an order of 1/n, or as large as
a constant order, and the total number of communities can be as large as n/ logn.
Under this framework, a sharp minimax result is obtained with an exponential rate.
This result gives a clear and smooth transition from weak consistency (partial re-
covery) to strong consistency (exact recovery), that is, clustering error rates from
o(1) to o(n−1). As a consequence, we obtain phase transitions for nonconsistency
and strong consistency, under various settings, which recover the tight thresholds
for phase transition in [8, 21–23].

The stochastic block model, proposed by [16], is possibly the most studied
model in community detection [6, 17, 26]. Consider an undirected network with
totally n nodes, and K communities labeled as {1,2, . . . ,K}. Each node is as-
signed to one community. Denote σ to be an assignment, and σ(i) is the com-
munity assignment for the ith node. Let nk = |{i : σ(i) = k}| be the size of
the kth community, for each k ∈ {1,2, . . . ,K}. We observe the connectivity of
the network, which is encoded into the adjacency matrix {Ai,j } taking values in
{0,1}n×n. If there exists a connection between two nodes, Ai,j is equal to 1, and
0 otherwise. We assume each Ai,j for any i ≥ j to be an independent Bernoulli
random variable with a success probability θi,j . Let Ai,i = 0 (no self-loop) and
Ai,j = Aj,i (symmetry) for any i, j . In the SBM, {θi,j } is assumed to have a
blockwise structure, in the sense that θi,j = θi′,j ′ if i and i ′ are from the same
community, and so are j and j ′. In this paper, we focus on the case that the within-
community probabilities are larger than the between-communities probabilities;
as in reality, individuals from the same community are often more likely to be
connected.
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We consider a general SBM with parameter space defined as follows:

�(n,K,a, b,β) �
{(

σ, {θi,j }) : σ ∈ [K]n, nk ∈
[

n

βK
,
βn

K

]
,

∀k ∈ [K], {θi,j } ∈ [0,1]n×n,

θi,j ≥ a

n
if σ(i) = σ(j) and θi,j ≤ b

n

if σ(i) �= σ(j), θi,i = 0, θi,j = θj,i,∀i �= j

}
,

where β > 1 and is bounded. When β = 1+o(1), all communities have almost the
same size. The parameters a/n and b/n have straightforward interpretation, with
the former one as the smallest within-community probability and the later as the
largest between-community probability. In this paper, we assume

0 < b < a < (1 − c0)n,(1.1)

where c0 > 0 is any constant, allowing the network to be very sparse or very dense.
We use the mis-match ratio r(σ, σ̂ ) to measure the performance of community
detection. It is the proportion of nodes mis-clustered by σ̂ against the truth σ . The
exact definition is given in Section 2.1.

Define I as

I = −2 log
(√

a

n

b

n
+
√

1 − a

n

√
1 − b

n

)
,(1.2)

which is exactly D1/2(Ber(a
n
)‖Ber( b

n
)), the Rényi divergence of order 1/2 between

two Bernoulli distributions Ber(a
n
) and Ber( b

n
). The minimax rate for the parameter

space �(n,K,a, b,β) in terms of the mis-match ratio loss is as follows.

THEOREM 1.1. Assume nI
K logK

→ ∞, then

inf
σ̂

sup
�(n,K,a,b,β)

Er(σ, σ̂ ) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
−(1 + o(1)

)nI

2

)
, K = 2,

exp
(
−(1 + o(1)

) nI

βK

)
, K ≥ 3,

(1.3)

where 1 + εn ≤ β <
√

5/3 for some εn = CK/n with constant C large enough.
In addition, if nI/K = O(1), there are at least a constant proportion of nodes
mis-clustered, that is, infσ̂ sup�(n,K,a,b,β)Er(σ, σ̂ ) ≥ c, for some constant c > 0.

Note that when K is finite, nI → ∞ is a sufficient condition to yield equation
(1.3) since it is equivalent to nI

K logK
→ ∞. The form of I is closely related to the

Hellinger distance between those two Bernoulli probability measures. It is worth
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TABLE 1
Summary of assumptions for lower and upper bounds

Assumption on β Assumption on K Theorems

Lower bound β ≥ 1 + εn K ≥ 2 Theorems 2.1, 2.2
Upper bound

√
5/3 > β ≥ 1 nI/(K logK) → ∞ Theorems 3.1, 3.2

pointing out that I is equal to (a−b)2/(an) up to a constant factor (cf. Lemma B.1
in the supplementary material [31]), which can be interpreted as the signal-to-noise
ratio. In particular, when a = o(n), I is equal to (1 + o(1))(

√
a − √

b)2/n.
The lower bound of (1.3) is achieved by a novel reduction of the global minimax

rate into a local testing problem. A range of new penalized likelihood-type meth-
ods are proposed for obtaining the upper bound. These ideas inspired the follow-up
paper [11] to develop polynomial-time and rate-optimal algorithms.

Theorem 1.1 covers both dense and sparse networks. It holds for a wide range
of possible values of a and b, from a constant order to an order of n. It implies
that when the connectivity probability is O(n−1) [i.e., when a = O(1)], no con-
sistent algorithm exists for community detection. The number of communities K

is allowed to grow fast. It can be as large as in the order of n/ logn when the
connectivity probability is a constant order, in which each community contains
an order of logn nodes. In addition, for a finite number of communities, Theo-
rem 1.1 shows (a − b)2/a → ∞ is a necessary and sufficient condition for con-
sistent community detection, which implies consistency results in [21, 22]. It also
recovers the strong consistency results in [15, 23], in which they additionally as-
sume a � logn.

The minimax rate is of an exponential form, in contrast to the polynomial rates
in [17, 26]. The term nI

K
plays a dominating role in determining the rate. Rewrite

nI
βK

in the form of ρ logn, and then we fail to recover approximately n1−ρ nodes.
When ρ > 1, the network enjoys strong consistency property (exact recovery)
since n1−ρ = o(1), that is, every node is correctly clustered. While for 0 < ρ < 1,
it is impossible to recover the communities exactly.

We provide Table 1 to summarize various assumptions for lower and upper
bounds as follows.

Organization. The paper is organized as follows. The fundamental limits
of community detection are discussed in Section 2. We present the penalized
likelihood-type procedures in Section 3 to achieve the optimal rate. Some special
cases of our result and the computational feasibility are discussed in Section 4.
Section 5 gives the proofs of the main theorems, while Section 6 provides the
proofs of key technical lemmas.

Notation. For any set B , we use |B| to indicate its cardinality. For two arbitrary
equal-length vectors x = {xi} and y = {yi}, define the Hamming distance between



2256 A. Y. ZHANG AND H. H. ZHOU

x and y as dH (x, y) = |{i : xi �= yi}|, that is, the number of coordinates with differ-
ent values. For any positive integer m, we use [m] to denote the set {1,2, . . . ,m}.
For any two random variables X and Y , we use X ⊥ Y to indicate that they are
independent. Denote Ber(q) as a Bernoulli distribution with success probability q ,
and Bin(m,q) as a binomial distribution with m trials and success probability q .
For two positive sequences xn and yn, xn � yn means xn ≤ cyn for some constant
c not depending on n. We adopt the notation x � y if xn � yn and yn � xn. For any
scalar z, let �z� = max{m ∈ Z : m ≤ z} and �z� = min{m ∈ Z : m > z}. For any two
scalars z1 and z2, denote z1 ∧ z2 to be min{z1, z2} and z1 ∨ z2 to be max{z1, z2}.
We use � short for �(n,K,a, b,β) when there is no ambiguity to drop the index
(n,K,a, b,β).

2. Fundamental limits of community detection.

2.1. Mis-match ratio. Before giving the exact definition of mis-match ratio,
we need to introduce permutations � : [K] → [K] to define equivalent partitions.
For the community detection problem, there exists an identifiability issue involved
with the community label. For instance, for a network with 4 nodes, assignments
(1,1,2,2) and (2,2,1,1) give the same network partition. Define δ ◦ σ as δ ∈ �

to be a new assignment with (δ ◦σ)(i) = δ(σ (i)) for each i ∈ [n]. This assignment
is equivalent to σ . The mis-match ratio is used as the loss function, counting the
proportion of nodes incorrectly clustered, minimizing over all the possible permu-
tations as follows:

r(σ, σ̂ ) = inf
δ

dH (σ, δ ◦ σ̂ )/n.

The Hamming distance between σ and σ̂ is just to count the number of entries
having different values in two vectors. Thus, r(σ, σ̂ ) is the total number of errors
divided by the total number of nodes.

2.2. Homogeneous stochastic block model. The stochastic block model as-
sumes the network has an underlying blockwise structure. When all {θi,j } take two
possible values a/n or b/n, depending on whether σ(i) = σ(j) or not, we call it
homogeneous. A parameter space is called homogeneous if it only consists of ho-
mogeneous {θi,j }. In such parameter space, {θi,j } is unique for any given σ . The
homogeneous SBM is the most studied model in computer science and probability
[8, 15, 21–23]. Define

�1(n,K,a, b,β) �
{(

σ, {θi,j }) ∈ �(n,K,a, b,β) : θi,j = a

n
if σ(i) = σ(j)

and θi,j = b

n
if σ(i) �= σ(j),∀i �= j

}
.
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The parameter space �1 is homogeneous. In �1, since {θi,j } is uniquely deter-
mined by any given σ , we may write σ ∈ �1 instead of (σ, {θi,j }) ∈ �1 for sim-
plicity. The same rule may be applied for any other homogeneous parameter space.

Note that �1 is closed under permutation. Let π be any permutation on [n], then
for any σ ∈ �1, a new assignment σ ′ defined as σ ′(i) = σ(π−1(i)) also belongs
to �1. This property is helpful to show �1 is a least favorable subspace of � for
community detection. A minimax lower bound over �1 immediately gives a lower
bound for a larger parameter space, such as �.

2.3. From global to local. To establish a lower bound is challenging to work
with the loss function r(σ, σ̂ ) directly, as it takes infimum over an equivalent class.
The mis-match ratio is a global property of the network. The key idea in this paper
is to define a local loss, and to reduce the global minimax problem into a local
classification for one node.

The local loss focuses only on one node. Given the truth σ and any procedure σ̂ ,
the loss of estimating the label for the ith node is defined as follows. Let Sσ (σ̂ ) =
{σ ′ : σ ′ = δ ◦ σ̂ , δ ∈ �,dH (σ ′, σ ) = infδ dH (σ, δ ◦ σ̂ )}, and define

r
(
σ(i), σ̂ (i)

)
�

∑
σ ′∈Sσ (σ̂ )

dH (σ (i), σ ′(i))
|Sσ (σ̂ )| ,

for each i ∈ [n]. It is an average over all the possible σ ′ ∈ Sσ (σ̂ ).
We will see later that it is relatively easy to study the local loss. Lemma 2.1

shows that the global loss is equal to the local one when the SBM is homogeneous
and closed under permutation.

LEMMA 2.1 (Global to local). Let � be any parameter space of SBM that is
homogeneous and closed under permutation. Let τ be the uniform prior over all
the elements in �. Define the global Bayesian risk as Bτ (σ̂ ) = 1

|�|
∑

σ∈�Er(σ, σ̂ )

and the local Bayesian risk Bτ (σ̂ (1)) = 1
|�|

∑
σ∈�Er(σ (1), σ̂ (1)) for the first

node. Then

inf
σ̂

Bτ (σ̂ ) = inf
σ̂

Bτ

(
σ̂ (1)

)
.

The proof of Lemma 2.1 is involved. It is established by exploiting the property
of exchangeability of the parameter space �.

2.4. Minimax lower bound. By constructing a least favorable case of �1, we
have the following lower bound for the minimax rate. We present the lower bound
under milder conditions than what is stated in Theorem 1.1.
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THEOREM 2.1. Under the assumption nI
K

→ ∞, we have

inf
σ̂

sup
�1(n,K,a,b,β)

Er(σ, σ̂ ) ≥

⎧⎪⎪⎨
⎪⎪⎩

exp
(
−(1 + o(1)

)nI

2

)
, K = 2,

exp
(
−(1 + o(1)

) nI

βK

)
, K ≥ 3,

(2.1)

where β ≥ 1 + εn for some εn = CK/n with constant C large enough. If nI
K

=
O(1), then infσ̂ sup�1(n,K,a,b,β)Er(σ, σ̂ ) ≥ c for some constant c > 0.

The forms of minimax rates are different for two cases K ≥ 3 and K = 2. For
K ≥ 3, it is relatively more challenging to discover and distinguish small commu-
nities, rather than the communities with larger sizes. The least favorable case is
the case for which at least a constant proportion of communities are of size n

βK
.

The hardness of the community detection in this setting is then determined by the
ability to recover and distinguish such small communities. For K = 2, the least
favorable setting in �1 is when the two communities are of the same size. When
there are only two communities, it is actually easier to recover the nonequal-sized
communities, by identifying the larger one first and then labeling the remaining
nodes as from the smaller one.

Approximately equal-sized case: We are interested in the case where commu-
nities are almost of the same size. Networks of community sizes exactly equal to
n/K are the most studied settings [8, 9, 22]. Here, we allow a small fluctuation of
community sizes. Denote �0 as follows:

�0(n,K,a, b) �
{(

σ, {θi,j }) : σ ∈ [K]n, nk ∈
[

n

(1 + εn)K
,
(1 + εn)n

K

]
,∀k ∈ [K],

θi,i = 0,∀i ∈ [n], θi,j = a

n
if σ(i) = σ(j)

and θi,j = b

n
if σ(i) �= σ(j),∀i �= j

}
,

where εn = o(1) is any positive sequence satisfying εn ≥ CK/n for some constant
C large enough, such that the parameter space contains networks with fluctuation
in community sizes. Note that �0(n,K,a, b) is �1(n,K,a, b,β) with β = 1+εn,
for which we have the following minimax lower bound.

THEOREM 2.2. Under the assumption nI
K

→ ∞, we have

inf
σ̂

sup
�0(n,K,a,b)

Er(σ, σ̂ ) ≥ exp
(
−(1 + o(1)

)nI

K

)
.(2.2)

If nI
K

= O(1), then infσ̂ sup�0(n,K,a,b)Er(σ, σ̂ ) ≥ c for some constant c > 0.
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Compared with Theorem 2.1, the forms of rates for K = 2 and K ≥ 3 are the
same in �0. The proof of Theorem 2.2 is provided in Section 5. We defer the proof
of Theorem 2.1 to the supplement material [31], since it is almost identical to that
of Theorem 2.2.

3. Rate-optimal procedure. We develop a range of penalized likelihood-type
procedures to achieve the optimal mis-match ratio. Throughout the section, σ0 is
denoted as the underlying truth.

3.1. Penalized likelihood-type estimation. The penalized procedure is based
on the likelihood of a homogeneous network, although risk upper bounds are es-
tablished for more general networks. If the network is homogeneous (�0 and �1),
for which the within and between community probabilities are exactly equal to
a/n and b/n, respectively, the log-likelihood function is

L(σ ;A) = log
(

a

n

)∑
i<j

Ai,j 1{σ(i)=σ(j)} + log
(

1 − a

n

)∑
i<j

(1 − Ai,j )1{σ(i)=σ(j)}

+ log
(

b

n

)∑
i<j

Ai,j 1{σ(i) �=σ(j)}

+ log
(

1 − b

n

)∑
i<j

(1 − Ai,j )1{σ(i) �=σ(j)}.

Since
∑

i<j Ai,j 1{σ(i)=σ(j)} +∑
i<j Ai,j 1{σ(i) �=σ(j)} =∑

i<j Ai,j for all σ , we can
write L(σ ;A) as

L(σ ;A) = log
a(1 − b/n)

b(1 − a/n)

∑
i<j

Ai,j 1{σ(i)=σ(j)}

− log
1 − b/n

1 − a/n

∑
i<j

1{σ(i)=σ(j)} + f (A),

where f (A) is a function not depending on σ . Then the maximum likelihood esti-
mator σ̂MLE is as follows:

σ̂MLE = arg max
σ

L(σ ;A)

= arg max
σ

(
log

a(1 − b/n)

b(1 − a/n)

∑
i<j

Ai,j 1{σ(i)=σ(j)}(3.1)

− log
1 − b/n

1 − a/n

∑
i<j

1{σ(i)=σ(j)}
)
.

The above maximum likelihood estimator can be decomposed into two terms. The
first one is the sum of all Ai,j for all i and j belonging to the same communities
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of σ . The second term is a penalty over the sum of sizes of all communities. There
is a trade-off between these two terms. The first term is maximized when there is
only one community, while the second term, a penalty term, is maximized when
all community sizes are equal. However, the second term is dropped when the
community sizes are required to be exactly equal, that is, the maximum likelihood
estimator over all σ with a community size n/K for every community has a simpler
form, σ̂ MLE = arg maxσ

∑
i<j Ai,j 1{σ(i)=σ(j)}.

When the parameter space is not homogeneous (e.g., �), the maximum likeli-
hood estimator may not have a simple form as equation (3.1). However, we still
propose to use the identical simple form of penalized likelihood estimator as equa-
tion (3.1), that is,

σ̂ = arg max
σ∈�

T (σ) with T (σ) �
∑
i<j

Ai,j 1{σ(i)=σ(j)} − λ
∑
i<j

1{σ(i)=σ(j)},

where we set

λ = log
(

1 − b/n

1 − a/n

)/
log

(
a(1 − b/n)

b(1 − a/n)

)
∀K ≥ 2.(3.2)

When the parameter space is homogeneous, σ̂ is identical to the maximum likeli-
hood estimator. The optimality result will be obtained for the parameter space �,
which allows the network to be inhomogeneous, and imbalanced in the sense that
the community sizes may be different.

3.2. Other choices of λ. In the previous section, we provide a unified λ for the
penalized likelihood-type estimation for both K = 2 and K ≥ 3. It is worthwhile
to point out that for K ≥ 3 the optimality can be attained for a wide range of λ. Let

t� = 1

2
log

a(1 − b/n)

b(1 − a/n)
.(3.3)

It can be shown that t� is the minimizer of the moment generating function for
the difference of two Bernoulli variables, that is, t� = arg mint>0 Eet(X−Y ), where
X ∼ Ber( b

n
) and Y ∼ Ber(a

n
). It is equivalent to write λ in equation (3.2) as fol-

lows:

λ = − 1

2t�
log

(
(a/n) exp(−t�) + 1 − a/n

(b/n) exp(t�) + 1 − b/n

)

= − 1

2t�
log

(
a

n
exp

(−t�
)+ 1 − a

n

)

+ 1

2t�
log

(
b

n
exp

(
t�
)+ 1 − b

n

)
.

From the equation above, we can interpret λ as a weighted sum between two
terms, with the first one more involving the within-community probability a

n
,
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and the second more focusing on the between-community probability b
n

. De-
fine

λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

2t�
log

(
a

n
e−t� + 1 − a

n

)

+ 1

2t�
log

(
b

n
et� + 1 − b

n

)
, K = 2,

−w

t�
log

(
a

n
e−t� + 1 − a

n

)

+ (1 − w)

t�
log

(
b

n
et� + 1 − b

n

)
, K ≥ 3,

(3.4)

where w in any constant in [0,1]. We can clearly see that λ in equation
(3.2) is a special case of λ in (3.4) with w = 1/2. In Section 3.3, we give
theoretical properties of penalized likelihood estimation for all λ in equation
(3.4).

3.3. Minimax upper bound. For the general SBM �, the risk upper bound of
the penalized likelihood estimator, for every λ in equation (3.4), defined in the
previous section, matches the minimax lower bound given in Theorem 2.1.

THEOREM 3.1. Assume nI
K logK

→ ∞ and K ≥ 2. For the penalized maximum
likelihood estimator σ̂ with λ defined in (3.4), we have

sup
�(n,K,a,b,β)

Er(σ̂ , σ ) ≤

⎧⎪⎪⎨
⎪⎪⎩

exp
(
−(1 + o(1)

)nI

2

)
, K = 2,

exp
(
−(1 + o(1)

) nI

βK

)
, K ≥ 3,

where 1 ≤ β <
√

5/3.

Approximately equal-sized case: For the special parameter space �0 for which
community sizes are almost equal, we have the following result, a form analogous
to Theorem 3.1.

THEOREM 3.2. Assume nI
K logK

→ ∞ and K ≥ 2. For the penalized maximum
likelihood estimator σ̂ with λ defined in (3.4), we have

sup
�0(n,K,a,b)

Er(σ̂ , σ ) ≤ exp
(
−(1 + o(1)

)nI

K

)
.

The proof of the above theorem is provided in Section 5. Due to the similarity,
the proof of Theorem 3.1 is given in the supplement material [31].
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4. Discussion.

4.1. Comparison and connection with prior works. We follow the notation
and definition of strong/weak consistency as in Mossel et al. [21–23]. A global-to-
local scheme was introduced in [23] to study phase transitions and thresholds. In
this paper, we developed a different global-to-local scheme independently to build
a strong connection between global and local rates by a Bayesian approach.

Mossel et al. [21–23] obtained thresholds for strong/weak consistency for
K = 2 (i.e., two-community case), while in this paper we study minimax rates
for arbitrary K under much weaker assumptions on a and b. As we will show
next, the minimax rates in Theorem 1.1 immediately imply phase transitions and
thresholds under various settings. When the minimax rates are equal to o(1/n) or
o(1), we can obtain critical values for strong and weak consistency, respectively.

(1) Let a = o(n) and (a − b)/a = o(1). Under this scenario, the difference
of within-community probability and between-community probability is relatively
small. Note that I = (1+o(1))(a−b)2/(4an) (cf. Lemma B.1), which reduces the
minimax result into the form of exp(−(1 + o(1))(a − b)2/(4aK)). When K = 2,
Theorem 1.1 implies the results from [21, 22]. With the additional assumption
a, b = no(1/ log logn), they show that (a − b)2/a → ∞ is the necessary and suffi-
cient condition for consistency. In this paper, K can be as large as n/ logn, and
a, b can take any value from 0 to n. Similarly, we also obtain the sharp threshold
for strong consistency in [23] when K = 2.

(2) Let a and b be an order of logn. Denote a = e1 logn and b = e2 logn, with
e1 ≥ e2 > 0. Note that I can be written as I = (1 + o(1))(

√
e1 − √

e2)
2 logn/n.

Under the assumption K = no(1), Theorem 1.1 implies that there exists a strongly
consistent estimator if lim infn→∞(

√
e1 − √

e2)/
√

K > 1. This threshold is ob-
tained in [15] but only for finite K . In particular, for the two-community case with
e1 and e2 constants,

√
e1 − √

e2 >
√

2 for exact recovery is proved in [23].
It is worth mentioning that in [22] (a − b)2 = 2(a + b) is proved to be a critical

threshold to do better than random guess, and an efficient algorithm is proposed to
outperform random guess as long as (a − b)2 > 2(a + b).

4.2. Comments on the minimax rates. Theorem 1.1 implies the minimax rates
are determined by sizes of smallest two communities, which are the most dif-
ficult parts of the network to be correctly recovered. In this paper, we consider
�(n,K,a, b,β) with a bound on β2, the ratio of the largest and smallest commu-
nity size, due to the technical difficulties in deriving upper bounds. We think the
same bounds hold for a wide range of β values.

Under the assumption nI/(K logK) → ∞, we establish a lower bound
exp(−(1 + o(1))nI/(βK)). However, we conjecture that the exact minimax
rate is (K − 1) exp(−(1 + o(1))nI/(βK)), which is equivalent to exp(−(1 +
o(1))nI/(βK)) when nI/(K logK) → ∞. We think the same proof scheme
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leads to the sharper lower bound with more sophisticated technical arguments,
though we have not succeeded yet. If our goal is only to obtain a lower bound
exp(−(1 + o(1))nI/(βK)), there exists a much simpler way [12] to replace the
role of Lemma 2.1. The key idea there is to find a smaller parameter space with no
identifiability issue of labels as follows. Consider the parameter space with assign-
ments of n/(4βK) nodes undecided. The labels for the remaining n − n/(4βK)

nodes are the same and known. The distance between any two assignments is then
just the Hamming distance, since the distance is smaller than n/(2βK), half of the
smallest community size. Thus, the identifiablity issue is avoided. Eventually, we
can show the global minimax risk is lower bounded by local minimax risk, up to a
factor of K−1.

4.3. Computational feasibility. The penalized likelihood estimator we pro-
pose searches all the possible assignments in the parameter space. It is computa-
tionally intractable due to the enormous cardinality of the assignments. However,
the idea of reducing global estimation into local testing problem we developed in
this paper establishes a guideline for constructing both efficient and optimal algo-
rithms. Along with the global to local scheme, the penalized likelihood estimator
can be further modified into a node-wise procedure, whose purpose is to assign the
label node by node. In this way, the exhaustive search over the parameter space is
avoided and the computational complexity is dramatically reduced. By exploiting
the local idea, in the subsequent paper [11] a two-stage algorithm is proposed to
simultaneously achieve the optimal rate and computational feasibility.

5. Proofs of main theorems. In this section, we prove two main theorems,
Theorems 2.2 and 3.2. The proofs of Theorems 2.1 and 3.1 are almost identical to
those of Theorems 2.2 and 3.2. We put them in the supplement material [31].

5.1. Proof of Theorem 2.2. To obtain the lower bound for the parameter space
�0, we will first construct and analyze a least favorable case in terms of the
sizes of the communities. In particular, the community sizes only take values
in {� n

K
�, � n

K
� + 1, � n

K
� − 1}, and the number of communities with size � n

K
� or

� n
K

� + 1 is a constant proportion of K . Note that � n
K

� − 1 or � n
K

� + 1 as commu-
nity size is allowed in �0 since we assume εn ≥ CK/n, as long as C ≥ 3.

First, consider the case with K ≥ 3. For each pair of (n,K), the integer K can
always be decomposed as the sum of three integers: K = K1 +K2 +K3, satisfying
(1) there exists a constant ε > 0 such that εK < min(K1,K2) ≤ max(K1,K2) <

(1 − ε)K ; and (2) either of the following two conditions:⌊
n

K

⌋
K1 +

(⌊
n

K

⌋
+ 1

)
K2 +

(⌊
n

K

⌋
− 1

)
K3 = n; or(5.1)

⌈
n

K

⌉
K1 +

(⌈
n

K

⌉
+ 1

)
K2 +

(⌈
n

K

⌉
− 1

)
K3 = n.(5.2)
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When K ≥ 3, it can be shown that such decomposition always exists. Write n =
� n

K
�K + r , where 0 ≤ r ≤ K − 1 is an integer. If r ≥ 2εK and r ≤ (1 − 2ε)K

for a constant ε > 0, we have n = � n
K

�(K − r) + (� n
K

� + 1)r , which satisfies
equation (5.1). Otherwise, if r < 2εK for a small positive constant ε, write n =
� n

K
�(K − 2�K

3 � − r) + (� n
K

� + 1)(�K
3 � + r) + (� n

K
� − 1)�K

3 �, which satisfies
equation (5.1) for ε sufficient small. If K − r > 2εK , we may argue similarly to
obtain equation (5.2).

Recall that we use nk to denote the size of the kth community for each k ∈ [K].
Without loss of generality, assume there exist {Ki}1≤i≤3 satisfying equation (5.1)
with εK < min(K1,K2) ≤ max(K1,K2) < (1−ε)K . Define a subparameter space
of �0 as follows:

�L(n,K,a, b, {Ki})
=
{(

σ, {θi,j }) ∈ �0(n,K,a, b) :
∣∣∣∣
{
k : nk =

⌊
n

K

⌋}∣∣∣∣= K1,

∣∣∣∣
{
k : nk =

⌊
n

K

⌋
+ 1

}∣∣∣∣= K2,

∣∣∣∣
{
k : nk =

⌊
n

K

⌋
− 1

}∣∣∣∣= K3

}
.

For the case with K = 2, we can define the least favorable case in an analogous
way. It has a slightly different form depending on whether n/2 is an integer or not.
If n

2 �= �n
2�, �L(n,2, a, b) � {(σ, {θi,j }) ∈ �0(n,2, a, b) : (n1, n2) = (�n

2�, �n
2�)}.

Otherwise, �L(n,2, a, b) � {(σ, {θi,j }) ∈ �0(n,2, a, b) : (n1, n2) ∈ {(n
2 , n

2 ), (n
2 +

1, n
2 − 1)}}.
Note that �L is homogeneous and closed under permutation. Compared with

�0, �L is quite small, enough for us to do some lower bound analysis. On the
other hand, it is large to match the lower bound in equation (2.1).

LEMMA 5.1. Let τ be the uniform prior over all the elements in �L. For the
first node, define the local Bayesian risk to be Bτ (σ̂ (1)) = 1

|�L|
∑

σ∈�L Er(σ (1),

σ̂ (1)). Then there exists a constant ε > 0 such that

Bτ

(
σ̂ (1)

)≥ εP

(�n/K�∑
u=1

Xu ≥
�n/K�∑
u=1

Yu

)
,

where Xi
i.i.d.∼ Ber( b

n
), Yi

i.i.d.∼ Ber(a
n
), for i = 1,2, . . . , � n

K
�, and {Xi}�n/K�

i=1 ⊥
{Yi}�n/K�

i=1 .

Lemma 5.1 shows the lower bound is only involved with 2� n
K

� Bernoulli ran-
dom variables, whose success probability is either a/n or b/n. Recall that a/n

is the smallest within-community probability and b/n is the largest between-
community probability. The lower bound here will be determined by testing two
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probability measures. In �L, the most difficult case is testing two assignment vec-
tors with Hamming distance 1. The difference of their probability measures is
exactly the difference between probability measures of X and Y .

LEMMA 5.2. Let n′ = � n
K

�. Define Zi = Xi − Yi with {Xi} i.i.d.∼ Ber( b
n
),

{Yi} i.i.d.∼ Ber(a
n
), and {Xi} ⊥ {Yi}, for i = 1,2, . . . , n′. If nI

K
→ ∞, we have

P

(
1

n′
n′∑

i=1

Zi ≥ 0

)
≥ exp

(−(1 + o(1)
)
nI/K

)
.

In addition, if nI/K = O(1), then P( 1
n′
∑n′

i=1 Zi > 0) ≥ c for some constant c > 0.

Lemma 5.2 provides an explicit expression for the lower bound. The proof
mainly follows the proof of the Cramér–Chernoff theorem [28]. The general
Cramér–Chernoff theorem gives a lower bound for the tail probability that the
sum of random variables deviates from its mean. Usually it is for the case where
these random variables are from a distribution independent of the sample size. In
our setting, we allow a and b to depend on n′.

PROOF OF THEOREM 2.2. Since �L ⊂ �0, we have infσ̂ sup�0 Er(σ, σ̂ ) ≥
infσ̂ supσ∈�L Er(σ, σ̂ ). Due to the fact that Bayes risk always lower bounds the
minmax risk, we have infσ̂ supσ∈�L Er(σ, σ̂ ) ≥ infσ̂ Bτ (σ̂ ). By the fact that �L is
a homogeneous parameter space and also closed under permutation for both K ≥ 3
and K = 2, Lemma 2.1 implies infσ̂ Bτ (σ̂ ) = infσ̂ Bτ (σ̂ (1)). Thus,

inf
σ̂

sup
�0

Er(σ, σ̂ ) ≥ inf
σ̂

Bτ

(
σ̂ (1)

)
,

which, together with Lemmas 5.1 and 5.2, implies Theorem 2.2. �

5.2. Proof of Theorem 3.2. Recall that � is the set of all permutations from
[K] to [K]. For an arbitrary σ ∈ �0, define �(σ) as the equivalence class of σ with
�(σ) = {σ ′ : ∃δ ∈ �, s.t. σ ′ = δ ◦ σ }. We use the notation � as a general reference
for equivalence class, and {�} as the set consisting of all the possible equivalence
classes with respect to �0. For any σ1, σ2 ∈ �, define the distance between σ1 and
σ2 as

d(σ1, σ2)� inf
σ ′

2∈�(σ2)
dH

(
σ1, σ

′
2
)= inf

σ ′
1∈�(σ1),σ

′
2∈�(σ2)

dH

(
σ ′

1, σ
′
2
)
.

Here, we view d(·, ·) as a distance between the equivalence classes �(σ1) and
�(σ2). Accordingly the mis-match ratio r(σ, σ̂ ) is exactly equal to

r(σ, σ̂ ) = 1

n
d(σ, σ̂ ).
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FIG. 1. Each block filled by 45 degree lines stands for all the within-community connection in
one single community. The areas inside the squares are all the Ai,j entries summed up. Left: For
2
∑

i<j Ai,j {σ0(i) = σ0(j)}, the squares exactly overlap with the within-community connection re-
gions. Right: For 2

∑
i<j Ai,j {σ(i) = σ(j)}, there are some differences between the squares and

within-community connection parts, which are labeled as α or γ according to their positions.

In the following sections, we denote the true assignment by σ0. Define

Pm = P
(∃σ ∈ �0 : d(σ0, σ ) = m and T (σ) ≥ T (σ0)

)
(5.3)

for any integer m with 0 < m < n. The key step is to have a tight bound of the
probability P(T (σ ) ≥ T (σ0)) for one fixed assignment σ satisfying d(σ,σ0) = m.
Let {nk} to be the size of communities under the truth σ0. Without loss of gener-
ality, assume σ0(i) = k for any i ∈ [∑j≤k−1 nj + 1,

∑
j≤k nj ]. Then the value

of 2
∑

i<j Ai,j {σ0(i) = σ0(j)} is just to add up all the entries in the K diago-
nal blocks of the adjacency matrix A. It is illustrated by Figure 1. The parts
filled with 45 degree lines represent the within-community connections, and blank
parts represent the between-community connections. It is obvious to see that
2
∑

i<j Ai,j {σ0(i) = σ0(j)} precisely includes all the filled blocks, that is, all the
Bernoulli random variables with success probability a

n
in the adjacency matrix.

When dH (σ,σ0) = d(σ,σ0) = m, by comparing the two color plates in Fig-
ure 1, we can clearly see where the difference

∑
i<j Ai,j {σ0(i) = σ0(j)} −∑

i<j Ai,j {σ(i) = σ(j)} lies in. Note that∑
i<j

Ai,j 1{σ(i)=σ(j)} −∑
i<j

Ai,j 1{σ0(i)=σ0(j)}

=∑
i<j

Ai,j 1{σ(i)=σ(j)}1{σ0(i) �=σ0(j)}(5.4)

−∑
i<j

Ai,j 1{σ(i) �=σ(j)}1{σ0(i)=σ0(j)}.

Define α(σ ;σ0) = |{(i, j) : i < j,σ0(i) = σ0(j) and σ(i) �= σ(j)}|, and γ (σ ;
σ0) = |{(i, j) : i < j,σ0(i) �= σ0(j) and σ(i) = σ(j)}|. We use the notation α and
γ for short when there is no ambiguity, then∑

i<j

1{σ(i)=σ(j)} −∑
i<j

1{σ0(i)=σ0(j)} = α − γ.(5.5)
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The following proposition is helpful to study Pm defined in equation (5.3).

PROPOSITION 5.1. Let σ ∈ �0 be an arbitrary assignment satisfying d(σ,

σ0) = m, where 0 < m < n is a positive integer. Then

P
(
T (σ) ≥ T (σ0)

)≤ exp
(−(α ∧ γ )I

)
,

for λ defined in equation (3.4).

Note that the value of γ and α depends on σ and σ0. Lemma 5.3 provides a
lower bound on γ and α for each m. It implies that α ∧ γ is lower bounded by
(1 − o(1))nm/K if m = o(n/K), where the factor (1 − o(1)) is tight and essential
to our proof of Theorem 3.2.

LEMMA 5.3. Let σ ∈ �0 be an arbitrary assignment satisfying d(σ,σ0) = m,
where 0 < m < n is a positive integer. Then there exists a positive sequence η → 0,
independent of the choice of σ , such that

α(σ ;σ0) ∧ γ (σ ;σ0) ≥

⎧⎪⎪⎨
⎪⎪⎩

(1 − η)nm

K
− m2, if m ≤ n

2K
,

2(1 − η)nm

9K
, if m >

n

2K
.

Lemma 5.3, together with Proposition 5.1, immediately implies an upper bound
on P(T (σ ) ≥ T (σ0)) for each given σ .

LEMMA 5.4. Let σ ∈ �0 be an arbitrary assignment satisfying d(σ,σ0) = m,
where 0 < m < n is a positive integer. There exists a positive sequence η → 0,
independent of the choice of σ , such that

P
(
T (σ) ≥ T (σ0)

)≤
⎧⎪⎪⎨
⎪⎪⎩

exp
(
−(1 − η)nmI

K
+ m2I

)
, if m ≤ n

2K
,

exp
(
−2(1 − η)nmI

9K

)
, if m ≥ n

2K
,

for λ defined in equation (3.4).

We will apply a union bound to obtain an upper bound for Pm. It is worthwhile
to point out that, in the union bound we should not use the cardinality of {σ ∈ �0 :
d(σ,σ0) = m}, which is too large due to counting the assignments from the same
equivalence class repetitively. Proposition 5.2 gives an upper bound for cardinality
of the equivalence classes {�}.

PROPOSITION 5.2. The cardinality of equivalent class that has distance m

from σ0 is upper bounded as follows:

∣∣{� : ∃σ ∈ � s.t. d(σ,σ0) = m
}∣∣≤ min

{(
enK

m

)m

,Kn

}
,
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where 0 < m < n is a positive integer.

Recall the definition of Pm in equation (5.3). With Proposition 5.2 and the union
bound, we are able to have a satisfactory bound by

Pm ≤ ∣∣{� : ∃σ ∈ � s.t. d(σ,σ0) = m
}∣∣ max{σ :d(σ,σ0)=m}P

(
T (σ) ≥ T (σ0)

)
.

PROOF OF THEOREM 3.2. We only prove the case with K → ∞ and
nI

K logK
→ ∞. Let η → 0 be the universal positive sequence given in Lemma 5.4.

We consider three scenarios as follows:
(1) If lim infn→∞ nI

K logn
> 1, there exists a small constant ε > 0 such that

(1−η)nI
K logn

> 1 + ε. Note that Lemma 5.4 still holds for any positive sequence
goes to 0 slower than η. Thus, we can assume η decay slowly such that both

ηnI
K logK

and ηn
K

go to infinity. We have P1 ≤ nK exp(−(
(1−η)n

K
− 1)I ) ≤ R, where

R � n exp(−(1 − 2η)nI/K). Since

nEr(σ, σ̂ ) ≤ P1 +
n∑

m=2

mPm,

it is sufficient to show
∑n

i=2 mPm is negligible compared with R. For m ∈ [2,m′],
where m′ = εn

3K
, we have

Pm ≤
(

enK

2
exp

(
−(1 − η)nI

K
+ mI

))m

≤
(

enK

2
exp

(
−(1 − η)nI

K
+ mI

))(
enK

2
exp

(
−(1 − η)nI

K
+ m′I

))m−1

≤ n exp
(
−(1 − 2η)nI

K

)
exp(mI)

(
enK

2
exp

(
−2(1 − 2η)nI

3K

))m−1

≤ n exp
(
−(1 − 2η)nI

K

)
exp(mI)n−ε(m−1)/3

≤ Rn−ε(m−1)/6,

where in the fourth inequality we use (1−η)nI
K logn

> 1+ ε, and in the last inequality we

use the fact that I � 1 to show eIn−ε/6 < 1 when n is large enough. As a conse-
quence,

∑m′
i=2 mPm = o(R), as {mPm}m′

i=2 is dominated by a fast-decay geometric
series. For m ∈ [m′, n], we have

Pm ≤
(

enK

m′ exp
(
−2(1 − η)nI

9K

))m

≤
(

enK

m′ exp
(
−2(1 − η)nI

9K

))9(enK

m′ exp
(
−2(1 − η)nI

9K

))m−9
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≤ n exp
(
−(1 − 2η)nI

K

)(
enK

m′ exp
(
−2(1 − η)nI

9K

))m−9

≤ Rn−2(m−9)/9.

Since m′ → ∞, {mPm}m≥m′ is dominated by a fast-decay geometric series, which
leads to

∑n
i>m′ mPm = o(R).

(2) If lim supn→∞ nI
K logn

< 1, there exists a small constant ε > 0 such that
(1−η)nI
K logn

< 1 − ε. Let m0 = n exp(−(1 − K−ε/2)
(1−η)nI

K
), which satisfies both

m0 ≥ (nK)ε/2 and m0 = o( n
K2 ). We are going to show that {Pm}m≥m0 is up-

per bounded by a fast decaying series {Qm}m≥m0 . For any m ∈ [m0,m
′], where

m′ = n
K1+ε , we have

Pm ≤
((

enK

m0

)
exp

(
−(1 − η)nI

K
+ m′I

))m

≤
(

exp
(

log(nK) + ((
1 − K−ε/2)− (

1 − 2K−ε))(1 − η)nI

K

))m

≤ exp
(
− m

2Kε/2

(1 − η)nI

K

)
,

which is denoted as Qm. Since m0
Kε/2 � logn, we have

∑m′
m=m0

Pm ≤∑m′
m=m0

Qm ≤
m′Qm0 ≤ exp(logn − m0

2Kε/2
(1−η)nI

K
) = o(

m0
n

). For m′ ≤ m, we have

Pm ≤
(

enK

m′ exp
(
−2(1 − η)nI

9K

))m

≤ exp
(
−nmI

9K

)
.

Denote Qm = exp(−nmI
9K

), which decays geometrically fast, as nI
K

→ ∞. Thus,∑n
m=m′ Pm ≤∑n

m=m′ Qm ≤ 2Qm′ = o(
m0
n

). Consequently,

Er(σ, σ̂0) ≤ m0

n
+ P

(∃σ ∈ �0 : d(σ0, σ ) > m0 and l(σ ) ≥ l(σ0)
)

≤ m0

n
+

m′∑
m>m0

Pm′ +
n∑

m>m′
Pm

≤ m0

n
+ m′Qm0 + 2Qm′

= exp
(
−(1 − o(1))nI

K

)
.

(3) If nI
K logn

= 1 + o(1), there exists a positive sequence ω → 0 such that

| (1−η)nI
K logn

− 1| � ω, 1√
logn

≤ ω and ωnmI
K logK

→ ∞. Define m0 = n exp(−(1 −
ω)

(1−η)nI
K

). Thus, m0 ≥ nω/2 → ∞, and m0 = o(m′) for m′ = ω2n/K . We are
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going to find a fast decay series {Qm} to upper bound {Pm}. For m ∈ [m0,m
′],

Pm ≤
((

enK

m0

)
exp

(
−(1 − η)nI

K
+ m′I

))m

≤
(

log(eK) + (1 − ω)(1 − η)nI

K
− (1 − η)nI

K
+ ω2nI

K

)m

≤ exp
(
−ω(1 − η)nmI

4K

)
,

which is denoted as Qm. Note that ωm0 ≥ ωnω/2 → ∞. We have Qm0 < 1, and
furthermore,

m′∑
m=m0

Pm ≤
m′∑

m=m0

Qm ≤ m′Qm0 ≤ exp
(

logn − ωm0(1 − η)nI

4K

)
= o

(
m0

n

)
.

For m ∈ [m′, n], we have

Pm ≤
(

enK

m′ exp
(
−2(1 − η)nI

9K

))m

≤ exp
(
−nmI

9K

)
.

Let Qm = exp(−nmI
9K

), which decays geometrically fast. Then
∑n

m=m′ Pm ≤∑n
m=m′ Qm ≤ 2Qm′ = o(

m0
n

). Hence,

Er(σ, σ̂0) ≤ m0

n
+

m′∑
m>m0

Pm′ +
n∑

m>m′
Pm ≤ exp

(
−(1 − o(1))nI

K

)
.

When K is a fixed constant, the proof is nearly identical but with different m′
under each scenario. The proof is thus omitted. �

6. Proofs of auxiliary lemmas. We prove Lemmas 2.1, 5.1 and 5.3, respec-
tively, in this section.

6.1. Proof of Lemma 2.1. Before going directly into the proof, we define
another network operator: (element-wise) permutation. Let π : [1,2, . . . , n] →
[1,2, . . . , n] be a permutation. Denote � to be the set consisting of all such per-
mutations, whose cardinality is n!. Define σπ to be a new assignment with

σπ(i)� σ
(
π−1(i)

) ∀1 ≤ i ≤ n.

It is obvious that for an arbitrary assignment σ ∈ �, each of its permutation σπ is
also in the parameter space �.

On the other hand, a permutation on the nodes leads to the change of the net-
work. For a network G with an adjacency matrix A, define Gπ as the network after
permutation with a new adjacency matrix Aπ , where

(Aπ)i,j = Aπ−1(i),π−1(j).
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FIG. 2. Illustration on σ̂ π based on the original network G. All of σ̂ [G], σ̂ [Gπ ] and σ̂ π [G] are
demonstrated as n-by-1 vectors. It shows Ai,j becomes (Aπ )πi ,πj after the permutation π of the
network. For any specific node i in G, its location is changed into π(i) in Gπ . The procedure σ̂ [Gπ ]
estimates the assignment of the permuted nodes {π(i)}, while σ̂ π [G] estimates the assignment of the
original nodes.

Note that Gπ can be seen as a network sampled from the assignment σπ , since
(Aπ)i,j ∼ Ber(θπ−1(i),π−1(j)).

We prove Lemma 2.1 mainly by exploring the exchangeability of the network.
Any estimator σ̂ is a mapping from a network to a length n vector. We use the
square brackets σ̂ [G] to indicate that the outcome of σ̂ is implemented on the
network G. And σ̂ [G](i) is the value of the ith component of σ̂ [G], and when the
meaning is clear, we write σ̂ (i) for simplicity.

Based on σ̂ , we can always design a new (unless they are the same) procedure
by permutation. Given a network G, we can either directly apply σ̂ (to be more
precise, it is σ̂ [G]), or first permute the network into Gπ , then implement σ̂ on
it to have σ̂ [Gπ ], and then finally “permute back” to obtain the estimation in the
original order. To be more precise, define procedure σ̂ π as

σ̂ π [G](i) = σ̂ [Gπ ](π(i)
)
.

We use the notation σ̂ π (i) short for σ̂ π [G](i). See Figure 2 for the illustration
on σ̂ π .

Intuitively, due to the exchangeability of G, if σ̂ is optimal, it should have the
same risk as σ̂ π for any possible π . With this trick, we are able to show the ex-
istence of a universal procedure σ̄ which has equal global risk for all σ ∈ � and
equal local risk for all i ∈ [n]. Then the proof is completed by the fact that the
minimax risk is lower bounded by the Bayes risk.

PROOF OF LEMMA 2.1. Denote the network to be G. Assume σ̃ be one of
the estimators that achieve the global Bayes risk, that is, Bτ (σ̃ ) = infσ̂ Bτ (σ̂ ).
Based on σ̃ , we can define a randomized procedure σ̄ as P(σ̄ = σ̃ π ) = 1/|�|,
for each π ∈ �. We will show σ̄ is also a global Bayes estimator in terms of τ .
For an arbitrary σ ∈ �, we have (we add subscript σ to explicitly indicate that the
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expectation is taken with respect to the assignment σ )

Eσ r(σ, σ̄ ) = 1

n!
∑
π∈�

Eσ r
(
σ, σ̃ π ).

Recall that Eσ (σ, σ̃ π ) = 1
n
Eσ infσ ′∈�(σ̃ π ) dH (σ,σ ′). There exists a one-to-one re-

lation between �(σ̃ π ) and �(σ̃ [Gπ ]), in the sense that, for any σ ′ from the former
set, there is σ ′′ in the latter set such that σ ′′(i) = σ ′(π−1(i)),∀i ∈ [n], and the
reverse also holds. We have the following equation:

Eσ r
(
σ, σ̃ π )= 1

n
Eσ inf

σ ′∈�(σ̃ π )

n∑
i=1

1
{
σ(i) �= σ ′(i)

}

= 1

n
Eσ inf

σ ′′∈�(σ̃ [Gπ ])

n∑
i=1

1
{
σπ

(
π(i)

) �= σ ′′(π(i)
)}

= 1

n
Eσ inf

σ ′′∈�(σ̃ [Gπ ])

n∑
i=1

1
{
σπ(i) �= σ ′′(i)

}
.

The expectation can be further expanded into

Eσ r
(
σ, σ̃ π )= 1

n

∑
G∈G

(
inf

σ ′′∈�(σ̃ [Gπ ])

n∑
i=1

1
{
σπ(i) �= σ ′′(i)

})
Pσ (G),

where G contains all the possible realizations of the graph. Here, the subscript
of Pσ (G) emphasizes that the probability measure is associated with the assign-
ment σ . Note that Pσ (G) = Pσπ (Gπ) for any G and that the set {Gπ : G ∈ G} is
exactly equal to G, we have

Eσ r
(
σ, σ̃ π )= 1

n

∑
G∈G

(
inf

σ ′′∈�(σ̃ [Gπ ])

n∑
i=1

1
{
σπ(i) �= σ ′′(i)

})
Pσπ (Gπ)

= 1

n

∑
Gπ∈G

(
inf

σ ′′∈�(σ̃ [Gπ ])

n∑
i=1

1
{
σπ(i) �= σ ′′(i)

})
Pσπ (Gπ)

= 1

n

∑
G∈G

(
inf

σ ′′∈�(σ̃ [G])

n∑
i=1

1
{
σπ(i) �= σ ′′(i)

})
Pσπ (G),

which yields

Eσ r
(
σ, σ̃ π )= 1

n
Eσπ inf

σ ′′∈�(σ̃ [G])

n∑
i=1

1
{
σπ(i) �= σ ′′(i)

}
= Eσπ r(σπ , σ̃ ).
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Thus,

Bτ (σ̄ ) = 1

|�|
∑
σ∈�

(
1

|�|
∑
π∈�

Eσπ r(σπ , σ̃ )

)

= 1

|�|
∑
π∈�

(
1

|�|
∑
σ∈�

Eσπ r(σπ , σ̃ )

)
.

Since {σπ : σ ∈ �} is exactly equal to � for any π , we have

Bτ (σ̄ ) = 1

|�|
∑
π∈�

(
1

|�|
∑
σ∈�

Eσ r(σ, σ̃ )

)

= 1

|�|
∑
σ∈�

(
1

|�|
∑
π∈�

Eσ r(σ, σ̃ )

)
= Bτ (σ̃ ).

Thus, σ̄ also achieves the minimum Bayes risk. We will show Bτ (σ̄ (i)) =
Bτ (σ̄ (j)) for any i, j ∈ [n]. It is equivalent to define σ̄ as

P
(
σ̄ (i) = σ̃ π (i)

)= 1

|�| ∀i ∈ [n],

which implies

Eσ r
(
σ(i), σ̄ (i)

)= 1

|�|
∑
π∈�

Eσ r
(
σ(i), σ̃ π (i)

)
.

Note that σ̃ π (i) = σ̃ [Gπ ](π(i)), and σ(i) = σπ(π(i)). Recall that the definition
of the local risk is

Eσ r
(
σ(i), σ̃ π (i)

)
= Eσ

∑
σ ′∈Sσ (σ̃ π )

1{σ(i) �= σ ′(i)}
|Sσ (σ̃ π )| .

Here, recall Sσ (σ̂ ) � {σ ′ ∈ �(σ̂ ) : dH (σ,σ ′) = d(σ, σ̂ )} for any estimator σ̂ . It is
obvious that there exists a one-to-one relation between Sσ (σ̃ π ) and Sσπ (σ̃ [Gπ ]).
For any σ ′ ∈ Sσ (σ̃ π ), there is a unique corresponding σ ′′ ∈ Sσπ (σ̃ [Gπ ]) defined as
σ ′′(i) = σ ′(π−1(i)),∀i ∈ [n], and the reverse also holds. Thus, the event {σ(i) �=
σ ′(i)} is equivalent to {σπ(π(i)) �= σ ′′(π(i))}, and |Sσ (σ̃ π )| = |Sσπ (σ̃ [Gπ ])|. We
have

Eσ r
(
σ(i), σ̃ π (i)

)
= Eσ

∑
σ ′′∈Sσπ (σ̃ [Gπ ])

1{σπ(π(i)) �= σ ′′(π(i))}
|Sσπ (σ̃ [Gπ ])| .
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By the same argument as the previous one, together with the fact that Pσ (G) =
Pσπ (Gπ), we expand the expectation and then have

Eσ r
(
σ(i), σ̃ π (i)

)= ∑
G∈G

( ∑
σ ′′∈Sσπ (σ̃ [Gπ ])

1{σπ(π(i)) �= σ ′′(π(i))}
|Sσπ (σ̃ [Gπ ])|

)
Pσ (G)

= ∑
G∈G

( ∑
σ ′′∈Sσπ (σ̃ [Gπ ])

1{σπ(π(i)) �= σ ′′(π(i))}
|Sσπ (σ̃ [Gπ ])|

)
Pσπ (Gπ)

= ∑
G∈G

( ∑
σ ′′∈Sσπ (σ̃ [G])

1{σπ(π(i)) �= σ ′′(π(i))}
|Sσπ (σ̃ [G])|

)
Pσπ (G).

Thus,

Eσ r
(
σ(i), σ̃ π (i)

)= Eσπ

∑
σ ′′∈Sσπ (σ̃ [Gπ ])

1{σπ(π(i)) �= σ ′′(π(i))}
|Sσπ (σ̃ [G])|

= Eσπ r
(
σπ

(
π(i)

)
, σ̃
(
π(i)

))
.

This gives

Eσ r
(
σ(i), σ̄ (i)

)
= 1

|�|
∑
π∈�

Eσπ r
(
σπ

(
π(i)

)
, σ̃
(
π(i)

)) ∀i ∈ [n].

Then for the local risk we have

Bτ

(
σ̄ (i)

)= 1

|�|
∑
σ∈�

(
1

|�|
∑
π∈�

Eσπ r
(
σπ

(
π(i)

)
, σ̃
(
π(i)

)))

= 1

|�|
∑
π∈�

(
1

|�|
∑
σ∈�

Eσπ r
(
σπ

(
π(i)

)
, σ̃
(
π(i)

)))

= 1

|�|
∑
π∈�

(
1

|�|
∑
σ∈�

Eσ r
(
σ
(
π(i)

)
, σ̃
(
π(i)

)))

= 1

|�|
∑
σ∈�

(
1

|�|
∑
π∈�

Eσ r
(
σ
(
π(i)

)
, σ̃
(
π(i)

)))

= 1

|�|
∑
σ∈�

(
1

n

n∑
l=1

Eσ r
(
σ(l), σ̃ (l)

))
,

where in the third equation we again use the fact that {σπ : σ ∈ �} is exactly equal
to � for any π . So we conclude Bτ (σ̄ (i)) = Bτ (σ̄ (j)) for any i, j ∈ [n]. Due to
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the equality

Eσ r(σ, σ̂ ) = Eσ inf
δ

n∑
i=1

1{(δ ◦ σ̂ )(i) �= σ(i)}
n

= Eσ

1

|Sσ (σ̂ )|
∑

σ ′∈Sσ (σ̂ )

n∑
i=1

1{i : σ ′(i) �= σ(i)}
n

= 1

n

n∑
i=1

Eσ

∑
σ ′∈Sσ (σ̂ )

1{i : σ ′(i) �= σ(i)}
|Sσ (σ̂ )|

= 1

n

n∑
i=1

Eσ r
(
σ(i), σ̂ (i)

)
,

we have Bτ (σ̄ ) = ∑n
i=1 Bτ (σ̄ (i))/n, which leads to infσ̂ Bτ (σ̂ ) = Bτ (σ̄ ) =

Bτ (σ̄ (1)) ≥ infσ̂ Bτ (σ̂ (1)). We omit the proof of the other direction of the equality
stated in the lemma, which uses a nearly identical argument. The proof is complete.

�

6.2. Proof of Lemma 5.1. First, consider the case with K ≥ 3. Define �L
1 =

{(σ, {θi,j }) ∈ �L : nσ(1) = � n
K

� + 1}. So for each σ ∈ �L
1 , the community con-

taining the first node always has size � n
K

� + 1. We will show the ratio of the
cardinality of �L

1 against that of �L is a constant. Denote x1 = �n/K�K1 and
x2 = (�n/K� + 1)K2, then∣∣�L

∣∣= C′
(

n

x2

)(
n − x2

x1

)
and

∣∣�L
1
∣∣= C′

(
n − 1
x2 − 1

)(
n − x2

x1

)
,

where C′ is the number of combinations to select x1 balls into K1 bins with size
� n

K
�, x2 balls into K2 bins with size � n

K
� + 1, and another n − x1 − x2 balls into

K3 bins with size � n
K

� − 1. Thus,

|�L
1 |

|�L| =
( n−1
x2−1

)
( n
x2

) = x2

n
≥ ε.

It is equivalent to the probability that the first node is assigned to the K2 bins with
size � n

K
� + 1. Then

Bτ

(
σ̂ (1)

)≥ 1

|�L|
∑

σ∈�L
1

Er
(
σ(1), σ̂ (1)

)≥ ε

|�L
1 |

∑
σ∈�L

1

Er
(
σ(1), σ̂ (1)

)
.

For each σ0 ∈ �L
1 , recall σ0(1) is the index of the community that the first node

belongs to. And let κ(σ0) be the indices of communities whose sizes are � n
K

�, that
is,

κ(σ0) =
{
k ∈ [K] : nk(σ0) =

⌊
n

K

⌋}
.
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Note that σ0(1) /∈ κ(σ0). If we replace σ0(1) by any k ∈ κ(σ0) while keeping the
labels of the rest of the nodes, then we have a new assignment also contained in �L

1
and which has distance 1 from σ0. In particular, we use the following procedure to
generate assignment σ [σ0] ∈ [K]n based on σ0. Let σ [σ0](i) be the index of the
ith entry in σ [σ0]. Define

σ [σ0](1) =
{

min
{
k ∈ κ(σ0) : k > σ0(1)

}
, if maxκ(σ0) > σ0(1);

minκ(σ0), if maxκ(σ0) < σ0(1),

and σ [σ0](i) = σ0(i) for all i ≥ 2. It is clear that σ [σ0] ∈ �L
1 and dH (σ0, σ [σ0]) =

1. It is also guaranteed that for any σ0, σ1 ∈ �L
1 and σ0 �= σ1, the new assignments

are also different σ [σ0] �= σ [σ1]. This leads to that �L is equal to the set {σ [σ0] :
σ0 ∈ �L}, and hence

Bτ

(
σ̂ (1)

)≥ ε

2|�L
1 |

∑
σ0∈�L

1

2Er
(
σ0(1), σ̂ (1)

)

≥ ε

|�L
1 |

∑
σ0∈�L

1

1

2

(
Eσ0r

(
σ0(1), σ̂ (1)

)+Eσ [σ0]r
(
σ [σ0](1), σ̂ (1)

))
.

We are going to derive the Bayes risk infσ̂
1
2(Eσ0r(σ0(1), σ̂ (1))+Eσ [σ0]r(σ [σ0](1),

σ̂ (1))) for a given σ0 ∈ �L. Let σ̃ be any estimator achieving the infimum. Since
σ0 and σ [σ0] only differ at the first node, σ̃ must satisfy σ̃ (i) = σ(i) = σ [σ0](i) for
i ≥ 2 and σ̃ (1) must take value either σ0(1) or σ [σ0](1). Thus, r(σ0(1), σ̃ (1)) =
dH (σ0(1), σ̃ (1)) and a similar equation holds for σ [σ0]. So now the problem is
reduced into a testing problem between two distributions Pσ0 and Pσ [σ0], which is
just a test between two sequences of Bernoulli random variables, since the two cor-
responding matrices are different only at 2�n/K� entries of the first row/column.

We are going to show that majority voting (i.e., likelihood ratio) gives the opti-
mal estimator. The estimator σ̃ (1) can be interpreted as the Bayes estimator with
respect to the zero–one loss. Then σ̃ (1) must be the mode of the posterior distribu-
tion. Let J0 be the set {u ∈ [n] \ {1} : σ0(u) = σ0(1)}, and J1 = {u ∈ [n] : σ0(u) =
σ [σ0](1)}. For a given adjacency matrix A, the conditional distributions are

P(A|σ0) = ∏
u∈J0

(
a

n

)A1,u
(

1 − a

n

)1−A1,u ∏
u∈J1

(
b

n

)A1,u
(

1 − b

n

)1−A1,u

f
(
AC)

and

P
(
A|σ [σ0])= ∏

u∈J1

(
a

n

)A1,u
(

1 − a

n

)1−A1,u ∏
u∈J0

(
b

n

)A1,u
(

1 − b

n

)1−A1,u

f
(
AC).

Here, AC consists of all the rest of the entries: AC = {(u, v) : v > u ≥ 2, or u =
1 and v /∈ J0 ∪ J1}. It is obvious that f (AC) is invariant to the choice of σ0 or
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σ [σ0]. Thus,

σ̃ (1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ0(1), if
∑
u∈J0

A1,u ≥ ∑
u∈J1

A1,u,

σ [σ0](1), if
∑
u∈J0

A1,u <
∑
u∈J1

A1,u.

Thus, Er(σ0(1), σ̂ (1)) = Pσ0(
∑

u∈J0
A1,u <

∑
u∈J1

A1,u) ≥ P(
∑�n/K�

u=1 Xu ≥∑�n/K�
u=1 Yu), and Er(σ [σ0](1), σ̂ (1)) = Pσ [σ0](

∑
u∈J0

A1,u ≥ ∑
u∈J1

A1,u) ≥
P(
∑�n/K�

u=1 Xu ≥∑�n/K�
u=1 Yu). Consequently,

1

2

(
Eσ0r

(
σ0(1), σ̂ (1)

)+Eσ [σ0]r
(
σ [σ0](1), σ̂ (1)

))≥ P

(�n/K�∑
u=1

Xu ≥
�n/K�∑
u=1

Yu

)
.

The above inequality holds for each σ0 ∈ �L. Hence,

inf
σ̂

Bτ

(
σ̂ (1)

)≥ ε

|�L
1 |

∑
σ0∈�L

1

inf
σ̂

1

2

(
Eσ0r

(
σ0(1), σ̂ (1)

)+Eσ [σ0]r
(
σ [σ0](1), σ̂ (1)

))

≥ ε

|�L
1 |

∑
σ0∈�L

1

1

2

(
Eσ0r

(
σ0(1), σ̃ (1)

)+Eσ [σ0]r
(
σ [σ0](1), σ̃ (1)

))

≥ εP

(�n/K�∑
u=1

Xu ≥
�n/K�∑
u=1

Yu

)
.

For the case K = 2, we re-define �L
1 and show that its cardinality is the same as

that of �L up to a constant factor. (1) If n
2 �= �n

2�, then define �L
1 = {(σ, {�L

i,j }) ∈
�L : nσ(1) = �n

2�}. Then |�L
1 |/|�L| = 1/2. (2) If n

2 = �n
2�, then define �L

1 =
{(σ, {�L

i,j }) ∈ �L : nσ(1) > n
2 }. Then

|�L
1 |

�L
= 1 − |�L \ �L

1 |
|�L| = 1 −

( n−1
n/2−1

)
( n
n/2

)+ 2
( n
n/2+1

) = 1 − (n/2 − 1)/n

1 + (n/2)/(n/2 + 1)
>

1

2
.

Then with exactly the same argument used for K ≥ 3, we complete the proof.

6.3. Proof of Lemma 5.3. Due to the symmetry between σ and σ0 (both
are in the same parameter space), we have α(σ ;σ0) = γ (σ0;σ) and γ (σ ;σ0) =
α(σ0;σ). It is sufficient to get the desired lower bound for γ (σ ;σ0), as the same
bound automatically holds for α(σ ;σ0).

By the definition of �0, there must exist a η1 → 0 such that | nk

n/K
− 1| ≤ η1 for

every k ∈ [K]. First consider m ≤ n
2K

. Without loss of generality, let σ satisfy

σ(i) = k ∀i ∈
[

k−1∑
j=1

n′
j + 1,

k∑
j=1

n′
j

]
,
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where {n′
k}Kk=1 are the sizes of communities in σ . Recall {nk}Kk=1 are the true com-

munity sizes in σ0. Define mk = |{i : σ(i) = k, σ0(i) �= k}|, then m =∑
k mk . For

k ∈ [K], define

γk(σ ;σ0) = ∣∣{(i, j) : σ(i) = σ(j) = k, σ0(i) �= σ0(j), i < j
}∣∣

=
∣∣∣∣∣
{
(i, j) : σ0(i) �= σ0(j),

k−1∑
j=1

n′
j + 1 ≤ i < j ≤

k∑
j=1

n′
j

}∣∣∣∣∣.
Obviously γ (σ ;σ0) = ∑K

k=1 γk(σ ;σ0). We have γk(σ ;σ0) ≥ |{i : σ(i) = k,

σ0(i) = k}||{i : σ(i) = k, σ0(i) �= k}| = (nk − mk)mk . Then

γ (σ ;σ0) ≥∑
k

mk(nk − mk) ≥ (1 − η1)mn

K
−∑

k

m2
k ≥ (1 − η1)mn

K
− m2.

Now consider the case m > n
2K

. Define mk,k′ = |{i : σ(i) = k, σ0(i) = k′}| for any
k, k′ ∈ [K]. It is obvious that equations mk = ∑

k′ �=k mk,k′ , n′
k = mk + mk,k and

nk′ =∑
k mk,k′ hold for any k and k′.

It can be shown that we cannot find an pair of (k, k′) such as k �= k′ and mk,k′ >
2(1+η1)n

3K
. Otherwise, if mk,k′ > 2(1+η1)n

3K
, then mk′,k′ ≤ nk′ − mk,k′ < (1+η1)n

3K
. Then

we can exchange the label of k and k′ to get a new estimation σ ′. Compared with σ ,
this helps correctly recover at least mk,k′ − (n′

k − mk,k′) − mk′,k′ > 0 nodes. Since
σ ′ ∈ �(σ), then m = d(σ0, σ ) ≤ dH (σ0, σ

′) < m, which leads to a contradiction.
So we have mk,k′ ≤ 2(1+η1)n

3K
for all k �= k′. For a given mk , we have

γk(σ ;σ0)

n′
kmk

= (1/2)(n′2
k −∑

k′ m2
k,k′)

n′
kmk

,

with a constraint mk =∑
k′ �=k mk,k′ . When mk ≤ 2(1+η1)n

3K
, it can be shown that

γk(σ ;σ0)

n′
kmk

≥ (1/2)(n′2
k − (n′

k − mk)
2 − m2

k)

n′
kmk

= n′
k − mk

n′
k

≥ (1 − 5η1)(n/K)

3n′
k

.

And when mk ≥ 2(1+η1)n
3K

,

γk(σ ;σ0)

n′
kmk

≥ 1

2

(
n′2

k − (
n′

k − mk

)2 −
(
mk − 2(1 + η1)n

3K

)2

−
(

2(1 + η1)n

3K

)2)
/(

n′
kmk

)
≥ mk

(
n′

k − mk

)+ 2(1 + η1)n

3K

(
mk − 2(1 + η1)n

3K

)/(
n′

kmk

)

≥ 2(1 − 5η1)(n/K)

9n′
k

.

Then sum up over all k and we get γ (σ ;σ0) ≥ 2(1−5η1)nm
9K

. By choosing η = 5η1,
the proof is complete.
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SUPPLEMENTARY MATERIAL

Supplement to “Mimimax rates of community detection in stochastic block
models” (DOI: 10.1214/15-AOS1428SUPP; .pdf). In the supplement [31], we pro-
vide proofs of Lemma 5.2, Propositions 5.1 and 5.2. We also provide proofs for
Theorems 2.1 and 3.1, which extend the minimax results of Theorems 2.2 and
3.2 to a larger parameter space �. In addition, we state and prove the asymptotic
equivalence of I .
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