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Abstract

Community detection is a fundamental statistical problem in network data analysis. In this
paper, we present a polynomial time two-stage method that provably achieves optimal sta-
tistical performance in misclassification proportion for stochastic block model under weak
regularity conditions. Our two-stage procedure consists of a refinement stage motivated
by penalized local maximum likelihood estimation. This stage can take a wide range of
weakly consistent community detection procedures as its initializer, to which it applies and
outputs a community assignment that achieves optimal misclassification proportion with
high probability. The theoretical property is confirmed by simulated examples.

Keywords: Clustering, Community detection, Minimax rates, Network analysis, Spectral
clustering.

1. Introduction

Network data analysis (Wasserman, 1994; Goldenberg et al., 2010) has become an important
topic in statistics. In fields such as physics, computer science, social science and biology,
one observes a network among a large number of subjects of interest such as particles,
computers, people, etc. The observed network can be modeled as an instance of a random
graph and the goal is to infer structures of the underlying generating process. A structure
of particular interest is community : there is a partition of the graph nodes in some suitable
sense so that each node belongs to a community. Starting with the proposal of a series
of methodologies (Girvan and Newman, 2002; Newman and Leicht, 2007; Handcock et al.,
2007; Karrer and Newman, 2011), we have seen a large literature devoted to algorithmic
solutions to uncovering community structure. Great advances have also been made in recent
years on the theoretical understanding of the problem in terms of statistical consistency and
thresholds for detection and exact recoveries. See, for instance, Bickel and Chen (2009);
Decelle et al. (2011); Zhao et al. (2012); Mossel et al. (2012, 2013b); Massoulié (2014); Abbe
et al. (2014); Mossel et al. (2014); Hajek et al. (2014), among others. The major goal of the
present paper is to propose a computationally feasible algorithm for community detection
in stochastic block models with adaptive minimax optimal performance.
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To describe network data with community structure, we focus on the stochastic block
model (SBM) proposed by Holland et al. (1983). Let A ∈ {0, 1}n×n be the symmetric
adjacency matrix of an undirected random graph generated according to an SBM with k
communities. The diagonal entries of A are all zeros and each Auv = Avu for u > v is
an independent Bernoulli random variable with mean Puv = Bσ(u)σ(v) for some symmetric

connectivity matrix B ∈ [0, 1]k×k and some label function σ : [n]→ [k]. Here and after, for
any positive integer m, [m] = {1, . . . ,m}. In other word, if the uth node and the vth node
belong to the ith and the jth community respectively, then σ(u) = i, σ(v) = j and there is
an edge connecting u and v with probability Bij . We define a and b through miniBii = a/n
and maxi 6=j Bij = b/n. Community detection then refers to the problem of estimating the
label function σ subject to a permutation of the community labels {1, . . . , k}. A natural
loss function for such an estimation problem is the proportion of wrong labels (subject to
a permutation of the label set [k]), which we refer to as misclassification proportion from
here on.

Literature review The field of community detection in SBMs has been growing fast.
Results on fundamental limits and various algorithms for achieving them have been obtained
in the literature. We first review the most relevant results prior to our work.

1. Detection. In ground breaking works by Mossel et al. (2012, 2013b) and Massoulié
(2014), the authors established sharp threshold for the regimes in which it is possible
and impossible to achieve a misclassification proportion strictly less than 1

2 (so that it
is better than random guess) when k = 2 and both communities are of the same size.
This solved the conjecture in Decelle et al. (2011) that was only justified in physics
rigor. The necessary and sufficient condition for doing better than random guess is
(a− b)2 > 2(a+ b).

2. Weak consistency. In the current context, weak consistency means recovering all but
a vanishing proportion of the community labels. As was shown in Mossel et al. (2014),
the necessary and sufficient condition for achieving weak consistency is (

√
a−
√
b)2 →

∞ in the equal-sized two community setting. Conditions of weak consistency in general
SBMs were obtained and discussed in Zhang and Zhou (2015); Yun and Proutiere
(2014a); Abbe and Sandon (2015a).

3. Strong consistency. Abbe et al. (2014); Mossel et al. (2014) established the necessary
and sufficient condition for ensuring zero misclassification proportion (usually referred
to as “strong consistency”) with high probability when k = 2 and community sizes
are equal. The result was later generalized to general SBMs with possibly unequal
community sizes by Abbe and Sandon (2015a) using the notion of Chernoff-Hellinger
(CH) divergence.

4. Minimax optimal rates. The foregoing three categories of results mainly focused on
sharp conditions of achieving detection, weak consistency and strong consistency, re-
spectively. Arguably, what is of more interest to statisticians is the optimal rates
of misclassification proportion. When (

√
a −
√
b)2/(k log k) → ∞, it was derived by

Zhang and Zhou (2015) that the optimal rate of misclassification proportion takes the
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form of

exp

(
−(1 + o(1))

nI∗

k

)
, (1)

for a k-community SBM with equal community sizes, where I∗ is the Rényi divergence
of order 1

2 between Bern
(
a
n

)
and Bern

(
b
n

)
(Rényi, 1961). See Theorem 1 below for

a more general and precise statement of the result. A special case of this result for
symmetric SBMs with k = 2 was obtained in Yun and Proutiere (2014a).

5. Algorithms. Various algorithms have been proposed in the literature to achieve de-
tection, weak consistency and strong consistency. A popular approach is spectral
clustering. Its application on network data dates back to Hagen and Kahng (1992);
McSherry (2001). Its performance on SBMs has been investigated by Coja-Oghlan
(2010); Rohe et al. (2011); Sussman et al. (2012); Fishkind et al. (2013); Qin and Rohe
(2013); Joseph and Yu (2013); Lei and Rinaldo (2014); Vu (2014); Chin et al. (2015);
Jin (2015); Le et al. (2015), among others. Various ways for refining spectral clustering
have been proposed, such as those in Amini et al. (2013); Abbe et al. (2014); Mossel
et al. (2014); Lei and Zhu (2014); Yun and Proutiere (2014a); Chin et al. (2015), which
lead to strong consistency or convergence rates that are exponential in signal-to-noise
ratio, while Mossel et al. (2013a) studied the problem of minimizing a non-vanishing
misclassification proportion. However, in the regime of weak consistency, with the
exception of Yun and Proutiere (2014a) for equal-sized two community case, these
refinement methods cannot attain the optimal misclassification proportion.

Another important line of research is devoted to the investigation of likelihood-based
methods, which was initiated by Bickel and Chen (2009) and later extended to more
general settings by Zhao et al. (2012); Choi et al. (2012). To tackle the intractability
of optimizing the likelihood function, an EM algorithm using pseudo-likelihood was
proposed by Amini et al. (2013). Another way to overcome the intractability of the
maximum likelihood estimator (MLE) is by convex relaxation. Various semi-definite
relaxations were studied by Cai and Li (2014); Chen and Xu (2014); Amini and Levina
(2014), and the sharp threshold for strong consistency can indeed be achieved by semi-
definite programming (Hajek et al., 2014, 2015).

Main contribution The current paper proposes a computationally feasible algorithm
that provably achieves the optimal misclassification proportion established in Zhang and
Zhou (2015) adaptively under weak regularity conditions. It covers the cases of both finite
and diverging number of communities and both equal and unequal community sizes, and
it achieves both weak and strong consistency in the respective regimes. In addition, the
algorithm is guaranteed to compute in polynomial time even when the number of commu-
nities diverges with the number of nodes. Since the error bound of the algorithm matches
the optimal misclassification proportion (1) in Zhang and Zhou (2015) under weak condi-
tions, it achieves various existing detection boundaries in the literature. For instance, for
any fixed number of communities, the procedure is weakly consistent under the necessary
and sufficient condition of Mossel et al. (2012, 2013b), and strongly consistent under the
necessary and sufficient condition of Abbe et al. (2014); Mossel et al. (2014). Moreover,
it could match the optimal misclassification proportion in Zhang and Zhou (2015) even
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when k diverges. It is remarkable that the same algorithm can lead to optimal performance
in both strong and weak consistency regiems, while most papers in the literature require
different algorithms in the two regimes.

The core of the algorithm is a refinement scheme for community detection motivated by
penalized MLE, an idea that was previously explored in Amini et al. (2013); Abbe et al.
(2014); Mossel et al. (2014); Lei and Zhu (2014); Yun and Proutiere (2014a); Chin et al.
(2015). As long as there exists an initial estimator that satisfies a certain weak consistency
condition, the refinement scheme is able to obtain an improved estimator that achieves the
optimal misclassification proportion with high probability. The key to achieve this goal
is to optimize the local penalized likelihood function for each node separately. This local
optimization step is completely data-driven and has a closed form solution, and hence can
be computed very efficiently. The additional penalty term is indispensable as it plays a key
role in ensuring the optimal performance when the community sizes are unequal and when
the within community and/or between community edge probabilities are unequal.

To obtain a qualified initial estimator, we show that both spectral clustering and its
normalized variant could satisfy the desired condition needed for subsequent refinement,
though the refinement scheme works for any other method satisfying a certain weak consis-
tency condition. Note that spectral clustering can be considered as a global method, and
hence our two-stage algorithm runs in a “from global to local” fashion. In essence, with
high probability, the global stage pinpoints a local neighborhood in which we shall search
for solution to each local penalized maximum likelihood problem, and the subsequent local
stage finds the desired solution.

Notable results after initial posting of this manuscript After the initial posting of
this manuscript on arXiv (arXiv:1505.03772), there have appeared a number of papers with
notable and related results. Below, we highlight them with brief discussions:

1. Detection. The algorithm proposed in this paper achieves optimal misclassification
proportion in the weak and the strong consistency regimes. In the detection regime,
optimal misclassification proportion and its statistical-computational gap have been
studied in Deshpande et al. (2015); Mossel and Xu (2015); Abbe and Sandon (2015b).

2. Strong and weak consistency. Two algorithms were proposed in Abbe and Sandon
(2015c) for community detection in general SBMs. One for the strong consistency
regime, and the other for weak consistency and detection. The one for strong con-
sistency was shown to achieve the goal all the way to the CH divergence threshold,
which is tighter than the strong consistency result in the present paper for asymmetric
SBMs. However, the convergence rate for the other algorithm is sub-optimal in the
weak consistency regime even for symmetric SBMs. See also the discussion below for
the further improvement in Yun and Proutiere (2015).

3. Weighted/labeled SBMs. Jog and Loh (2015) extends the results in Zhang and Zhou
(2015) to networks with weighted/labeled edges using Rényi divergence of order 1

2 . A
more recent paper Yun and Proutiere (2015) studied optimal misclassification propor-
tion for weighted/labeled SBMs. The proposed algorithm in Yun and Proutiere (2015)
is able to achieve the CH limit (Abbe and Sandon, 2015a) in the strong consistency
regime. It also attains optimal misclassification proportion in the weak consistency
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regime with respect to a potentially smaller class than the ones used in our paper.
However, their stronger results also require a relatively stronger set of conditions.
For example, they require k = O(1). Moreover, for equal-sized two community binary
SBMs, with a and b defined at the beginning of this section, Yun and Proutiere (2015)
requires a � b and a − b � b. In comparison, we do not require the latter for any
result in this manuscript. We can even drop the former if we are willing to accept
any 1− ε relaxation of the tight constant of the exponent in our error rates. See, for
instance, Theorem 12.

4. Degree-corrected block models. The paper Gao et al. (2016) studied degree-corrected
block models by deriving the minimax rates for misclassification proportion and
proposing an adaptive algorithm.

In summary, progress has been made along several different directions after initial post-
ing of the present manuscript. However, none of the aforementioned results dominates those
we are to present in the rest of the paper.

Organization and notation The rest of the paper is organized as follows. Section 2
formally sets up the community detection problem and presents the two-stage algorithm.
The theoretical guarantees for the proposed method are given in Section 3, followed by
numerical results demonstrating its competitive performance on simulated datasets in Sec-
tion 4. A discussion on the results in the current paper and possible directions for future
investigation is included in Section 5. Section 6 presents the proofs of main results with
some technical details deferred to the appendix.

We close this section by introducing some notation. For a matrix M = (Mij), we denote

its Frobenius norm by ‖M‖F =
√∑

ijM
2
ij and its operator norm by ‖M‖op = maxl λl(M),

where λl(M) is its lth singular value. We use Mi∗ to denote its ith row. The norm ‖·‖
is the usual Euclidean norm for vectors. For a set S, |S| denotes its cardinality. The
notation P and E are generic probability and expectation operators whose distribution is
determined from the context. For two positive sequences {xn} and {yn}, xn � yn means
xn/C ≤ yn ≤ Cxn for some constant C ≥ 1 independent of n, while xn = o(yn) means
xn/yn → 0 as n → ∞. Throughout the paper, unless otherwise noticed, we use C, c and
their variants to denote absolute constants, whose values may change from line to line.

2. Problem formulation and methodology

In this section, we give a precise formulation of the community detection problem and
present a new method for it. The method consists of two stages: initialization and refine-
ment. We shall first introduce the second stage, which is the main algorithm of the paper.
It clusters the network data by performing a node-wise penalized neighbor voting based
on some initial community assignment. Then, we will discuss several candidates for the
initialization step including a new greedy algorithm for clustering the leading eigenvectors
of the adjacency matrix or of the graph Laplacian that is tailored specifically for stochastic
block models. Theoretical guarantees for the algorithms introduced in the current section
will be presented in Section 3.
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2.1 Community detection in stochastic block model

Recall that a stochastic block model is completely characterized by a symmetric connectivity
matrix B ∈ [0, 1]k×k and a label vector σ ∈ [k]n. One widely studied parameter space of
SBM is

Θ0(n, k, a, b, β) =

{
(B, σ) : σ : [n]→ [k], | {u ∈ [n] : σ(u) = i} | ∈

[
n

βk
− 1,

βn

k
+ 1

]
, ∀i ∈ [k],

B = (Bij) ∈ [0, 1]k×k, Bii =
a

n
for all i and Bij =

b

n
for all i 6= j

}
(2)

where β ≥ 1 is an absolute constant. This parameter space Θ0(n, k, a, b, β) contains all
SBMs in which the within community connection probabilities are all equal to a

n and the

between community connection probabilities are all equal to b
n . In the special case of β = 1,

all communities are of nearly equal sizes.
Assuming equal within and equal between connection probabilities can be restrictive.

Thus, we also introduce the following larger parameter space

Θ(n, k, a, b, λ, β;α) =

{
(B, σ) : σ : [n]→ [k], | {u ∈ [n] : σ(u) = i} | ∈

[
n

βk
− 1,

βn

k
+ 1

]
, ∀i ∈ [k],

B = BT = (Bij) ∈ [0, 1]k×k,
b

αn
≤ 1

k(k − 1)

∑
i 6=j

Bij ≤ max
i 6=j

Bij =
b

n
,

a

n
= min

i
Bii ≤ max

i
Bii ≤

αa

n
,

λk(P ) ≥ λ with P = (Puv) = (Bσ(u),σ(v))

}
. (3)

Throughout the paper, we treat β ≥ 1 and α ≥ 1 as absolute constants, while k, a, b
and λ should be viewed as functions of the number of nodes n which can vary as n grows.
Moreover, we assume 0 < b

n <
a
n ≤ 1−ε throughout the paper for some numeric constant ε ∈

(0, 1). Thus, the parameter space Θ(n, k, a, b, λ, β;α) requires that the within community
connection probabilities are bounded from below by a

n and the connection probabilities

between any two communities are bounded from above by b
n . In addition, it requires that the

sizes of different communities are comparable. In order to guarantee that Θ(n, k, a, b, λ, β;α)
is a larger parameter space than Θ0(n, k, a, b, β), we always require λ to be positive and
sufficiently small such that

Θ0(n, k, a, b, β) ⊂ Θ(n, k, a, b, λ, β;α). (4)

According to Proposition 24 in the appendix, a sufficient condition for (4) is λ ≤ a−b
2βk . We

assume (4) throughout the rest of the paper.
The labels on the n nodes induce a community structure [n] = ∪ki=1Ci, where Ci =

{u ∈ [n] : σ(u) = i} is the ith community with size ni = |Ci|. Our goal is to reconstruct this
partition, or equivalently, to estimate the label of each node modulo any permutation of
label symbols. Therefore, a natural error measure is the misclassification proportion defined
as

`(σ̂, σ) = min
π∈Sk

1

n

∑
u∈[n]

1{σ̂(u) 6=π(σ(u))}, (5)
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where Sk stands for the symmetric group on [k] consisting of all permutations of [k].

2.2 Main algorithm

We now present the main method of the paper – a refinement algorithm for community
detection in stochastic block model motivated by penalized local maximum likelihood esti-
mation.

To motivate our proposal, for any SBM in the parameter space Θ0(n, k, a, b, 1) with
equal community size, the MLE for σ (Cai and Li, 2014; Chen and Xu, 2014; Zhang and
Zhou, 2015) is

σ̂ = argmax
σ:[n]→[k]

∑
u<v

Auv1{σ(u)=σ(v)}, (6)

which is a combinatorial optimization problem and hence is computationally intractable.
However, node-wise optimization of (6) has a simple closed form solution. Suppose the
values of {σ(u)}nu=2 are known and we want to estimate σ(1). Then, (6) reduces to

σ̂(1) = argmax
i∈[k]

∑
{v 6=1:σ(v)=i}

A1v. (7)

For each i ∈ [k], the quantity
∑
{v 6=1:σ(v)=i}A1v is the number of neighbors that the first

node has in the ith community. Therefore, the most likely label for the first node is the one
it has the most connections with when all communities are of equal sizes. In practice, we
do not know any label in advance. However, we may estimate the labels of all but the first
node by first applying a community detection algorithm σ0 on the subnetwork excluding the
first node and its associated edges, the adjacency matrix of which is denoted by A−1 since
it is the (n− 1)× (n− 1) submatrix of A with its first row and first column removed. Once
we estimate the remaining labels, we can apply (7) to estimate σ(1) but with {σ(v)}nv=2

replaced with the estimated labels.
For any u ∈ [n], let A−u denote the (n − 1) × (n − 1) submatrix of A with its uth row

and uth column removed. Given any community detection algorithm σ0 which is able to
cluster any graph on n−1 nodes into k categories, we present the precise description of our
refinement scheme in Algorithm 1.

The algorithm works in two consecutive steps. The first step carries out the foregoing
heuristics on a node by node basis. For each fixed node u, we first leave the node out and
apply the available community detection algorithm σ0 on the remaining n − 1 nodes and
the edges among them (as summarized in the matrix A−u ∈ {0, 1}(n−1)×(n−1)) to obtain
an initial community assignment vector σ0

u. For convenience, we make σ0
u an n-vector by

fixing σ0
u(u) = 0, though applying σ0 on A−u does not give any community assignment

for u. We then assign the label of the uth node according to (10), which is essentially (7)
with σ replaced with σ0

u except for the additional penalty term. The additional penalty
term is added to ensure the optimal performance even when both the diagonal and the
off-diagonal entries of the connectivity matrix B are allowed to take different values and
the community sizes are not necessarily equal. To determine the penalty parameter ρu in
an adaptive way as spelled out in (11) – (12), we first estimate the connectivity matrix B
based on A−u in (8) – (9). After we obtain the community assignment for u, we organize
the assignment for all n vertices into an n-vector σ̂u. We call this step “penalized neighbor
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Algorithm 1: A refinement scheme for community detection

Input: Adjacency matrix A ∈ {0, 1}n×n,
number of communities k,
initial community detection method σ0.

Output: Community assignment σ̂.

Penalized neighbor voting:
1 for u = 1 to n do
2 Apply σ0 on A−u to obtain σ0

u(v) for all v 6= u and let σ0
u(u) = 0;

3 Define C̃ui =
{
v : σ0

u(v) = i
}

for all i ∈ [k]; let Ẽui be the set of edges within C̃ui ,

and Ẽuij the set of edges between C̃ui and C̃uj when i 6= j;

4 Define

B̂u
ii =

|Ẽui |
1
2 |C̃

u
i |(|C̃ui | − 1)

, B̂u
ij =

|Ẽuij |
|C̃ui ||C̃uj |

, ∀i 6= j ∈ [k], (8)

and let

âu = nmin
i∈[k]

B̂u
ii and b̂u = n max

i 6=j∈[k]
B̂u
ij . (9)

5 Define σ̂u : [n]→ [k] by setting σ̂u(v) = σ0
u(v) for all v 6= u and

σ̂u(u) = argmax
l∈[k]

∑
σ0
u(v)=l

Auv − ρu
∑
v∈[n]

1{σ0
u(v)=l} (10)

where for

tu =
1

2
log

âu(1− b̂u/n)

b̂u(1− âu/n)
, (11)

we define

ρu = − 1

2tu
log

(
âu
n e
−tu + 1− âu

n

b̂u
n e

tu + 1− b̂u
n

)
, (12)

end
Consensus:

6 Define σ̂(1) = σ̂1(1). For u = 2, . . . , n, define

σ̂(u) = argmax
l∈[k]

|{v : σ̂1(v) = l} ∩ {v : σ̂u(v) = σ̂u(u)}| . (13)

voting” since the first term on the RHS of (10) counts the number of neighbors of u in each
(estimated) community while the second term is a penalty term proportional to the size of
each (estimated) community.
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Once we complete the above procedure for each of the n nodes, we obtain n vectors
σ̂u ∈ [k]n, u = 1, . . . , n, and turn to the second step of the algorithm. The basic idea behind
the second step is to obtain a unified community assignment by assembling {σ̂u(u) : u ∈ [n]}
and the immediate hurdle is that each σ̂u is only determined up to a permutation of the
community labels. Thus, the second step aims to align these different permutations by (13)
before we assemble the σ̂u(u)’s. We call this step “consensus” since we are essentially looking
for a consensus on the community labels for n possibly different community assignments,
under the assumption that all of them are close to the ground truth up to some permutation.

2.3 Initialization via spectral methods

In this section, we present algorithms that can be used as initializers in Algorithm 1. Note
that for any model in (3), the matrix P has rank at most k and EAuv = Puv for all
u 6= v. We may first reduce the dimension of the data and then apply some clustering
algorithm. Such an approach is usually referred to as spectral clustering (von Luxburg,
2007). The application of spectral clustering on network data goes back to Hagen and
Kahng (1992); McSherry (2001), and its performance under the stochastic block model has
been investigated by Coja-Oghlan (2010); Rohe et al. (2011); Sussman et al. (2012); Fishkind
et al. (2013); Qin and Rohe (2013); Joseph and Yu (2013); Lei and Rinaldo (2014); Vu (2014);
Chin et al. (2015); Jin (2015); Le et al. (2015), among others. Technically speaking, spectral
clustering refers to the general method of clustering eigenvectors of some data matrix. For
random graphs, two commonly used methods are unnormalized spectral clustering (USC)
and normalized spectral clustering (NSC). The former refers to clustering the eigenvectors
of the adjacency matrix A itself and the latter refers to clustering the eigenvectors of the
associated graph Laplacian L(A). To formally define the graph Laplacian, we introduce the
notation du =

∑
v∈[n]Auv for the degree of the uth node. The graph Laplacian operator

L : A 7→ L(A) is defined by L(A) = ([L(A)]uv) where [L(A)]uv = d
−1/2
u d

−1/2
v Auv. Although

there have been debates and studies on which one works better (see, for example, von
Luxburg et al. (2008); Sarkar and Bickel (2013)), for our purpose, both of them can lead to
sufficiently decent initial estimators.

The performances of USC and NSC depend critically on the bounds ‖A − P‖op and
‖L(A) − L(P )‖op, respectively. However, as pointed out by Chin et al. (2015); Le et al.
(2015), the matrices A and L(A) are not good estimators of P and L(P ) under the operator
norm when the graph is sparse in the sense that maxu,v∈[n] Puv = o(log n/n). Thus, it
is necessary to regularize A and L(A) in order to achieve better performances for USC
and NSC. The adjacency matrix A can be regularized by trimming those nodes with high
degrees. Define the trimming operator Tτ : A 7→ Tτ (A) by replacing the uth row and the
uth column of A with 0 whenever du ≥ τ , and so Tτ (A) and A are of the same dimensions.
It is argued in Chin et al. (2015) that by removing those high-degree nodes, Tτ (A) has
better convergence properties. Regularization method for graph Laplacian goes back to
Amini et al. (2013) and its theoretical properties have been studied by Joseph and Yu
(2013); Le et al. (2015). In particular, Amini et al. (2013) proposed to use L(Aτ ) for NSC
where Aτ = A + τ

n11
T and 1 = (1, 1, ..., 1)T ∈ Rn. From now on, we use USC(τ) and

NSC(τ) to denote unnormalized spectral clustering and normalized spectral clustering with
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regularization parameter τ , respectively. Note that the unregularized USC is USC(∞) and
the unregularized NSC is NSC(0).

Another important issue in spectral clustering lies in the subsequent clustering method
used to cluster the eigenvectors. A popular choice is k-means clustering. However, finding
the global solution to the k-means problem is NP-hard (Aloise et al., 2009; Mahajan et al.,
2009). Kumar et al. (2004) proposed a polynomial time algorithm for achieving (1 + ε)
approximation to the k-means problem for any fixed k, which was utilized in Lei and Rinaldo
(2014) to establish consistency for spectral clustering under stochastic block models with
a fixed number of communities. However, a closer look at the complexity bound suggests
that the smallest possible ε is proportional to k. Thus, applying the algorithm and the
associated bound in Kumar et al. (2004) directly in our settings can lead to inferior error
bounds when k → ∞ as n → ∞. To address this issue for stochastic block models, we
propose a greedy clustering method in Algorithm 2. The method is inspired by the fact
that the clustering centers in stochastic block models are well separated from each other on
the population level. It is straightforward to check that the complexity of Algorithm 2 is
polynomial in n.

Algorithm 2: A greedy method for clustering

Input: Data matrix Û ∈ Rn×k, either the leading eigenvectors of Tτ (A) or that of
L(Aτ ),
number of communities k,

critical radius r = µ
√

k
n with some constant µ > 0.

Output: Community assignment σ̂.

1 Set S = [n];

2 for i = 1 to k do

3 Let ti = arg maxu∈S

∣∣∣{v ∈ S :
∥∥∥Ûv∗ − Ûu∗∥∥∥ < r

}∣∣∣;
4 Set Ĉi =

{
v ∈ S :

∥∥∥Ûv∗ − Ûti∗∥∥∥ < r
}

;

5 Label σ̂(u) = i for all u ∈ Ĉi;
6 Update S ← S\Ĉi.
end

7 If S 6= ∅, then for any u ∈ S, set σ̂(u) = argmini∈[k]
1

|Ĉi|

∑
v∈Ĉi

∥∥∥Ûu∗ − Ûv∗∥∥∥.

Last but not least, we would like to emphasize that one needs not limit the initialization
algorithm to the spectral methods introduced in this section. As Theorem 4 below shows,
Algorithm 1 works for any initialization method that satisfies a weak consistency condition.

3. Theoretical properties

Before stating the theoretical properties of the proposed method, we first review the min-
imax rate in Zhang and Zhou (2015), which serves as the optimality benchmark. The

10
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minimax risk is governed by the following critical quantity,

I∗ = −2 log

(√
a

n

√
b

n
+

√
1− a

n

√
1− b

n

)
, (14)

which is the Rényi divergence of order 1
2 between Bern

(
a
n

)
and Bern

(
b
n

)
, i.e., Bernoulli

distributions with success probabilities a
n and b

n respectively. Recall that 0 < b
n <

a
n ≤ 1− ε

is assumed throughout the paper. It can be shown that I∗ � (a−b)2
na . Moreover, when

a
n = o(1),

I∗ = (1 + o(1))
(
√
a−
√
b)2

n
= (1 + o(1))

(√a

n
−
√
b

n

)2

+

(√
1− a

n
−
√

1− b

n

)2


= (2 + o(1))H2
(
Bern

(
a
n

)
,Bern

(
b
n

))
,

where H2(P,Q) = 1
2

∫
(
√

dP −
√

dQ)2 is the squared Hellinger distance between two distri-
butions P and Q. The minimax rate for the parameter spaces (2) and (3) under the loss
function (5) is given in the following theorem.

Theorem 1 (Zhang and Zhou (2015)) When (a−b)2
ak log k →∞, we have

inf
σ̂

sup
(B,σ)∈Θ

EB,σ`(σ̂, σ) =

{
exp

(
−(1 + η)nI

∗

2

)
, k = 2;

exp
(
−(1 + η)nI

∗

βk

)
, k ≥ 3,

for both Θ = Θ0(n, k, a, b, β) and Θ = Θ(n, k, a, b, λ, β;α) with any λ ≤ a−b
2βk and any

β ∈ [1,
√

5/3), where η = ηn → 0 is some sequence tending to 0 as n→∞.

Remark 2 The assumption β ∈ [1,
√

5/3) is needed in Zhang and Zhou (2015) for some
technical reason. Here, the parameter β enters the minimax rates when k ≥ 3 since the
worst case is essentially when one has two communities of size n

βk , while for k = 2, the
worst case is essentially two communities of size n

2 . For all other results in this paper, we
allow β to be an arbitrary constant no less than 1.

Remark 3 The rate in Theorem 1 is optimal in a minimax sense. It is optimal for the
worse-case instances in Θ0(n, k, a, b, 1). More general instance-optimal fundamental limits
are referred to Abbe and Sandon (2015a). Details discussion will be given in Section 5.

To this end, let us show that the two-stage algorithm proposed in Section 2 achieves
the optimal misclassification proportion. The essence of the two-stage algorithm lies in the
refinement scheme described in Algorithm 1. As long as any initialization step satisfies
a certain weak consistency criterion, the refinement step directly leads to a solution with
optimal misclassification proportion. To be specific, the initialization step needs to satisfy
the following condition.

11
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Condition 1 There exist constants C0, δ > 0 and a positive sequence γ = γn such that

inf
(B,σ)∈Θ

min
u∈[n]

PB,σ
{
`(σ, σ0

u) ≤ γ
}
≥ 1− C0n

−(1+δ), (15)

for some parameter space Θ.

Under Condition 1, we have the following upper bounds regarding the performance of
the proposed refinement scheme.

Theorem 4 Suppose as n→∞, (a−b)2
ak log k →∞, a � b and Condition 1 is satisfied for

γ = o

(
1

k log k

)
(16)

and Θ = Θ0(n, k, a, b, β). Then there is a sequence η → 0 such that

sup
(B,σ)∈Θ

PB,σ
{
`(σ, σ̂) ≥ exp

(
−(1− η)

nI∗

2

)}
→ 0, if k = 2,

sup
(B,σ)∈Θ

PB,σ
{
`(σ, σ̂) ≥ exp

(
−(1− η)

nI∗

βk

)}
→ 0, if k ≥ 3,

(17)

where I∗ is defined as in (14).

If in addition Condition 1 is satisfied for γ satisfying both (16) and

γ = o

(
a− b
ak

)
(18)

and Θ = Θ(n, k, a, b, λ, β;α), then the conclusion in (17) continues to hold for Θ = Θ(n, k, a, b, λ, β;α).

Theorem 4 assumes a � b. The case when a � b may not hold is considered in Section
5. Compared with Theorem 1, the upper bounds (17) achieved by Algorithm 1 is minimax
optimal. The condition (16) for the parameter space Θ0(n, k, a, b, β) is very mild. When
k = O(1), it reduces to γ = o(1) and simply means that the initialization should be
weakly consistent. For k →∞, it implies that the misclassification proportion within each
community converges to zero. Note that if the initialization step gives wrong labels to all
nodes in one particular community, then the misclassification proportion is at least 1/k.
The condition (16) rules out this situation. For the parameter space Θ(n, k, a, b, λ, β;α),
an extra condition (18) is required. This is because estimating the connectivity matrix
B in Θ(n, k, a, b, λ, β;α) is harder than in Θ0(n, k, a, b, β). If we do not pursue adaptive
estimation, (18) is not needed.

Remark 5 Theorem 4 is an adaptive result without assuming the knowledge of a and b.
When these two parameters are known, we can directly use a and b in (11) of Algorithm 1.
By scrutinizing the proof of Theorem 4, the conditions (16) and (18) can be weakened to
γ = o(k−1) in this case.

12
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Given the results of Theorem 4, it remains to check the initialization step via spectral
clustering satisfies Condition 1. For matrix P = (Puv) = (Bσ(u)σ(v)) with (B, σ) belonging
to either Θ0(n, k, a, b, β) or Θ(n, k, a, b, λ, β;α), we use λk to denote λk(P ). Define the
average degree by

d̄ =
1

n

∑
u∈[n]

du. (19)

Theorem 6 Assume e ≤ a ≤ C1b for some constant C1 > 0 and

ka

λ2
k

≤ c, (20)

for some sufficiently small c ∈ (0, 1). Consider USC(τ) with a sufficiently small constant
µ > 0 in Algorithm 2 and τ = C2d̄ for some sufficiently large constant C2 > 0. For any
constant C ′ > 0, there exists some C > 0 only depending on C ′, C1, C2 and µ such that

`(σ̂, σ) ≤ C a

λ2
k

,

with probability at least 1− n−C′. If k is fixed, the same conclusion holds without assuming
a ≤ C1b.

Remark 7 Theorem 6 improves the error bound for spectral clustering in Lei and Rinaldo
(2014). While Lei and Rinaldo (2014) requires the assumption a > C log n, our result
also holds for a = o(log n). A result close to ours is that by Chin et al. (2015), but their
clustering step is different from Algorithm 2. Moreover, the conclusion of Theorem 6 holds
with probability 1−n−C′ for an arbitrary large C ′, which is critical because the initialization
step needs to satisfy Condition 1 for the subsequent refinement step to work. On the other
hand, the bound in Chin et al. (2015) is stated with probability 1− o(1).

Remark 8 For the parameter space Θ0(n, k, a, b, β), we have λk ≥ a−b
βk . Then, Theorem

6 implies that consistency is achieved when (a−b)2
a → ∞ in the case k = O(1), and when

(a−b)2
ak3

> C for some sufficiently large C > 0 in the case k →∞.

When k = O(1), Theorem 4 and Theorem 6 jointly imply the following result.

Corollary 9 Consider Algorithm 1 initialized by σ0 with USC(τ) for τ = Cd̄, where C is

a sufficiently large constant. Suppose as n→∞, k = O(1), (a−b)2
a →∞ and a � b. Then,

there exists a sequence η → 0 such that

sup
(B,σ)∈Θ

PB,σ
{
`(σ, σ̂) ≥ exp

(
−(1− η)

nI∗

2

)}
→ 0, if k = 2,

sup
(B,σ)∈Θ

PB,σ
{
`(σ, σ̂) ≥ exp

(
−(1− η)

nI∗

βk

)}
→ 0, if k ≥ 3,

where the parameter space is Θ = Θ0(n, k, a, b, β).
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Compared with Theorem 1, the proposed procedure achieves the minimax rate under the

condition (a−b)2
a → ∞ and a � b. When k = O(1), the condition (a−b)2

a → ∞ is necessary
and sufficient for weak consistency in view of Theorem 1. More general results including
the case of k →∞ are stated and discussed in Section 5.

The following theorem characterizes the misclassification rate of normalized spectral
clustering.

Theorem 10 Assume e ≤ a ≤ C1b for some constant C1 > 0 and

ka log a

λ2
k

≤ c, (21)

for some sufficiently small c ∈ (0, 1). Consider NSC(τ) with a sufficiently small constant
µ > 0 in Algorithm 2 and τ = C2d̄ for some sufficiently large constant C2 > 0. Then, for
any constant C ′ > 0, there exists some C > 0 only depending on C ′, C1, C2 and µ such that

`(σ̂, σ) ≤ Ca log a

λ2
k

,

with probability at least 1− n−C′. If k is fixed, the same conclusion holds without assuming
a ≤ C1b.

Remark 11 A slightly different regularization of normalized spectral clustering is studied
by Qin and Rohe (2013) only for the dense regime, while Theorem 10 holds under both dense
and sparse regimes. Moreover, our result also improves that of Le et al. (2015) due to our
tighter bound on ‖L(Aτ )−L(Pτ )‖op in Lemma 22 below. We conjecture that the log a factor
in both the assumption and the bound of Theorem 10 can be removed.

Note that Theorem 6 and Theorem 10 are stated in terms of the quantity λk. We may
specialize the results into the parameter spaces defined in (2) and (3). By Proposition
24, λk ≥ a−b

2βk for Θ0(n, k, a, b, β) and λk ≥ λ for Θ(n, k, a, b, λ, β;α). The implications of
Theorem 6 and Theorem 10 and their use as initialization in for Algorithm 1 are discussed
in full details in Section 5.

4. Numerical results

In this section we present the performance of the proposed algorithm on simulated datasets.
The experiments cover three different scenarios: (1) dense network with communities of
equal sizes; (2) dense network with communities of unequal sizes; and (3) sparse network.
Recall the definition of d̄ in (19). For each setting, we report results of Algorithm 1 initialized
with four different approaches: USC(∞), USC(2d̄), NSC(0) and NSC(d̄), the description of
which can all be found in Section 2.3. For all these spectral clustering methods, Algorithm 2
was used to cluster the leading eigenvectors. The constant µ in the critical radius definition
was set to be 0.5 in all the results reported here. For each setting, the results are based on
100 independent draws from the underlying stochastic block model.

To achieve faster running time, we also ran a simplified version of Algorithm 1. Instead
of obtaining n different initializers {σu}u∈[n] to refine each node separately, the simplified
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algorithm refines all the nodes with a single initialization on the whole network. Thus, the
running time can be reduced roughly by a factor of n. Simulation results below suggest
that the simplified version achieves similar performances to that of Algorithm 1 in all the
settings we have considered. For the precise description of the simplified algorithm, we refer
readers to Algorithm 3 in the appendix.

Balanced case In this setting, we generate networks with 2500 nodes and 10 communities,
each of which consists of 250 nodes, and we set Bii = 0.48 for all i and Bij = 0.32 for
all i 6= j. Figure 1 shows the boxplots of the number of misclassified nodes. The first
four boxplots correspond to the four different spectral clustering methods, in the order
of USC(∞), USC(2d̄), NSC(0) and NSC(d̄). The middle four correspond to the results
achieved by applying the simplified refinement scheme with these four initialization methods,
and the last four show the results of Algorithm 1 with these four initialization methods.
Regardless of the initialization method, Algorithm 1 or its simplified version reduces the
number of misclassified nodes from around 30 to around 5.
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Figure 1: Boxplots of number of misclassified nodes: Balanced case. Simple indicates that
the simplified version of Algorithm 1 is used instead.

Imbalanced case In this setting, we generate networks with 2000 nodes and 4 commu-
nities, the sizes of which are 200, 400, 600 and 800, respectively. The connectivity matrix
is

B =


0.50 0.29 0.35 0.25
0.29 0.45 0.25 0.30
0.35 0.25 0.50 0.35
0.25 0.30 0.35 0.45

 .

Hence, the within-community edge probability is no smaller than 0.45 while the between-
community edge probability is no greater than 0.35, and the underlying SBM is inhomo-
geneous. Figure 2 shows the boxplots of the number of misclassified nodes obtained by
different initialization methods and their refinements, and the boxplots are presented in the
same order as those in Figure 1. Similarly, we can see refinement significantly reduces the
error.

Sparse case In this setting we consider a much sparser stochastic block model than
the previous two cases. In particular, each simulated network has 4000 nodes, divided
into 10 communities all of size 400. We set all Bii = 0.032 and all Bij = 0.005 when
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Figure 2: Boxplots of number of misclassified nodes: imbalanced case. Simple indicates
that the simplified version of Algorithm 1 is used instead.

i 6= j. The average degree of each node in the network is around 30. Figure 3 shows the
boxplots of the number of misclassified nodes obtained by different initialization methods
and their refinements, and the boxplots are presented in the same order as those in Figure
1. Compared with either USC or NSC initialization, refinement reduces the number of
misclassified nodes by 50%.

● ●

●

● ●

●
●
● ●

●
● ●

●●

25

50

75

100

USC(∞) USC(2d) NSC(0) NSC(d) Refine (Simple)

with USC(∞)

Refine (Simple)

with USC(2d)

Refine (Simple)

with NSC(0)

Refine (Simple)

with NSC(d)

Refine with

USC(∞)

Refine with

USC(2d)

Refine with

NSC(0)

Refine with

NSC(d)
Refinement

N
o.

 o
f n

od
es

 m
is

−
cl

us
te

re
d

Figure 3: Boxplots of number of misclassified nodes: Sparse case. Simple indicates that the
simplified version of Algorithm 1 is used instead.

Summary In all three simulation settings, for all four initialization approaches consid-
ered, the refinement scheme in Algorithm 1 (and its simplified version) was able to signifi-
cantly reduce the number of misclassified nodes, which is in agreement with the theoretical
properties presented in Section 3.

5. Discussion

In this section, we discuss a few important issues related to the methodology and the theory
we have presented in the previous sections.

5.1 Error bounds when a � b may not hold

In Section 3, we established upper bounds on misclassification proportion under the as-
sumption of a � b. The following theorem shows that slightly weaker upper bounds can
be obtained even when a � b does not hold. To state the result, recall that we assume
throughout the paper a

n ≤ 1− ε for some numeric constant ε ∈ (0, 1).
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Theorem 12 Suppose as n→∞, (a−b)2
ak log k →∞ and Condition 1 is satisfied for γ satisfying

(16) and Θ = Θ0(n, k, a, b, β). Then for some positive constants cε and Cε that depend only
on ε, for any sufficiently small constant ε0 ∈ (0, cε), if we replace the definition of tu’s in
(11) with

tu =

(
1

2
log

âu(1− b̂u/n)

b̂u(1− âu/n)

)
∧ log

1

ε0/2
, (22)

then we have

sup
(B,σ)∈Θ

PB,σ
{
`(σ, σ̂) ≥ exp

(
−(1− Cεε0)

nI∗

2

)}
→ 0, if k = 2,

sup
(B,σ)∈Θ

PB,σ
{
`(σ, σ̂) ≥ exp

(
−(1− Cεε0)

nI∗

βk

)}
→ 0, if k ≥ 3,

(23)

where I∗ is defined as in (14). In particular, we can set Cε = 10
3

2−ε
ε
2

log 2
ε

and cε = min( 1
10Cε

, ε
2−ε).

If in addition Condition 1 is satisfied for γ satisfying both (16) and (18) and Θ =
Θ(n, k, a, b, λ, β;α), then the same conclusion holds for Θ = Θ(n, k, a, b, λ, β;α).

Compared with the conclusion (17) in Theorem 4, the vanish sequence η in the ex-
ponent of the upper bound is replaced by Cεε0, which is guaranteed to be smaller than
min(0.1, 2

log(2/ε)) and can be driven to be arbitrarily small by decreasing ε0. To achieve this,
the tu’s used in defining the penalty parameters in the penalized neighbor voting step need
to be truncated at the value log 1

ε0/2
.

5.2 Implications of the results

We now discuss some implications of the results in Theorems 4 – 12.
When using USC as initialization for Algorithm 1, we obtain the following results by

combining Theorem 4, Theorem 6 and Theorem 12. Recall that d̄ is the average degree of
nodes in A defined in (19).

Theorem 13 Consider Algorithm 1 initialized by σ0 with USC(τ) with τ = Cd̄ for some
sufficiently large constant C > 0. If as n→∞, a � b and

(a− b)2

ak3 log k
→∞, (24)

then there is a sequence η → 0 such that (17) holds with Θ = Θ0(n, k, a, b, β). If as n→∞,
a � b and

λ2

ak(log k + a/(a− b))
→∞, (25)

then (17) holds for Θ = Θ(n, k, a, b, λ, β;α). If for either parameter space, a � b may not
hold but k is fixed and (24) or (25) holds respectively, then (23) holds as long as tu is
replaced by (22) in Algorithm 1.
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Compared with Theorem 1, the minimax optimal performance is achieved under mild
conditions. Take Θ = Θ0(n, k, a, b, β) for example. For any fixed k, the minimax optimal
misclassification proportion is achieved with high probability only under the additional

condition of a � b. In addition, weak consistency is achieved for fixed k as long as (a−b)2
a →

∞, regardless of the behavior of ab . This condition is indeed necessary and sufficient for weak
consistency. See, for instance, Mossel et al. (2012, 2013b); Yun and Proutiere (2014b); Zhang
and Zhou (2015). To achieve strong consistency for fixed k, it suffices to ensure `(σ, σ̂) < 1

n
and Theorem 13 implies that it is sufficient to have

lim inf
n→∞

nI∗

2 log n
> 1, when k = 2; lim inf

n→∞

nI∗

βk log n
> 1, when k ≥ 3, (26)

regardless of the behavior of a
b . On the other hand, Theorem 1 shows that it is impossible

to achieve strong consistency if

lim sup
n→∞

nI∗

2 log n
< 1, when k = 2; lim sup

n→∞

nI∗

βk log n
< 1, when k ≥ 3. (27)

When a
n = o(1), nI∗ = (1 + o(1))(

√
a −
√
b)2 and so one can replace nI∗ in (26) – (27)

with (
√
a−
√
b)2. In the literature, Abbe et al. (2014) and Mossel et al. (2014) obtained

comparable strong consistency results via efficient algorithms for the special case of two
communities of equal sizes, i.e., k = 2 and β = 1. Abbe and Sandon (2015a) investigated
the case of fixed k and β ≥ 1. Their results give necessary and sufficient conditions for each
instance of model parameters. In comparison, our result characterizes minimax optimality
through worst case analysis and is less general than those of Abbe and Sandon (2015a).
On the other hand, compared with Abbe and Sandon (2015a), we allow any fixed k and
any β ≥ 1 without assuming a � b � log n. In the weak consistency regime, in terms of
misclassification proportion, for the special case of k = 2 and β = 1, Yun and Proutiere
(2014a) achieved the optimal rate for Θ0(n, 2, a, b, 1) when a � b � a − b, while the error
bounds in other papers are typically off by a constant multiplier on the exponent. In
comparison, Theorem 13 provides optimal results (17) and near optimal results (23) for
a much broader class of models under much weaker conditions. Last but not least, our
algorithm can provably achieve strong consistency and minimax optimal performance even
for growing k, which to our limited knowledge, is the first in the literature.

The performance of Algorithm 1 initialized by NSC can be summarized as the following
theorem by combining Theorem 4, Theorem 10 and Theorem 12. In this case, the sufficient
condition for achieving minimax optimal performance is slightly stronger than when USC
is used for initialization.

Theorem 14 Consider Algorithm 1 initialized by σ0 with NSC(τ) with τ = Cd̄ for some
sufficiently large constant C > 0. If as n→∞, a � b and

(a− b)2

ak3 log k log a
→∞, (28)

then there is a sequence η → 0 such that (17) holds with Θ = Θ0(n, k, a, b, β). If as n→∞,
a � b and

λ2

ak log a(log k + a/(a− b))
→∞, (29)
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then (17) holds for Θ = Θ(n, k, a, b, λ, β;α). If for either parameter space, a � b may not
hold but k is fixed and (28) or (29) holds respectively, then (23) holds as long as tu is
replaced by (22) in Algorithm 1.

Last but not least, we would like to point out that when the key parameters a and b
are known, we can obtain the desired performance guarantee under weaker conditions as
summarized in the following theorem.

Theorem 15 (The case of known a, b) Suppose a, b are known. Consider Algorithm 1
initialized by σ0 with USC(τ) with τ = Ca for some sufficiently large constant C > 0 and
âu = a, b̂u = b in (9) for all u ∈ [n]. If as n→∞, a � b and

(a− b)2

ak3
→∞, (30)

then there is a sequence η → 0 such that (17) holds with Θ = Θ0(n, k, a, b, β). If as n→∞,
a � b and

λ2

ak
→∞, (31)

then (17) holds with Θ = Θ(n, k, a, b, λ, β;α). If for either parameter space without assuming
a � b, (30) or (31) holds respectively, then (23) holds if in addition tu is replaced by (22).

If instead NSC(τ) is used for initialization with τ = Ca for some sufficiently large

constant C > 0, then the above conclusions hold if we replace (30) with (a−b)2
ak3 log a

→ ∞ and

(31) with λ2

ak log a →∞, respectively.

6. Proofs of main results

The main result of the paper, Theorem 4, is proved in Section 6.1. Theorem 6 and Theorem
10 are proved in Section 6.2 and Section 6.3 respectively. The proofs of the remaining results,
together with some auxiliary lemmas, are given in the appendix.

6.1 Proof of Theorem 4

We first state a lemma that guarantees the accuracy of parameter estimation in Algorithm
1.

Lemma 16 Let Θ = Θ(n, k, a, b, λ, β;α). Suppose as n → ∞, (a−b)2
ak → ∞ and Condition

1 holds with γ satisfying (16) and (18). Then there is a sequence η → 0 as n → ∞ and a
constant C > 0 such that

min
u∈[n]

inf
(B,σ)∈Θ

P
{

min
π∈Sk

max
i,j∈[k]

|B̂u
ij −Bπ(i)π(j)| ≤ η

(
a− b
n

)}
≥ 1− Cn−(1+δ). (32)

For Θ = Θ0(n, k, a, b, β), the conclusion (32) continues to hold even when the assumption
(18) is dropped.
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Proof 1◦ Let Θ = Θ(n, k, a, b, λ, β;α). For any community assignments σ1 and σ2, define

`0(σ1, σ2) =
1

n

n∑
u=1

1{σ1(u)6=σ2(u)}. (33)

Fix any (B, σ) ∈ Θ and u ∈ [n]. Define event

Eu =
{
`0(πu(σ), σ0

u) ≤ γ
}
. (34)

To simplify notation, assume that πu = Id is the identity permutation.

Fix any i ∈ [k]. On Eu,

ni ≥ |C̃ui ∩ Ci| ≥ ni − γ1n, |C̃ui ∩ Cci | ≤ γ2n, where γ1, γ2 ≥ 0 and γ1 + γ2 ≤ γ. (35)

Let C′i be any deterministic subset of [n] such that (35) holds with C̃ui replaced by C′i. By
definition, there are at most

γn∑
l=0

(
ni
l

) γn∑
m=0

(
n− ni
m

)
≤ (γn+ 1)2

(
eni
γn

)γn( en
γn

)γn
≤ exp

{
2 log(γn+ 1) + 2γn log

e

γ

}
≤ exp

{
C1γn log

1

γ

}
different subsets with this property where C1 > 0 is an absolute constant. Let E ′i be the
edges within C′i. Then |E ′i| consists of independent Bernoulli random variables, where at least
(1−βγk)2 proportion of them follow the Bern(Bii) distribution, at most (βγk)2 proportion
that are stochastically smaller than Bern(αan ) and stochastically larger than Bern( an), and

at most 2βγk proportion are stochastically smaller than Bern( bn). Therefore, we obtain
that

(1− βγk)2Bii + (βγk)2 a

n
≤ E

[
|E ′i|

1
2 |C
′
i|(|C′i| − 1)

]
≤ max

t∈[0,βγk]

{
(1− t)2Bii + t2

αa

n
+ 2t

b

n

}
.

(36)

Note that the LHS is (1− (2 + o(1))βγk)Bii. On the other hand, under condition (18), the
RHS is attained at t = 0 and equals Bii exactly. Thus, we conclude that∣∣∣∣∣E

[
|E ′i|

1
2 |C
′
i|(|C′i| − 1)

]
−Bii

∣∣∣∣∣ ≤ Cβγkαan = η′
(
a− b
n

)
(37)

for some η′ → 0 that depends only on a, k, α, β and γ, where the last inequality is due to
(18).

On the other hand, by Bernstein’s inequality, for any t > 0,

P
{∣∣|E ′i| − E|E ′i|

∣∣ > t
}
≤ 2 exp

{
− t2

2(1
2(ni + γn)2 αa

n + 2
3 t)

}
.
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Let

t2 = (ni + γn)2αa

n
(C1γn log γ−1 + (3 + δ) log n) ∨ (2C1γn log γ−1 + 2(3 + δ) log n)2

.
(n
k

√
aγ log γ−1 + γn log γ−1

)2
,

where we the second inequality holds since log x
x is monotone decreasing as x increases and

so γ log γ−1 ≥ 1
n log n for any γ ≥ 1

n , which is the case of most interest since γ < 1
n leads to

γ = 0 and so the initialization is already perfect. Even when γ = 0, we can still continue
to the following arguments by replacing every γ with 1

n and all the steps continue to hold.
Thus, we obtain that for positive constant Cα,β,δ that depends only on α, β and δ,

P
{∣∣|E ′i| − E|E ′i|

∣∣ > Cα,β,δ

(n
k

√
aγ log γ−1 + γn log γ−1

)}
≤ exp

{
−C1γn log γ−1

}
n−(3+δ).

(38)

Thus, with probability at least 1− exp
{
−C1γn log γ−1

}
n−(3+δ),∣∣∣∣∣ |E ′i|

1
2 |C
′
i|(|C′i| − 1)

− E
|E ′i|

1
2 |C
′
i|(|C′i| − 1)

∣∣∣∣∣ ≤ Cα,β,δ
(
k

n

√
aγ log γ−1 +

k2γ log γ−1

n

)
= η′

(
a− b
n

)
,

(39)

where η′ → 0 depends only on a, k, α, β, γ and δ. Here, the last inequality holds since

k
√
aγ log γ−1 =

√
ak
√
kγ log γ−1,

where
√
ak � a− b since (a−b)2

ak →∞ and kγ log γ−1 = O(1), and

k2γ log γ−1 = kγ log γ−1 · k . k � (a− b)2

a
. a− b.

We combine (37) and (39) and apply the union bound to obtain that for a sequence η → 0
that depends only on a, k, α, β, γ and δ, with probability at least 1− n−(3+δ)∣∣∣∣∣ |Ẽui |

1
2 |C̃

u
i |(|C̃ui | − 1)

−Bii

∣∣∣∣∣ ≤ η
(
a− b
n

)
. (40)

The proof for Bij estimation is analogous and hence is omitted. A final union bound on
i, j ∈ [k] leads to the desired claim since all the constants and vanishing sequences in the
above analysis depend only on a, b, k, α, β, γ and δ, but not on u, B or σ.

2◦ If Θ = Θ0(n, k, a, b, β), then condition (18) on γ is no longer needed. This is because
(36) can be replaced by

min
t∈[0,βγk]

{
(1− t)2 a

n
+ 2t(1− t) b

n
+ t2

b

n

}
≤ E

[
|E ′i|

1
2 |C
′
i|(|C′i| − 1)

]
≤ max

t∈[0,βγk]

{
(1− t)2 a

n
+ t2

a

n
+ 2t(1− t) b

n

}
,
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where the LHS equals a
n − (1 − βγk(1 + o(1)))a−bn = a

n + o(a−bn ) and the RHS equals a
n .

Thus, no additional condition is needed to guarantee (37) in the foregoing arguments. This
completes the proof.

The next two lemmas establish the desired error bound for the node-wise refinement.

Lemma 17 Let Θ0 be defined as in (2) and k ≥ 2. Suppose as n → ∞, (a−b)2
ak → ∞ and

a � b. If there exists two sequences γ = o(1/k) and η = o(1), constants C, δ > 0 and
permutations {πu}nu=1 ⊂ Sk such that

inf
(B,σ)∈Θ0

min
u∈[n]

P
{
`0(πu(σ), σ0

u) ≤ γ, |âu − a| ≤ η(a− b), |̂bu − b| ≤ η(a− b)
}
≥ 1− Cn−(1+δ).

(41)
Then for σ̂u(u) defined as in (10) with ρ = ρu in (12), there is a sequence η′ = o(1) such
that for k = 2,

sup
(B,σ)∈Θ0

max
u∈[n]

P {σ̂u(u) 6= πu(σ(u))} ≤ (k − 1) exp

{
−(1− η′)nI

∗

2

}
+ Cn−(1+δ),

and for k ≥ 3,

sup
(B,σ)∈Θ0

max
u∈[n]

P {σ̂u(u) 6= πu(σ(u))} ≤ (k − 1) exp

{
−(1− η′)nI

∗

βk

}
+ Cn−(1+δ).

Proof In what follows, let Eu denote the event in (41). For the sake of brevity, we let p =
a/n, q = b/n, p̂u = âu/n and q̂u = b̂u/n. Moreover, let σu = πu(σ), ni = |{v : σu(v) = i}|,
mi = |{v : σ0

u(v) = i}| and m′i = |{v : σ0
u(v) = σu(v) = i}|. Without loss of generality, let

σu(u) = 1.
Then we have

P {σ̂u(u) 6= 1 and Eu} ≤
∑
l 6=1

P

Eu and
∑

σu(v)=l

Auv −
∑

σu(v)=1

Auv ≥ ρu(ml −m1)

 =
∑
l 6=1

pl.

(42)

Now we bound each pl. By the independence structure and Chernoff bound, we have

pl ≤ E
{

exp (−tuρu(ml −m1)) (qetu + 1− q)m′l(petu + 1− p)ml−m′l

(pe−tu + 1− p)m′1(qe−tu + 1− q)m1−m′11{Eu}

}
(43)

≤ E
{

exp (−tuρu(ml −m1)) (qetu + 1− q)ml(pe−tu + 1− p)m11{Eu}
}

(44)

×E

{(
petu + 1− p
qetu + 1− q

)ml−m′l (qe−tu + 1− q
pe−tu + 1− p

)m1−m′1
1{Eu}

}
. (45)

We are going to give bounds for the terms in (44) and (45) respectively. Before doing that,
we need some preparatory inequalities. Define t∗ through the equation

et
∗

=

√
p(1− q)
q(1− p)

.
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Then, on the event Eu,
etu−t

∗
+ et

∗−tu ≤ exp(C1η), (46)

for some constant C1 > 0. Moreover,

|etu − 1| ∨ |e−tu − 1| ≤ C2
p− q
p

= C2
a− b
a

, (47)

for some constant C2 > 0. Therefore, for the term in (44), on the event Eu,

exp (−tuρu(ml −m1)) (qetu + 1− q)ml(pe−tu + 1− p)m1

= exp (−tuρu(ml −m1))
(
qetu + 1− q

)(ml−m1)/2 (
pe−tu + 1− p

)(m1−ml)/2 (48)

×
(
qetu + 1− q

)(m1+ml)/2
(
pe−tu + 1− p

)(m1+ml)/2 . (49)

By (46), the term in (49) is upper bounded by

(
pq + (1− p)(1− q) +

√
pq
√

(1− p)(1− q)(etu−t∗ + et
∗−tu)

)m1+ml
2

≤ exp

(
−(1 + o(1))

m1 +ml

2
I∗
)
≤ exp

(
−(1 + o(1))

n1 + nl
2

I∗
)
.

By (47), the term in (48) is upper bounded by

exp (−tuρu(ml −m1))
(
qetu + 1− q

)(ml−m1)/2 (
pe−tu + 1− p

)(m1−ml)/2

= exp

(
m1 −ml

2

(
log

pe−tu + 1− p
qetu + 1− q

− log
p̂ue
−tu + 1− p̂u

q̂uetu + 1− q̂u

))
≤ exp

(
|m1 −ml|

2

(
|e−tu − 1||p̂u − p|+ |etu − 1||q̂u − q|

))
≤ exp

(
o

(
n

k

(p− q)2

p

))
= exp

(
o(1)

n1 + nl
2

I∗
)
.

Therefore, we can upper bound (44) as

E
{
e−tuρu(ml−m1)(qetu + 1− q)ml(pe−tu + 1− p)m11{Eu}

}
≤ exp

(
−(1 + o(1))

n1 + nl
2

I∗
)
.

(50)
Now we provide an upper bound for (45). By (47), on Eu,

petu + 1− p
qetu + 1− q

= 1 +
(p− q)(etu − 1)

qetu + 1− q
≤ 1 +O

(
(p− q)2

p

)
≤ exp

(
O

(
(p− q)2

p

))
,

and

qe−tu + 1− q
pe−tu + 1− p

= 1 +
(p− q)(1− e−tu)

pe−tu + 1− p
≤ 1 +O

(
(p− q)2

p

)
≤ exp

(
O

(
(p− q)2

p

))
.
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Therefore,

E

{(
petu + 1− p
qetu + 1− q

)ml−m′l (qe−tu + 1− q
pe−tu + 1− p

)m1−m′1
1{Eu}

}
≤ exp

(
o(1)

n1 + nl
2

I∗
)
. (51)

By combining (50) and (51), we have

pl ≤ exp

(
−(1 + o(1))

n1 + nl
2

I∗
)
. (52)

Using (42), this implies

P {σ̂u(u) 6= 1 and Eu} ≤ (k − 1) exp

(
−(1 + o(1)) min

l 6=1

(
n1 + nl

2

)
I∗
)
,

and so

P {σ̂u(u) 6= 1} ≤ (k − 1) exp

(
−(1 + o(1)) min

l 6=1

(
n1 + nl

2

)
I∗
)

+ Cn−(1+δ).

When k = 2, minl 6=1

(
n1+nl

2

)
= n

2 , and when k ≥ 3, minl 6=1

(
n1+nl

2

)
≥ n

βk . Thus, the proof
is complete.

Lemma 18 Let Θ be defined as in (3) and k ≥ 2. Suppose as n → ∞, (a−b)2
ak → ∞ and

a � b. If there exists two sequences γ = o
(
a−b
ak

)
and η = o(1), constants C, δ > 0 and

permutations {πu}nu=1 ⊂ Sk such that (41) holds. Then for σ̂u(u) defined as in (10) with
ρ = ρu in (12), the conclusions of Lemma 17 continue to hold.

Proof The proof is similar to that of Lemma 17 and we use the same notation as there.
First, we give a bound for pl defined in (42). Let Xj ∼ Bern(q), Yj ∼ Bern(p) and Zj ∼
Bern(αp), j ≥ 1, be mutually independent. Then, a stochastic order argument gives

pl ≤ E

P


m′l∑
j=1

Xj +

ml−m′l∑
j=1

Zj −
m′1∑
j=1

Yj ≥ ρ(ml −m1) and Eu

∣∣∣A−u



≤ E
{

exp (−tuρu(ml −m1)) (qetu + 1− q)ml(pe−tu + 1− p)m11{Eu}
}

(53)

×E

{(
1

qetu + 1− q

)ml−m′l ( 1

pe−tu + 1− p

)m1−m′1
(54)

(αpetu + 1− αp)ml−m′l1{Eu}
}
.

Note that the term in (53) is the same as that in (44), and thus it can be upper bounded
by (50) as before. To bound for (54), observe that by (47),

1

qetu + 1− q
≤ exp

(
q|etu − 1|

)
≤ exp (O(p− q)) ,
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1

pe−tu + 1− p
≤ exp

(
Cp|e−tu − 1|

)
≤ exp (O(p− q))

and
αpetu + 1− αp ≤ exp

(
αp|etu − 1|

)
≤ exp (O(p− q)) .

Thus, under the assumption γ = o
(
p−q
kp

)
, the term (54) is bounded by exp

(
o(1)n1+nl

2 I∗
)
.

The remaining proof is the same as that of Lemma 17.

Finally, we need a lemma to justify the consensus step in Algorithm 1.

Lemma 19 For any community assignments σ and σ′: [n] → [k], such that for some
constant C ≥ 1

min
l∈[k]
| {u : σ(u) = l} |, min

l∈[k]
|
{
u : σ′(u) = l

}
| ≥ n

Ck
, and min

π∈Sk
`0(σ, π(σ′)) <

1

Ck
.

Define map ξ : [k]→ [k] as

ξ(i) = argmax
l

∣∣{u : σ(u) = l} ∩ {u : σ′(u) = i}
∣∣ , ∀i ∈ [k]. (55)

Then ξ ∈ Sk and `0(σ, ξ(σ′)) = minπ∈Sk `0(σ, π(σ′)).

Proof By the definition in (55), we obtain

ξ = argmin
ξ′:[k]→[k]

`0(σ, ξ′(σ′)), and `0(σ, ξ(σ′)) ≤ min
π∈Sk

`0(σ, π(σ′)) <
1

Ck
.

Thus, what remains to be shown is that ξ ∈ Sk, i.e., ξ(l1) 6= ξ(l2) for any l1 6= l2. To this
end, note that if for some l1 6= l2, ξ(l1) = ξ(l2), then there would exist some l0 ∈ [k] such
that for any l ∈ [k], ξ(l) 6= l0, and so

`0(σ, ξ(σ′)) ≥ 1

n

∑
u:σ(u)=l0

1{σ(u)6=ξ(σ′(u))} =
| {u : σ(u) = l0} |

n
≥ 1

Ck
.

This is in contradiction to the second last display, and hence ξ ∈ Sk. This completes the
proof.

Proof [Proof of Theorem 4] Let Θ = Θ(n, k, a, b, λ, β;α), and fix any (B, σ) ∈ Θ. For any
u ∈ [n], by Condition 1 and the fact that σ0

u and σ̂u differ only at the community assignment
of u, for γ′ = γ + 1/n, there exists some πu ∈ Sk such that

P
{
`0(σ, π−1

u (σ̂u)) ≤ γ′n
}
≥ 1− C0n

−(1+δ). (56)

Without loss of generality, we assume π1 = Id is the identity map. Now for any fixed
u ∈ {2, . . . , n}, define map ξu : [k] → [k] as in (55) with σ and σ′ replaced by σ̂1 and σ̂u.
Then by definition

σ̂(u) = ξu(σ̂u(u)). (57)
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In addition, (56) implies with probability at least 1− Cn−(1+δ), we have

`0(σ, σ̂1) ≤ γ′ and `0(σ, π−1
u (σ̂u)) ≤ γ′.

So the triangle inequality implies `0(σ̂1, π
−1
u (σ̂u)) ≤ 2γ′ and hence the condition of Lemma

19 is satisfied. Thus, Lemma 19 implies

P
{
ξu = π−1

u

}
≥ 1− Cn−(1+δ). (58)

When k ≥ 3, Lemma 16, (16) and (18) imply that the condition of Lemma 18 is satisfied,
which in turn implies that for a sequence η′ = o(1),

P {σ̂(u) 6= σ(u)} = P {ξu(σ̂u(u)) 6= σ(u)}
≤ P

{
ξu(σ̂u(u)) 6= σ(u), ξu = π−1

u

}
+ P

{
ξu 6= π−1

u

}
≤ P {σ̂u(u) 6= πu(σ(u))}+ P

{
ξu 6= π−1

u

}
≤ Cn−(1+δ) + (k − 1) exp

{
−(1− η′)nI

∗

βk

}
.

Set

η = η′ + β

√
k

nI∗
= o(1) (59)

where the last inequality holds since nI∗

k �
(a−b)2
ak → ∞. Thus, Markov’s inequality leads

to

P
{
`0(σ, σ̂) > (k − 1) exp

{
−(1− η)

nI∗

βk

}}
≤ 1

(k − 1) exp
{
−(1− η)nI

∗

βk

} 1

n

n∑
u=1

P {σ̂(u) 6= σ(u)}

≤ exp

{
−(η − η′)nI

∗

βk

}
+

Cn−(1+δ)

(k − 1) exp
{
−(1− η)nI

∗

βk

}
≤ exp

{
−
√
nI∗

k

}
+

Cn−(1+δ)

(k − 1) exp
{
−(1− η)nI

∗

βk

} .
If (k − 1) exp

{
−(1− η)nI

∗

βk

}
≥ n−(1+δ/2), then

P
{
`0(σ, σ̂) > (k − 1) exp

{
−(1− η)

nI∗

βk

}}
≤ exp

{
−
√
nI∗

k

}
+ Cn−δ/2 = o(1).

If (k − 1) exp
{
−(1− η)nI

∗

βk

}
< n−(1+δ/2), then

P
{
`0(σ, σ̂) > (k − 1) exp

{
−(1− η)

nI∗

βk

}}
= P {`0(σ, σ̂) > 0} ≤

n∑
u=1

P {σ̂(u) 6= σ(u)}

≤ n(k − 1) exp

{
−(1− η)

nI∗

βk

}
+ Cn−δ ≤ Cn−δ/2 = o(1).
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Here, the second last inequality holds since η > η′ and so (k−1) exp {−(1− η′)nI∗/(βk)} <
(k−1) exp {−(1− η)nI∗/(βk)} < n−(1+δ/2). We complete the proof for the case of Θ(n, k, a, b, λ, β;α)

and k ≥ 3 by noting that (k − 1) exp
{
−(1− η)nI

∗

βk

}
= exp

{
−(1− η′′)nI∗βk

}
for another se-

quence η′′ = o(1) under the assumption (a−b)2
ak log k → ∞ and no constant or sequence in the

foregoing arguments involves B, σ or u. When Θ = Θ(n, k, a, b, λ, β;α) and k = 2, the
foregoing arguments continue to hold with β and k replaced with 1 and 2 respectively.

When Θ = Θ0(n, k, a, b, β), we can run the foregoing arguments with Lemma 18 replaced
by Lemma 17 to reach the conclusion in (17), which does not require condition (18). This
completes the proof.

6.2 Proof of Theorem 6

The following lemma is critical to establish the result of Theorem 6. Its proof is given in
the appendix. Let us introduce the notation O(k1, k2) = {V ∈ Rk1×k2 : V TV = Ik2} for
k1 ≥ k2.

Lemma 20 Consider a symmetric adjacency matrix A ∈ {0, 1}n×n and a symmetric matrix
P ∈ [0, 1]n×n satisfying Auu = 0 for all u ∈ [n] and Auv ∼ Bernoulli(Puv) independently for
all u > v. For any C ′ > 0, there exists some C > 0 such that

‖Tτ (A)− P‖op ≤ C
√
npmax + 1,

with probability at least 1−n−C′ uniformly over τ ∈ [C1(npmax +1), C2(npmax +1)] for some
sufficiently large constants C1, C2, where pmax = maxu≥v Puv.

Lemma 21 For P = (Puv) = (Bσ(u)σ(v)), we have SVD P = UΛUT , where

U = Z∆−1W,

with ∆ = diag(
√
n1, ...,

√
nk), Z ∈ {0, 1}n×k is a matrix with exactly one nonzero entry in

each row at (i, σ(i)) taking value 1 and W ∈ O(k, k).

Proof Note that

P = ZBZT = Z∆−1∆B∆(Z∆−1)T ,

and observe that Z∆−1 ∈ O(n, k). Apply SVD to the matrix ∆B∆T = WΛW T for some
W ∈ O(k, k), and then we have P = UΛUT with U = Z∆−1W ∈ O(k, k).

Proof [Proof of Theorem 6] Under the current assumption, Eτ ∈ [C ′1a,C
′
2a] for some large

C ′1 and C ′2. Using Bernstein’s inequality, we have τ ∈ [C1a,C2a] for some large C1 and C2

with probability at least 1−e−C′n. When (20) holds, by Lemma 20, we deduce that the kth

eigenvalue of Tτ (A) is lower bounded by c1λk with probability at least 1 − n−C′ for some
small constant c1 ∈ (0, 1). By Davis–Kahan’s sin-theta theorem (Davis and Kahan, 1970),
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we have ‖Û − UW1‖F ≤ C
√
k

λk
‖Tτ (A) − P‖op for some W1 ∈ O(k, k) and some constant

C > 0. Applying Lemma 21, we have

‖Û − V ‖F ≤ C
√
k

λk
‖Tτ (A)− P‖op, (60)

where V = Z∆−1W2 ∈ O(n, k) for some W2 ∈ O(k, k). Combining (60), Lemma 20 and the
conclusion τ ∈ [C1a,C2a], we have

‖Û − V ‖F ≤
C
√
k
√
a

λk
, (61)

with probability at least 1− n−C′ . The definition of V implies that

‖Vu∗ − Vv∗‖ =

√
1

nu
+

1

nv
1{σ(u)6=σ(v)}. (62)

In other words, define Q = ∆−1W2 ∈ Rk×k and we have Vu∗ = Qσ(u)∗ for each u ∈ [n].

Hence, for σ(u) 6= σ(v),
∥∥Qσ(u)∗ −Qσ(v)∗

∥∥ = ‖Vu∗ − Vv∗‖ ≥
√

2k
βn . Recall the definition

r = µ
√

k
n in Algorithm 2. Define the sets

Ti =
{
u ∈ σ−1(i) :

∥∥∥Ûu∗ −Qi∗∥∥∥ < r

2

}
, i ∈ [k].

By definition, Ti ∩ Tj = ∅ when i 6= j, and we also have

∪i∈[k] Ti =
{
u ∈ [n] :

∥∥∥Ûu∗ − Vu∗∥∥∥ < r

2

}
. (63)

Therefore, ∣∣(∪i∈[k]Ti
)c∣∣ r2

4
≤
∑
u∈[n]

∥∥∥Ûu∗ − Vu∗∥∥∥2
≤ C2ka

λ2
k

,

where the last inequality is by (61). After rearrangement, we have

∣∣(∪i∈[k]Ti
)c∣∣ ≤ 4C2na

µ2λ2
k

. (64)

In other words, most nodes are close to the centers and are in the set (63). Note that the sets
{Ti}i∈[k] are disjoint. Suppose there is some i ∈ [k] such that |Ti| < |σ−1(i)| −

∣∣(∪i∈[k]Ti
)c∣∣,

we have
∣∣∪i∈[k]Ti

∣∣ =
∑

i∈[k] |Ti| < n −
∣∣(∪i∈[k]Ti

)c∣∣ =
∣∣∪i∈[k]Ti

∣∣, which is impossible. Thus,
the cardinality of Ti for each i ∈ [k] is lower bounded as

|Ti| ≥ |σ−1(i)| −
∣∣(∪i∈[k]Ti

)c∣∣ ≥ n

βk
− 4C2na

µ2λ2
k

>
n

2βk
, (65)

where the last inequality above is by the assumption (20). Intuitively speaking, except
for a negligible proportion, most data points in {Ûu∗}u∈[n] are very close to the population
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Figure 4: The schematic plot for the proof of Theorem 6. The balls {Ti}i∈[k] are centered at {Qi}i∈[k],
and the centers are at least

√
2k
βn

away from each other. The balls {Ĉi}i∈[k] intersect with large

proportions of {Ti}i∈[k], and their subscripts do not need to match due to some permutation.

centers {Qi∗}i∈[k]. Since the centers are at least
√

2k
βn away from each other and {Ti}i∈[k] and

{Ĉi}i∈[k] are both defined through the critical radius r = µ
√

k
n for a small µ, each Ĉi should

intersect with only one Ti (see Figure 4). We claim that there exists some permutation π
of the set [k], such that for Ĉi defined in Algorithm 2,

Ĉi ∩ Tπ(i) 6= ∅ and |Ĉi| ≥ |Tπ(i)| for each i ∈ [k]. (66)

In what follows, we first establish the result of Theorem 6 by assuming (66). The proof of
(66) will be given in the end. Note that for any i 6= j, Tπ(i)∩Ĉj = ∅, which is deduced from

the fact that Ĉj ∩ Tπ(j) 6= ∅ and the definition of Ĉj . Therefore, Tπ(i) ⊂ Ĉcj for all j 6= i.

Combining with the fact that Tπ(i) ∩ Ĉci ⊂ Ĉci , we get Tπ(i) ∩ Ĉci ⊂ (∪i∈[k]Ĉi)c. Therefore,

∪i∈[k]

(
Tπ(i) ∩ Ĉci

)
⊂
(
∪i∈[k]Ĉi

)c
. (67)

Since Ti ∩ Tj = ∅ for i 6= j, we deduce from (67) that∑
i∈[k]

∣∣∣Tπ(i) ∩ Ĉci
∣∣∣ ≤ ∣∣∣(∪i∈[k]Ĉi

)c∣∣∣ . (68)

By definition, Ĉi ∩ Ĉj = ∅ for i 6= j, we deduce from (66) that∣∣∣(∪i∈[k]Ĉi
)c∣∣∣ = n−

∑
i∈[k]

|Ĉi| ≤ n−
∑
i∈[k]

|Ti| =
∣∣(∪i∈[k]Ti

)c∣∣ . (69)
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Combining (68), (69) and (64), we have

∑
i∈[k]

∣∣∣Tπ(i) ∩ Ĉci
∣∣∣ ≤ 4C2na

µ2λ2
k

. (70)

Since for any u ∈ ∪i∈[k](Ĉi∩Tπ(i)), we have σ̂(u) = i when σ(u) = π(i), the mis-classification
rate is bounded as

`0(σ̂, π−1(σ)) ≤ 1

n

∣∣∣(∪i∈[k](Ĉi ∩ Tπ(i))
)c∣∣∣

≤ 1

n

(∣∣∣(∪i∈[k](Ĉi ∩ Tπ(i))
)c
∩
(
∪i∈[k]Ti

)∣∣∣+
∣∣(∪i∈[k]Ti

)c∣∣)
≤ 1

n

∑
i∈[k]

∣∣∣Tπ(i) ∩ Ĉci
∣∣∣+
∣∣(∪i∈[k]Ti

)c∣∣
≤ 8C2a

µ2λ2
k

,

where the last inequality is from (70) and (64). This proves the desired conclusion.

Finally, we are going to establish the claim (66) to close the proof. We use mathematical
induction. For i = 1, it is clear that |Ĉ1| ≥ maxi∈[k] |Ti| holds by the definition of Ĉ1. Suppose

Ĉ1 ∩ Ti = ∅ for all i ∈ [k], and then we must have∣∣(∪i∈[k]Ti
)c∣∣ ≥ |Ĉ1| ≥ max

i∈[k]
|Ti| ≥

n

2βk
,

where the last inequality is by (65). This contradicts (64) under the assumption (20).
Therefore, there must be a π(1) such that Ĉ1 ∩ Tπ(1) 6= ∅ and |Ĉ1| ≥ |Tπ(1)|. Moreover,

|Ĉc1 ∩ Tπ(1)| = |Tπ(1)| − |Tπ(1) ∩ Ĉ1|

≤ |Ĉ1| − |Tπ(1) ∩ Ĉ1|

= |Ĉ1 ∩ T cπ(1)|

≤
∣∣(∪i∈[k]Ti

)c∣∣ ,
where the last inequality is because Tπ(1) is the only set in {Ti}i∈[k] that intersects Ĉ1 by
the definitions. By (64), we get

|Ĉci ∩ Tπ(i)| ≤
4C2na

µ2λ2
k

, (71)

for i = 1.

Now suppose (66) and (71) are true for i = 1, ..., l− 1. Because of the sizes of {Ĉi}i∈[l−1]

and the fact that {Ti}i∈[k] are mutually exclusive, we have(
∪l−1
i=1Ĉi

)
∩
(
∪i∈[k]\∪l−1

i=1{π(i)}Ti

)
= ∅.
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Therefore, for the set S in the current step, ∪i∈[k]\∪l−1
i=1{π(i)}Ti ⊂ S. By the definition of Ĉl,

we have |Ĉl| ≥ maxi∈[k]\∪l−1
i=1{π(i)} |Ti| ≥

n
2βk . Suppose Ĉl ∩ Tπ(i) 6= ∅ for some i = 1, ..., l− 1.

Then, this Tπ(i) is the only set in {Ti}i∈[k] that intersects Ĉl by their definitions. This implies
that

|Ĉl| ≤ |Ĉl ∩ Tπ(i)|+
∣∣(∪i∈[k]Ti

)c∣∣ .
Since Ĉl ∩ Ĉπ(i) = ∅, |Ĉl ∩ Tπ(i)| ≤ |Ĉci ∩ Tπ(i)| is bounded by (71). Together with (64), we
have

|Ĉl| ≤
8C2na

µ2λ2
k

,

which contradicts |Ĉl| ≥ n
2βk under the assumption (20). Therefore, we must have Ĉl∩Tπ(i) =

∅ for all i = 1, ..., l − 1. Now suppose Ĉl ∩ Tπ(i) = ∅ for all i ∈ [k], we must have∣∣(∪i∈[k]Ti
)c∣∣ ≥ |Ĉl| ≥ n

2βk
,

which contradicts (64). Hence, Ĉl ∩ Tπ(l) 6= ∅ for some π(l) ∈ [k]\ ∪l−1
i=1 {π(i)}, and (66) is

established for i = l. Moreover, (71) can also be established for i = l by the same argument
that is used to prove (71) for i = 1. The proof is complete.

6.3 Proof of Theorem 10

Define Pτ = P + τ
n11

T . The proof of the following lemma is given in the appendix.

Lemma 22 Consider a symmetric adjacency matrix A ∈ {0, 1}n×n and a symmetric matrix
P ∈ [0, 1]n×n satisfying Auu = 0 for all u ∈ [n] and Auv ∼ Bernoulli(Puv) independently for
all u > v. For any C ′ > 0, there exists some C > 0 such that

‖L(Aτ )− L(Pτ )‖op ≤ C

√
log(e(npmax + 1))

npmax + 1
,

with probability at least 1−n−C′ uniformly over τ ∈ [C1(npmax +1), C2(npmax +1)] for some
sufficiently large constants C1, C2, where pmax = maxu≥v Puv.

Lemma 23 Consider P = (Puv) = (Bσ(u)σ(v)). Let the SVD of the matrix L(Pτ ) be

L(Pτ ) = UΣUT , with U ∈ O(n, k) and Σ = diag(σ1, ..., σk). For V = UW with any

W ∈ O(r, r), we have ‖Vu∗ − Vv∗‖ =
√

1
nu

+ 1
nv

when σ(u) 6= σ(v) and Vu∗ = Vv∗ when

σ(u) = σ(v). Moreover, σk ≥ λk
2τ as long as τ ≥ npmax.

Proof The first part is Lemma 1 in Joseph and Yu (2013). Define d̄v =
∑

u∈[n] Puv and

D̄τ = diag(d̄1 + τ, ..., d̄n + τ). Then, we have L(Pτ ) = D̄
−1/2
τ Pτ D̄

−1/2
τ . Note that Pτ has an

SBM structure so that it has rank at most k, and the kth eigenvalue of Pτ is lower bounded
by λk. Thus, we have

σk ≥
λk

maxu∈[n] d̄u + τ
.

31



Gao, Ma, Zhang and Zhou

Observe that maxu∈[n] d̄u ≤ npmax ≤ τ , and the proof is complete.

Proof [Proof of Theorem 10] As is shown in the proof of Theorem 6, τ ∈ [C1a,C2a] for some
large C1, C2 with probability at least 1−e−C′n. By Davis–Kahan’s sin-theta theorem (Davis

and Kahan, 1970), we have ‖Û − UW‖F ≤ C1

√
k

σk
‖L(Aτ )− L(Pτ )‖op for some W ∈ O(r, r)

and some constant C1 > 0. Let V = UW and apply Lemma 22 and Lemma 23, we have

‖Û − V ‖F ≤
C
√
k
√
a log a

λk
, (72)

with probability at least 1− n−C′ . Note that by Lemma 23, V satisfies (62). Replace (61)
by (72), and follow the remaining proof of Theorem 6, the proof is complete.

Appendix A. A simplified version of Algorithm 1

We give in Algorithm 3 the precise description of the simplified version of Algorithm 1 that
we have used in Section 4.

A.1 Additional simulation results

We report some additional simulation results comparing the performances of Algorithm 1
and Algorithm 3. In particular, we consider networks with 400 nodes and 2 communities
with four different sets of community sizes, within and between community connection
probabilities and initialization methods, and the simulation results are reported in Figure
5 on page 34. From Figure 5 on page 34 we can see the performances of both algorithms
remain similar across all these different settings.

Appendix B. Proofs of Theorem 12

Proof [Proof of Theorem 12] Let us consider Θ = Θ0(n, k, a, b, β) and the case of Θ(n, k, a, b, λ, β;α)
is similar except that the condition (18) is needed to establish the counterpart of Lemma
18. The proof essentially follows the same steps as those in the proof of Theorem 4. First,
we note that Lemma 16 continues to hold since it does not need the assumption of a/b being
bounded. Thus, the first job is to establish the counterpart of Lemma 17 with η′ replaced
with Cε

2ε0
3 . As before, let p = a/n and q = b/n.

To this end, we first proceed in the same way to obtain (42) – (52). Without loss of
generality, let us consider the case where t∗ > log 2

ε0
and tu = log 2

ε0
since otherwise we can

essentially repeat the proof of Theorem 4. Note that this implies a
b > ( 2

ε0
)2. In this case,

with the new tu in (22), we have on the event Eu,

(qetu + 1− q)(pe−tu + 1− p) = e−I
′
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Algorithm 3: A simplified refinement scheme for community detection

Input: Adjacency matrix A ∈ {0, 1}n×n,
number of communities k,
initial community detection method σ0.

Output: Community assignment σ̂.

Initialization:
1 Apply σ0 on A to obtain σ0(u) for all u ∈ [n];

2 Define C̃i =
{
v : σ0(v) = i

}
for all i ∈ [k]; let Ẽi be the set of edges within C̃i, and Ẽij

the set of edges between C̃i and C̃j when i 6= j;
3 Define

B̂ii =
|Ẽi|

1
2 |C̃i|(|C̃i| − 1)

, B̂ij =
|Ẽij |
|C̃i||C̃j |

, ∀i 6= j ∈ [k],

and let
â = nmin

i∈[k]
B̂ii and b̂ = n max

i 6=j∈[k]
B̂ij .

Penalized neighbor voting:
4 For

t =
1

2
log

â(1− b̂/n)

b̂(1− â/n)
,

define

ρ = − 1

2t
log

(
â
ne
−t + 1− â

n

b̂
ne

t + 1− b̂
n

)
,

5 For each u ∈ [n], set

σ̂(u) = argmax
l∈[k]

∑
σ0(v)=l

Auv − ρ
∑
v∈[n]

1{σ0(v)=l}.

where

I ′ = − log
(

(1− p) (1− q) + pq +
(
etu−t

∗
+ et

∗−tu
)√

(1− p) (1− q) pq
)

≥
(

1− Cε
3ε0
5

)
I∗. (73)

To see this, we first note that for any x, y ∈ (0, 1) and sufficient small constant c0 > 0, if
y ≥ x ≥ (1− c0)y and y−x

1−y ≤ 1, then

− log(1− x) = − log(1− y)− log

(
1 +

y − x
1− y

)
≥ − log(1− y)− 2

y − x
1− y

≥ −
(
1− C ′yc0

)
log(1− y),
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Figure 5: Comparison of Algorithm 1 and its simplified version (Algorithm 3) under various
parameters for two-community networks. The parameters are displayed inside
each boxplot. Here ni gives the community sizes and B matrix satisfies Bii =
a/n,∀i = 1, 2 and Bij = b/n,∀i 6= j. Each pair of boxplots are based on 100 runs.

where C ′y = 2y
−(1−y) log(1−y) . When a

b > ( 2
ε0

)2 and tu = log 2
ε0

, we have I ′ = − log(1− x) for

x = p+ q − 2pq − (etu−t
∗

+ et
∗−tu)

√
(1− p) (1− q) pq ≥ p− 2pq − qetu − pe−tu ≥ p(1− ε0 −

ε20
2

),

while I∗ = − log(1− y) for

y = p+ q − 2pq − 2
√

(1− p) (1− q) pq ≤ p+ q ≤ p(1 + (
ε0
2

)2).

Thus, for any ε0 ∈ (0, cε), 1 − ε
2 ≥ y ≥ x ≥ (1 − 2ε0)y and y−x

1−y ≤ 1, and we apply the
inequality in the third last display to obtain (73).

Thus, the term in (49) is upper bounded by

exp

(
−
(
1− Cε

3ε0
5

)n1 + nl
2

I∗
)
.

On the other hand, since |e−tu − 1| ≤ 1, |etu − 1| is bounded and p−q
p � 1, the term in (48)

continues to be bounded by

exp

(
−o(1)

n1 + nl
2

I∗
)
.
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Moreover, by the same argument as in Lemma 17, (51) continues to hold. Thus, we can
replace (52) as

pl ≤ exp

(
−
(
1− Cε

2ε0
3

)n1 + nl
2

I∗
)
,

and so when k ≥ 3,

P {σ̂u(u) 6= πu(σ(u))} ≤ (k − 1) exp

{
−
(

1− Cε
2ε0
3

)
nI∗

βk

}
+ Cn−(1+δ) (74)

and when k = 2, we can replace β by 1 in the last display.

When k ≥ 3, given the last display and (58), we have

P {σ̂(u) 6= σ(u)} = P {ξu(σ̂u(u)) 6= σ(u)}
≤ P

{
ξu(σ̂u(u)) 6= σ(u), ξu = π−1

u

}
+ P

{
ξu 6= π−1

u

}
≤ P {σ̂u(u) 6= πu(σ(u))}+ P

{
ξu 6= π−1

u

}
≤ Cn−(1+δ) + (k − 1) exp

{
−
(

1− Cε
2ε0
3

)
nI∗

βk

}
. (75)

Thus, the assumption that (a−b)2
ak log k →∞ and Markov’s inequality leads to

P
{
`0(σ, σ̂) > exp

{
−(1− Cεε0)

nI∗

βk

}}
≤ P

{
`0(σ, σ̂) > (k − 1) exp

{
−(1− Cε

5ε0
6

)
nI∗

βk

}}
≤ 1

(k − 1) exp
{
−(1− Cε 5ε0

6 )nI
∗

βk

} 1

n

n∑
u=1

P {σ̂(u) 6= σ(u)}

≤ exp

{
−Cεε0

6

nI∗

βk

}
+

Cn−(1+δ)

(k − 1) exp
{
−(1− Cε 5ε0

6 )nI
∗

βk

} . (76)

If (k − 1) exp
{
−(1− Cε 5ε0

6 )nI
∗

βk

}
≥ n−(1+δ/2), then

P
{
`0(σ, σ̂) > exp

{
−(1− Cεε0)

nI∗

βk

}}
≤ exp

{
−Cεε0

6

nI∗

βk

}
+ Cn−δ/2 = o(1). (77)

If (k − 1) exp
{
−(1− Cε 5ε0

6 )nI
∗

βk

}
< n−(1+δ/2), then

P
{
`0(σ, σ̂) > exp

{
−(1− Cεε0)

nI∗

βk

}}
≤ P {`0(σ, σ̂) > 0} ≤

n∑
u=1

P {σ̂(u) 6= σ(u)}

≤ n(k − 1) exp

{
−(1− Cε

2ε0
3

)
nI∗

βk

}
+ Cn−δ ≤ Cn−δ/2 = o(1). (78)
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Here, the second last inequality holds since (k−1) exp
{
−(1− Cε 2ε0

3 )nI
∗

βk

}
< exp

{
−(1− Cε 5ε0

6 )nI
∗

βk

}
<

n−(1+δ/2). We complete the proof for the case of k ≥ 3 by noting that no constant or se-
quence in the foregoing arguments involves B, σ or u. When k = 2, we run the foregoing
arguments with β replaced by 1 to obtain the desired claim.

Appendix C. Proofs of Theorems 13, 14 and 15

Proposition 24 For SBM in the space Θ0(n, k, a, b, β) satisfying n ≥ 2βk, we have λk ≥
a−b
βk .

Proof Since the eigenvalues of P are invariant with respect to permutation of the commu-

nity labels, we consider the case where σ(u) = i for u ∈
{∑i−1

j=1 nj − 1,
∑i

j=1 nj

}
without

loss of generality, where
∑0

j=1 nj = 0. Let us use the notation 1d ∈ Rd and 0d ∈ Rd to
denote the vectors with all entries being 1 and 0 respectively. Then, it is easy to check that

P − b

n
1n1

T
n =

a− b
n

k∑
i=1

viv
T
i ,

where v1 = (1Tn1
,0Tn2

, ...,0Tnk)T , v1 = (0Tn1
,1Tn2

,0Tn3
, ...,0Tnk)T ,..., vk = (0Tn1

, ...,0Tnk−1
,1Tnk)T .

Note that {vi}ki=1 are orthogonal to each other, and therefore

λk

(
k∑
i=1

viv
T
i

)
≥ min

i∈[k]
ni ≥

n

βk
− 1 ≥ n

2βk
.

By Weyl’s inequality (Theorem 4.3.1 of Horn and Johnson (2012)),

λk(P ) ≥ a− b
n

λk

(
k∑
i=1

viv
T
i

)
+ λn

(
b

n
1n1

T
n

)
≥ a− b

2βk
.

This completes the proof.

Proof [Proof of Theorem 13] Let us first consider Θ0(n, k, a, b, β). By Theorem 6 and

Proposition 24, the misclassification proportion is bounded by C k2a
(a−b)2 under the condition

k3a
(a−b)2 ≤ c for some small c. Thus, Condition 1 holds when k3a

(a−b)2 = o(1), which leads

to the desired conclusion in view of Theorem 4 and Theorem 12. The proof of the space
Θ(n, k, a, b, λ, β;α) follows the same argument.

Proof [Proof of Theorem 14] The proof is the same as that of Theorem 13.

Proof [Proof of Theorem 15] When the parameters a and b are known, we can use τ = Ca
for some sufficiently large C > 0 for both USC(τ) and NSC(τ). Then, the results of Theo-
rem 6 and Theorem 10 hold without assuming a ≤ C1b or fixed k. Moreover, âu and b̂u in
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(11) and (22) can be replaced by a and b. Then, the conditions (16) and (18) in Theorem
4 and Theorem 12 can be weakened as γ = o(k−1) because the we do not need to establish
Lemma 16 anymore. Combining Theorem 4, Theorem 6, Theorem 10 and Theorem 12, we
obtain the desired results.

Appendix D. Proofs of Lemma 20 and Lemma 22

The following lemma is Corollary A.1.10 in Alon and Spencer (2004).

Lemma 25 For independent Bernoulli random variables Xu ∼ Bern(pu) and p = 1
n

∑
u∈[n] pu,

we have

P

∑
u∈[n]

(Xu − pu) ≥ t

 ≤ exp

(
t− (pn+ t) log

(
1 +

t

pn

))
,

for any t ≥ 0.

The following result is Lemma 3.5 in Chin et al. (2015).

Lemma 26 Consider any adjacency matrix A ∈ {0, 1}n×n for an undirected graph. Suppose
maxu∈[n]

∑
v∈[n]Auv ≤ γ and for any S, T ⊂ [n], one of the following statements holds with

some constant C > 0:

1. e(S,T )
|S||T | γ

n
≤ C,

2. e(S, T ) log
(
e(S,T )
|S||T | γ

n

)
≤ C|T | log n

|T | ,

where e(S, T ) is the number of edges connecting S and T . Then,
∑

(u,v)∈H xuAuvyv ≤ C ′
√
γ

uniformly over all unit vectors x, y, where H = {(u, v) : |xuyv| ≥
√
γ/n} and C ′ > 0 is

some constant.

The following lemma is critical for proving both theorems.

Lemma 27 For any τ > C(1 + npmax) with some sufficiently large C > 0, we have

|{u ∈ [n] : du ≥ τ}| ≤
n

τ

with probability at least 1− e−C′n for some constant C ′ > 0.

Proof Let us consider any fixed subset of nodes S ⊂ [n] such that it has degree at least
τ and |S| = l for some l ∈ [n]. Let e(S) be the number of edges in the subgraph S and
e(S, Sc) be the number of edges connecting S and Sc. By the requirement on S, either
e(S) ≥ C1lτ or e(S, Sc) ≥ C1lτ for some universal constant C1 > 0. We are going to show
that both P (e(S) ≥ C1lτ) and P (e(S, Sc) ≥ C1lτ) are small. Note that Ee(S) ≤ C2l

2pmax
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and Ee(S, Sc) ≤ C2lnpmax for some universal C2 > 0. Then, when τ > C(npmax + 1) for
some sufficiently large C > 0, Lemma 25 implies

P (e(S) ≥ C1lτ) ≤ exp

(
−1

4
C1lτ log

(
1 +

C1τ

2C2lpmax

))
,

and

P (e(S, Sc) ≥ C1lτ) ≤ exp

(
−1

4
C1lτ log

(
1 +

C1τ

2C2npmax

))
.

Applying union bound, the probability that the number of nodes with degree at least τ is
greater than ξn is

P
(
|{u ∈ [n] : du ≥ τ}| > ξn

)
≤

∑
l>ξn

P
(
|{u ∈ [n] : du ≥ τ}| = l

)
≤

∑
l>ξn

∑
|S|=l

(P (e(S) ≥ C1lτ) + P (e(S, Sc) ≥ C1lτ))

≤
∑
l>ξn

exp
(
l log

en

l

)(
exp

(
−1

4
C1lτ log

(
1 +

C1τ

2C2lpmax

))

+ exp

(
−1

4
C1lτ log

(
1 +

C1τ

2C2npmax

)))
≤

∑
l>ξn

2 exp

(
l log

en

l
− 1

4
C1lτ log

(
1 +

C1τ

2C2npmax

))
≤ exp(−C ′n),

where the last inequality is by choosing ξ = τ−1. Therefore, with probability at least
1− e−C′n, the number of nodes with degree at least τ is bounded by τ−1n.

Lemma 28 Given τ > 0, define the subset J = {u ∈ [n] : du ≤ τ}. Then for any C ′ > 0,
there is some C > 0 such that

‖AJJ − PJJ‖op ≤ C
(
√
npmax +

√
τ +

npmax√
τ +
√
npmax

)
,

with probability at least 1− n−C′.

Proof The idea of the proof follows the argument in Friedman et al. (1989); Feige and
Ofek (2005). By definition,

‖AJJ − PJJ‖op = sup
x,y∈Sn−1

∑
(u,v)∈J×J

xu(Auv − Puv)yv.

38



Optimal Community Detection

Define L = {(u, v) : |xuyv| ≤ (
√
τ +
√
pmaxn)/n} and H = {(u, v) : |xuyv| ≥ (

√
τ +√

pmaxn)/n}, then we have

‖AJJ−PJJ‖op ≤ sup
x,y∈Sn−1

∑
(u,v)∈L∩J×J

xu(Auv−Puv)yv+ sup
x,y∈Sn−1

∑
(u,v)∈H∩J×J

xu(Auv−Puv)yv.

A discretization argument in Chin et al. (2015) implies that

sup
x,y∈Sn−1

∑
(u,v)∈L∩J×J

xu(Auv − Puv)yv . max
x,y∈N

max
S⊂[n]

∑
(u,v)∈L∩S×S

xu(Auv − EAuv)yv

+ max
x,y∈N

max
S⊂[n]

∑
(u,v)∈L∩S×S

xu(EAuv − Puv)yv,

where N ⊂ Sn−1 and |N | ≤ 5n. Then, Bernstein’s inequality and union bound imply that
maxx,y∈N maxS⊂[n]

∑
(u,v)∈L∩S×S xu(Auv − EAuv)yv ≤ C(

√
τ +
√
npmax) with probability

at least 1 − e−C
′n. We also have maxx,y∈N maxS⊂[n]

∑
(u,v)∈L∩S×S xu(EAuv − Puv)yv ≤

‖EA− P‖op ≤ 1. This completes the first part.

To bound the second part supx,y∈Sn−1

∑
(u,v)∈H∩J×J xu(Auv − Puv)yv, we are going

to bound supx,y∈Sn−1

∑
(u,v)∈H∩J×J xuAuvyv and supx,y∈Sn−1

∑
(u,v)∈H∩J×J xuPuvyv sepa-

rately. By the definition of H,

sup
x,y∈Sn−1

∑
(u,v)∈H∩J×J

xuPuvyv = sup
x,y∈Sn−1

∑
(u,v)∈H∩J×J

x2
uy

2
v

|xuyv|
Puv ≤

npmax√
τ +
√
pmaxn

.

To bound supx,y∈Sn−1

∑
(u,v)∈H∩J×J xuAuvyv, it is sufficient to check the conditions of

Lemma 26 for the graph AJJ . By definition, its degree is bounded by τ . Following
the argument of Lei and Rinaldo (2014), the two conditions of Lemma 26 hold with
γ = τ+npmax with probability at least 1−n−C′ . Thus, supx,y∈Sn−1

∑
(u,v)∈H∩J×J xuAuvyv ≤

C(
√
τ +
√
npmax) with probability at least 1− n−C′ . Hence, the proof is complete.

Proof [Proof of Lemma 20] By triangle inequality,

‖Tτ (A)− P‖op ≤ ‖Tτ (A)− Tτ (P )‖op + ‖Tτ (P )− P‖op,

where Tτ (P ) is the matrix obtained by zeroing out the uth row and column of P with
du ≥ τ . Let J = {u ∈ [n] : du ≤ τ}, and then ‖Tτ (A)− Tτ (P )‖op = ‖AJJ − PJJ‖op, whose
bound has been established in Lemma 28. By Lemma 27, |Jc| ≤ n/τ with high proba-

bility. This implies ‖Tτ (P ) − P‖op ≤ ‖Tτ (P ) − P‖F ≤
√

2n|Jc|p2
max ≤

√
2npmax√

τ
. Taking

τ ∈ [C1(1 + npmax), C2(1 + npmax)], the proof is complete.

Now let us prove Lemma 22. The following lemma, which controls the degree, is Lemma
7.1 in Le et al. (2015).
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Lemma 29 For any C ′ > 0, there exists some C > 0 such that with probability at least
1− n−C′, there exists a subset J ⊂ [n] satisfying n− |J | ≤ n

2e(npmax+1) and

|dv − Edv| ≤ C
√

(npmax + 1) log(e(npmax + 1)), for all v ∈ J,

where dv =
∑

u∈[n]Auv.

Using this lemma, together with Lemma 27 and Lemma 28, we are able to prove the
following result, which improves the bound in Theorem 7.2 of Le et al. (2015).

Lemma 30 For any C ′ > 0, there exists some C > 0 such that with probability at least
1− n−C′, there exists a subset J ⊂ [n] satisfying n− |J | ≤ n/d and

‖(L(Aτ )− L(Pτ ))J×J‖op ≤ C

(√
d log d(d+ τ)

τ2
+

√
d

τ

)
,

where d = e(npmax + 1).

Proof Let us use the notation dv =
∑

u∈[n]Auv in the proof. Define the set J1 =
{v ∈ [n] : dv ≤ C1d} for some sufficiently large constant C1 > 0. Using Lemma 27 and
Lemma 28, with probability at least 1− n−C′ , we have

n− |J1| ≤
n

2d
, (79)

and

‖(A− P )J1J1‖op ≤ C
√
d. (80)

Let J2 be the subset in Lemma 29, and then with probability at least 1− n−C′ , J2 satisfies

n− |J2| ≤
n

2d
, (81)

and

|dv − Edv| ≤ C
√
d log d, for all v ∈ J2. (82)

Define J = J1 ∩ J2. By (79) and (81), we have

n− |J | = |(J1 ∩ J2)c| ≤ |Jc1 |+ |Jc2 | = n− |J1|+ n− |J2| ≤
n

d
, (83)

and

‖(A− P )JJ‖op ≤ ‖(A− P )J1J1‖op ≤ C
√
d. (84)

Moreover, (82) implies

max
v∈J
|dv − Edv| ≤ C

√
d log d.

Define d̄v =
∑

u∈[n] Puv. Then,

max
v∈J
|dv − d̄v| ≤ max

v∈J
|dv − Edv|+ 1 ≤ C

√
d log d. (85)
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Define Dτ = diag(d1 + τ, ..., dn + τ) and D̄τ = diag(d̄1 + τ, ..., d̄n + τ). We introduce the
notation

R = (Aτ )JJ , B = (Dτ )
−1/2
JJ , R̄ = (Pτ )JJ , B̄ = (D̄τ )

−1/2
JJ .

Using (85), we have

‖B − B̄‖op ≤ max
v∈[n]

∣∣∣∣∣ 1√
dv + τ

− 1√
d̄v + τ

∣∣∣∣∣ ≤ C
√
d log d

τ3/2
,

for some constant C > 0. The definitions of B and B̄ implies ‖B‖op ∨ ‖B̄‖op ≤ 1√
τ
. We

rewrite the bound (84) as ‖R−R̄‖op ≤ C
√
d. Since all entries of EAτ is bounded by (τ+d)/n,

we have ‖R̄‖op ≤ ‖EAτ‖op ≤ d + τ . Therefore, ‖R‖op ≤ ‖R̄‖op + ‖R − R̄‖op ≤ C(d + τ).
Finally,

‖(L(Aτ )− L(Pτ ))J×J‖op

≤ ‖B‖op‖R‖op‖B − B̄‖op + ‖B‖op‖R− R̄‖op‖B̄‖op + ‖B − B̄‖op‖R̄‖op‖B̄‖op

≤ C

(√
d log d(d+ τ)

τ2
+

√
d

τ

)
.

The proof is complete.

Proof [Proof of Lemma 22] Recall that d = npmax + 1. Following the proof of Theorem 8.4
in Le et al. (2015), it can be shown that with probability at least 1− n−C′ , for any J ⊂ [n]
such that n− |J | ≤ n/d,

‖L(Aτ )− L(Pτ )‖op ≤ ‖(L(Aτ )− L(Pτ ))JJ‖op + C

(
1√
d

+

√
log d

τ

)
,

where the first term on the right side of the inequality above is bounded in Lemma 30 by
choosing an appropriate J . Hence, with probability at least 1− 2n−C

′
,

‖L(Aτ )− L(Pτ )‖op ≤ C

(√
d log d(d+ τ)

τ2
+

√
d

τ

)
+ C

(
1√
d

+

√
log d

τ

)
.

Choosing τ ∈ [C1(1 + npmax), C2(1 + npmax)], the proof is complete.
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