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Comment

Anderson Y. Zhang and Harrison H. Zhou

Department of Statistics and Data Science, Yale University, New Haven, CT

We congratulate Professors Duchi, Jordan, and Wainwright on
their path-breaking work in statistical decision theory and pri-
vacy. Their extension of classical information-theoretical lower
bounds of Le Cam, Fano, and Assouad to local differential pri-
vacy can potentially lead to a systematic study of various lower
bounds under all kinds of privacy constraints. Their successful
treatments of some interesting problems in the article shed light
on possibly a unified theory for a general statistical framework.

Computer Science and Statistics. The discipline of computer sci-
ence has achieved remarkable progress recently and has exerted
continuous and increasing influence on statistics. In Rise of
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the Machines (Wasserman 2014), Professor Larry Wasserman
writes,

“There are many statistical topics that are dominated by ML and
mostly ig- nored by statistics. This is a shame because statistics has
much to offer in all these areas. Examples include semi-supervised
inference, computational topology, online learning, sequential game
theory, hashing, active learning, deep learning, differential privacy,
random projections and reproducing kernel Hilbert spaces”

Some of the aforementioned topics have deep roots in statis-
tics. They have been studied by statisticians for years and popu-
larized in machine learning. The main topic of this article, local
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differential privacy will likely be among these topics. It was pro-
posed in Warner (1965) for survey sampling, but it is becoming
increasingly important in the big data era.

Decision Theory. The optimality study under a privacy con-
straint can be seen as a special case of constrained minimax
analysis. The minimax theory lies at the heart of decision
theory, which studies the difficulty and fundamental limits of
various statistical tasks. The classical minimax analysis is often
criticized for being both over-pessimistic and over-optimistic.
It is pessimistic because it quantifies the performance of pro-
cedures by the least favorable case; on the other hand, it is
optimistic because all procedures are considered, even those
that are not feasible in practice. In spite of the existence of
rich and abundant philosophical discussions and literature on
the former pessimism of minimax theory, the latter optimism
receives little attention and few investigations. But in practice
procedures are often restricted for various reasons including
privacy, computation, and communication.

For most statistical problems, we have observations X gen-
erated from some underlying model parameterized by 6 from a
parameter space ©. The task is to estimate the unknown param-
eter 6 from the data. The evaluation is carried out through some
loss function £(-, -), and the statistical hardness of the problem
is measured by

inf sup E£(6(X), 6). (1)
)
This is the standard minimax formulation. Due to constraints
over 6, it is entirely possible that the minimax risk can never be
attained in practice.
In the constrained minimax analysis, the estimator 6 is
restricted to satisfy certain properties. It can be formulated in
a way like Equation (1) as follows:

inf sup E£(0(X), 0), 2)

0eS He®
where the space S may include only algorithms under certain
constraints such as: (1) privacy; (2) polynomial-time; (3) con-
vex; or (4) computational resources (e.g., storage constraint)
(Zhu and Lafferty 2017). In some special cases, the space S may
be restricted so that § = 6 o Q where Qisa mapping from X to
Y and 6 is an estimator on Y. In other words, it can be repre-
sented in the following diagram:

9—>X8>Yi>é.

Equation (2) then becomes

inf inf sup E£(6(Q(X)), ), 3)
QeQ 4 4eo
where the space Q may contain all mappings from X to Y that
(1) preserve the privacy as considered in this article or (2) meet
certain communication requirements for distributed computa-
tion (Zhang et al. 2013).

Equations (2) and (3) are generalizations of the classical min-
imaxity. They provide statistically meaningful ways for studying
constrained tasks. It would be very interesting, although possibly
extremely challenging, to have a systematic study of constrained
minimax theory, at least for some important spaces S and Q.

Privacy. In this era of big data, privacy is becoming very impor-
tant. Statisticians and data scientists ought to extract knowledge
or insights from data, and hope that little personal identity or
sensitive information is unveiled. There is a trade-off between
statistical accuracy and privacy. The authors of this article inves-
tigated this interplay under the a-differentially local privacy.
New technical tools were developed in the article. For example,
the authors obtained the private versions of Le Cam’s two-point
hypothesis testing, Fano’s lemma, and Assouad’s method which
are the cornerstones of establishing minimax lower bound. They
also obtained sharp a-private minimax rates under various set-
tings and proposed some mechanisms to attain them. Again we
congratulate the authors on those exciting achievements, which
open the door to many avenues of research ahead.
® Centralized Privacy. The private channel Q considered
in this article essentially operates on each data point
of X = (x1, %2, ..., %,) individually. Since for each data
point the mapping is «-differentially privacy-preserving,
the channel Q satisfies o-differential privacy globally. It
is more popular and less restrictive to quantify privacy
globally. In most literature (e.g., Dwork and Roth 2014),
a-differential privacy is defined in a centralized sense,

Q(QX) € AlX) , .
Sl:‘p 0QX) € AX) <exp(a), VX, X st. HX, X") _(1,)
4

where H(-, -) measures how many data points differ in
two sets. It will be interesting to see if the conclusions
in this article will be changed when the definition of pri-
vacy is shifted from local to its centralizedcounterpart.
For example, the authors point out that the effect of local
a-differential privacy is to reduce the effective sample size
from n to a*n under several scenarios. But does the same
reduction hold true if the centralized differential privacy
is considered instead? Similar questions can be raised for
other privacy constraints such as («, §)-differential pri-
vacy introduced in Dwork et al. (2006).

® General Settings. The authors obtained sharp private
minimax rates for various statistical tasks, including
mean/median estimation, logistic regression, nonparamet-
ric density estimation, etc. Though only the simplest cases
were investigated, this article successfully illustrates the
effect of privacy constraint on the minimax rates and the
potential difficulties in the theoretical analysis. It is of
great value and interest to go beyond these basic cases to
see how privacy-preserving minimax rates behave under
more sophisticated and complex settings. For instance, the
authors showed that for d-dimensional bounded mean
estimation, the o-private minimax rate is proportional
to the dimensionality d, which is different to the classi-
cal one. The same phenomenon was observed for high-
dimensional parameter estimation with sparsity s = 1. A
follow-up question is whether the existence of this extra
d factor is universal. If so, it will be fascinating to have a
unified theory depending only on complexity and dimen-
sionality for a general class of statistical models including
high-dimensional linear regression for arbitrary sparsity
s. To achieve this, we will likely need a very sophisticated



extension of private versions of lower bounds presented in
this article.
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Comment

Alfred Hero

University of Michigan, Ann Arbor, MI

It is a privilege to be participating in the discussion of this
interesting article, which offers a comprehensive study of fun-
damental tradeoffs between privacy and statistical estimation.
Using the differential local privacy (DLP) measure intro-
duced by Duchi, Jordan, and Wainwright (2013), the authors
develop private versions of several classical bounds on estimator
accuracy, quantifying the effect of different levels of DLP on
minimax estimator performance. These bounds are illustrated
for important estimation problems including mean and median
estimation, estimation in generalized linear models, and density
estimation. As these bounds are minimax, the authors are able
to obtain optimal privacy mechanisms, that is, manipulations
of the data that achieve the bounds. Minimax approaches are
sometimes criticized in statistical estimation for being overly
conservative and for leading to corner results that are not rele-
vant to applications. For the privacy problem considered in this
article, the minimax approach is natural, capturing the intrinsic
conflict between the user’s desire to maintain privacy versus the
statistician’s objective to maximize estimator accuracy. However,
the severe privacy-induced degradation in estimator accuracy
in high dimension d is troubling. One is tempted to take solace
in the fact that the relevant structure of many high-dimensional
datasets substantially lies in a space of much lower (intrinsic)
dimension. However, this lower dimensional space is generally
unknown and should be properly considered as part of the
privatized estimation problem. Hence, as pointed out by the
authors in the article’s conclusion, this degradation is a strong
motivation for pursuing weaker mechanisms of privacy than
minimax optimality. I discuss a few additional points below.
The proposed DLP framework is deftly demonstrated to be
amenable to analysis, specifying optimal mechanisms that are
explicit and simple to implement. Several optimal mechanisms
are obtained, each depending on the specific cost function that
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the statistician uses to compute risk. However, a single risk
function may not apply to the full lifecycle of the data. Indeed,
a dataset may be reused and repurposed for different objectives,
each leading the statistician to use a different notion of risk.
Thus, it would be interesting to consider a multiobjective exten-
sion of the proposed DLP approach, possibly leading to optimal
mechanisms with respect to a plurality of cost functions. One
can imagine several approaches to such an extension. For exam-
ple, multiobjective scalarization by linear combining could be
used to obtain optimal mechanisms relative to a given set of
linear coeflicients. Or, in cases where the convex hull of the mul-
tiobjective mechanisms is not sufficient, a Pareto-optimal theory
of DLP risk analysis could be pursued. Alternatively, using the
DLP framework one could explore sequential mechanism
design for data that undergo a sequence of “data reuse” stages.
For example, for a given set of cost functions, one could explore
the construction of an iterative sequence of mechanism compo-
sitions achieving good estimation performance under arbitrary
sequential reordering of the cost functions. Recent work on
k-fold composition theory for differential privacy developed by
Kairouz, Oh, and Viswanath (2017) could be relevant here.

The authors make an interesting conjecture on whether or
not their DLP-constrained mutual information (MI) inequal-
ity (22) holds in the fully interactive setting. As the authors
mention, the correctness of their conjecture depends on the
extendability of this inequality to the case of channels with feed-
back. In feedback channels, as the authors point out, directed
information (DI) introduced by Massey (1990) may provide a
path to the desired extension using results relating informa-
tion measures to estimation measures. For example, the classical
result of Duncan relates the MI to the integrated mean-squared
error (MSE) of an optimal non-causal predictor in a Gaussian
channel without feedback. This has been generalized to causal

CONTACT Alfred Hero € hero@eecs.umich.edu () University of Michigan, Ann Arbor MI 48109, USA.

© 2018 American Statistical Association


https://doi.org/10.1080/01621459.2018.1442606
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2018.1442606&domain=pdf&date_stamp=2018-04-27
mailto:hero@eecs.umich.edu

