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Abstract

We study clustering under anisotropic Gaussian Mixture Models (GMMs), where
covariance matrices from different clusters are unknown and are not necessarily
the identity matrix. We analyze two anisotropic scenarios: homogeneous, with
identical covariance matrices, and heterogeneous, with distinct matrices per cluster.
For these models, we derive minimax lower bounds that illustrate the critical
influence of covariance structures on clustering accuracy. To solve the clustering
problem, we propose a variant of Lloyd’s algorithm, adapted to estimate and utilize
covariance information iteratively. We prove that the adjusted algorithm not only
achieve the minimax optimality but also converges within a logarithmic number
of iterations, thus bridging the gap between theoretical guarantees and practical
efficiency.

1 Introduction

Clustering is a fundamentally important task in statistics and machine learning [7, 2]. The most
widely recognized and extensively studied model for clustering is the Gaussian Mixture Model
(GMM) [16, 18], which is formulated as

Yj = ✓⇤
z
⇤
j
+ ✏j , where ✏j

ind⇠ N (0,⌃⇤
z
⇤
j
), 8j 2 [n].

Here Y = (Y1, . . . , Yn) are the observations with n being the sample size. We define the set
[n] := {1, 2, . . . , n}. Assume k is the known number of clusters. Let {✓⇤

a
}a2[k] represent the

unknown centers, and ⌃⇤
a

denote the corresponding unknown covariance matrices. Define z⇤ 2 [k]n

as the cluster assignment vector, where for each index j 2 [n], the value of z⇤
j

specifies which cluster
the j-th data point is assigned to. The goal is to recover z⇤ from Y . For any estimator ẑ, its clustering
performance is measured by the misclustering error rate h(ẑ, z⇤), which will be introduced later in
(2).

There has been increasing interest in theoretical and algorithmic analysis of clustering under GMMs.
In a scenario where a GMM is isotropic, meaning that all covariance matrices {⌃⇤

a
}a2[k] are equal

to the identity matrix, [14] obtained the minimax rate for clustering, which takes the form of
exp(�(1 + o(1))(mina 6=b k✓⇤a � ✓⇤

b
k)2/8), with respect to the misclustering error rate. A diverse

range of methods has been explored in the context of the isotropic setting. Among these, Lloyd’s
algorithm [12] stands out as a particularly effective clustering algorithm, renowned for its extensive
success in a myriad of disciplines. [14, 8] establish computational and statistical guarantees for
the Lloyd’s algorithm. Specifically, they showed it achieves the minimax optimal rates after a few
iterations provided with some decent initialization. Another popular approach to clustering especially
for high dimensional data is the spectral clustering [20, 17, 19], which is an umbrella term for
clustering after a dimension reduction through a spectral decomposition. [13] proves the spectral
clustering also achieves the optimality under the isotropic GMM. Semidefinite programming (SDP)
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is also used for clustering by exploiting its low-rank structure, and its statistical properties have been
studied in several literature, for example, [5].

Despite the numerous compelling findings, most existing research primarily focuses on isotropic
GMMs. The understanding of clustering in an anisotropic context, where the covariance matrices
are not constrained to be identity matrices, remains relatively limited. Some studies, including
[14, 5, 15, 1, 9, 23], present results for sub-Gaussian mixture models, wherein the errors ✏j are
assumed to follow some sub-Gaussian distributions with the variance proxy �2. At first glance,
it might appear that these results encompass the anisotropic case, as distributions of the form
{N (0,⌃⇤

a
)}a2[k] are indeed sub-Gaussian distributions. However, from a minimax perspective, the

least favorable scenario among all sub-Gaussian distributions with variance proxy �2—and thus the
most challenging for clustering—is when the errors are distributed as N (0,�2I). Therefore, the
minimax rate for clustering under the sub-Gaussian mixture model essentially equals the one under the
isotropic GMM, and methods like Lloyd’s algorithm, which require no covariance matrix information,
can be rate-optimal. As a result, the aforementioned findings primarily pertain to isotropic GMMs.

A few studies have explored the direction of clustering under anisotropic GMMs. [3] presents a
polynomial-time clustering algorithm that provably performs well when Gaussian distributions are
well-separated by hyperplanes. Their idea is further developed in [10], which extends the approach
to allow overlapping Gaussians, albeit only in two-cluster scenarios. [21] proposes a novel method
for clustering under a balanced mixture of two elliptical distributions. They establish a provable
upper bound on their clustering performance. Nevertheless, the fundamental limit of clustering under
anisotropic GMMs, and whether a polynomial-time procedure can achieve it, remains unknown.

In this paper, we investigate the clustering task under two anisotropic GMMs. In Model 1, all
covariance matrices are equal (i.e., homogeneous) to some unknown matrix ⌃⇤. Model 2 offers
more flexibility, with covariance matrices that are unknown and not necessarily identical (i.e.,
heterogeneous). The contribution of this paper is two-fold, summarized as follows:

• Our first contribution is on the minimax rates. We obtain minimax lower bounds for
clustering under anisotropic GMMs with respect to the misclustering error rate. We show
they take the form of

inf
ẑ

sup
z⇤

Eh(z, z⇤) � exp

✓
�(1 + o(1))

(signal-to-noise ratio)2

8

◆
,

where the signal-to-noise ratio under Model 1 is equal to mina,b2[k]:a 6=b k(✓⇤a� ✓⇤b )T⌃⇤� 1
2 k.

The signal-to-noise ratio for Model 2 is more intricate and will be introduced in Section 3.
For both models, we can see the minimax rates depend not only on the centers but also on
the covariance matrices. This is different from the isotropic case, whose signal-to-noise ratio
is mina 6=b |✓⇤a � ✓⇤

b
|. Our results precisely capture the role that covariance matrices play in

the clustering problem. It shows that covariance matrices impact the fundamental limits of
the clustering problem through complex interactions with the centers, especially in Model
2. We obtain the minimax lower bounds by drawing connections with Linear Discriminant
Analysis (LDA) [6] and Quadratic Discriminant Analysis (QDA).

• Our second and more important contribution is on the computational side. We propose a
computationally feasible procedure and rate-optimal algorithm for the anisotropic GMM.
Lloyd’s algorithm, developed for the isotropic case, is no longer optimal as it only considers
distances among centers [3]. We study an adjusted Lloyd’s algorithm which estimates the
covariance matrices in each iteration and adjusts the clusters accordingly. It can also be seen
as a hard EM algorithm [4]. Here, we modify the E-step of the soft EM by implementing
a maximization step that directly assigns data points to clusters, rather than calculating
probabilities. As an iterative algorithm, we demonstrate that it achieves the minimax lower
bound within log n iterations. This offers both a statistical and computational guarantee,
serving as valuable guidance for practitioners. Specifically, if we let z(t) denote the output
of the algorithm after t iterations, it holds with high probability that

h(z(t), z⇤)  exp

✓
�(1 + o(1))

(signal-to-noise ratio)2

8

◆
,

for all t � log n. The algorithm can be initialized using popular methods like spectral
clustering or Lloyd’s algorithm. In our numerical studies, we demonstrate that the proposed
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algorithm significantly improves over the two aforementioned methods under anisotropic
GMMs, and matches the optimal exponent specified in the minimax lower bound.

Paper Organization. The remaining paper is organized as follows. In Section 2, we study Model 1
where the covariance matrices are unknown but homogeneous. In Section 3, we consider Model 2
where covariance matrices are unknown and heterogeneous. For both cases, we establish the minimax
lower bound for the clustering and propose a computationally feasible and rate-optimal procedure. In
Section 4, we provide a numerical comparison with other popular methods. Proofs are included in
the supplement.

Notation. For any matrix X 2 R
d⇥d, we denote �1(X) as its smallest eigenvalue and �d(X) as

its largest eigenvalue. In addition, we denote kXk as its operator norm. For any two vectors u, v of
the same dimension, we denote hu, vi = uT v as their inner product. For any positive integer d, we
denote Id as the d⇥ d identity matrix. We denote N (µ,⌃) as the normal distribution with mean µ
and covariance matrix ⌃. We denote I {·} as the indicator function. For two positive sequences {an}
and {bn}, an � bn and an = O(bn) both mean an  Cbn for some constant C > 0 independent of
n. We also write an = o(bn) or bn

an
! 1 when lim sup

n

an
bn

= 0.

2 GMM with Unknown but Homogeneous Covariance Matrices

2.1 Model

We first consider the GMM where the covariance matrices of different clusters are unknown but are
assumed to be equal to each other. Then the data generating process can be displayed as follows:

Model 1: Yj = ✓⇤
z
⇤
j
+ ✏j , where ✏j

ind⇠ N (0,⌃⇤), 8j 2 [n]. (1)

Throughout the paper, we call it Model 1 for simplicity and to distinguish it from a different and more
complicated one that will be introduced in Section 3. The goal is to recover the underlying cluster
assignment vector z⇤. If ⌃⇤ were known, then (1) can be converted into an isotropic GMM by a
linear transformation (⌃⇤)�

1
2Yj . However, the unknown nature of ⌃⇤ makes clustering under this

model more challenging than under isotropic GMMs.

Loss Function. To measure the clustering performance, we consider the following loss function.
For any z, z⇤ 2 [k]n, we define

h(z, z⇤) = min
 2 

1

n

nX

j=1

I
�
 (zj) 6= z⇤

j

 
, (2)

where  = { :  is a bijection from [k] to [k]}. Here, the minimum is taken over all permutations
of [k] to address the identifiability issues of the labels 1, 2, . . . , k. The loss function measures the
proportion of coordinates where z and z⇤ differ, modulo any permutation of label symbols. Thus, it
is referred to as the misclustering error rate in this paper.

Signal-to-noise Ratio. Define the signal-to-noise ratio

SNR = min
a,b2[k]:a 6=b

k(✓⇤
a
� ✓⇤

b
)T⌃⇤� 1

2 k, (3)

which is a function of all the centers {✓⇤
a
}a2[k] and the covariance matrix ⌃⇤. As we will show later

in Theorem 2.1, SNR captures the difficulty of the clustering problem and determines the minimax
rate. We defer the geometric interpretation of SNR until after presenting Theorem 2.2.

A quantity closely related to SNR is the minimum distance among the centers. Define� as
� = min

a,b2[k]:a 6=b

k✓⇤
a
� ✓⇤

b
k . (4)

Then we can see SNR and � are of the same order if all eigenvalues of the covariance matrix ⌃⇤ are
assumed to be constants. If ⌃⇤ is further assumed to be �2Id, then SNR equals �/�. As a result,
in [14, 8, 13] where the isotropic GMMs are studied, �/� plays the role of signal-to-noise ratio
and appears in their rates. ince equation (3) represents a direct generalization, we refer to it as the
signal-to-noise ratio for Model 1.
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2.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 1.
Theorem 2.1. Under the assumption

SNR

log k
! 1, we have

inf
ẑ

sup
z⇤2[k]n

Eh(z, z⇤) � exp

✓
�(1 + o(1))

SNR
2

8

◆
. (5)

If SNR = O(1) instead, we have inf ẑ supz⇤2[k]n Eh(z, z⇤) � c for some constant c > 0.

Theorem 2.1 allows the cluster numbers k to grow with n and shows that SNR ! 1 is a necessary
condition to have a consistent clustering. If k is a constant, then the condition simplifies to SNR ! 1.
Theorem 2.1 holds for any arbitrary configurations of {✓⇤

a
}a2[k] and ⌃⇤, with the minimax lower

bound depending on these through SNR. The parameter space is only for z⇤ while {✓⇤
a
}a2[k] and ⌃⇤

are held fixed. Hence, (5) can be interpreted as a case-specific result, precisely capturing the explicit
dependence of the minimax rates on {✓⇤

a
}a2[k] and ⌃⇤.

Theorem 2.1 is closely related to the LDA. If there are only two clusters with known centers and a
covariance matrice, then estimating each z⇤

j
becomes exactly the task of the LDA: we aim to determine

from which of two normal distributions, each with a different mean but the same covariance matrix,
the observation Yj is generated. In fact, this approach is also how Theorem 2.1 is proved: We first
reduce the estimation problem of z⇤ to two-point hypothesis testing for each individual z⇤

j
. The error

of these tests is analyzed in Lemma A.1 using the LDA, and we then aggregate all these testing errors
together.
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Figure 1: A geometric interpretation of SNR.

With the help of Lemma A.1, we have a geometric interpretation of SNR. In the left panel of Figure 1,
we have two normal distributions N (✓⇤1 ,⌃

⇤) and N (✓⇤2 ,⌃
⇤) that X follows. The black line represents

the optimal testing procedure � displayed in Lemma A.1, dividing the space into two half-spaces.
To calculate the testing error, we can make the transformation X 0 = (⌃⇤)�

1
2 (X � ✓⇤1) so that the

two normal distributions become isotropic: N (0, Id) and N ((⌃⇤)�
1
2 (✓⇤2 � ✓⇤1), Id) as displayed in

the right panel. Then the distance between the two centers is k(⌃⇤)�
1
2 (✓⇤2 � ✓⇤1)k , and the distance

from a center to the black curve is half of that. Then, the probability that N (0, Id) falls within the
grayed area equals exp(�(1 + o(1))k(⌃⇤)�

1
2 (✓⇤2 � ✓⇤1)k2/8), according to Gaussian tail probability.

As a result, k(⌃⇤)�
1
2 (✓⇤2 � ✓⇤1)k is the effective distance between the two centers of N (✓⇤1 ,⌃

⇤) and
N (✓⇤2 ,⌃

⇤) for the clustering problem, taking into account the geometry of the covariance matrix.
Since we have multiple clusters, SNR defined in (3) can be interpreted as the minimum effective
distance among the centers {✓⇤

a
}a2[k], considering the anisotropic structure of ⌃⇤. This measure

captures the intrinsic difficulty of the clustering problem.

2.3 Rate-Optimal Adaptive Procedure

In this section, we propose a computationally feasible and rate-optimal procedure for clustering under
Model 1. Summarized in Algorithm 1, the proposed algorithm is a variant of Lloyd’s algorithm.
Starting from an initial setup, it iteratively updates the estimates of the centers {✓⇤

a
}a2[k] (in (6)), the
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covariance matrix ⌃⇤ (in (7)), and the cluster assignment vector z⇤ (in (8)). This algorithm differs
from Lloyd’s algorithm in that the latter is designed for isotropic GMMs and does not incorporate
the covariance matrix update outlined in (7). Furthermore, (8) updates the estimation of z⇤

j
using

argmin
a2[k](Yj � ✓(t)a )T (Yj � ✓(t)a ) instead. To differentiate clearly, we refer to the classic form

as the vanilla Lloyd’s algorithm and our modified version, which accommodates the unknown and
anisotropic covariance matrix, as the adjusted Lloyd’s algorithm.

Algorithm 1 can also be interpreted as a hard EM algorithm. When applying Expectation Maxi-
mization (EM) to Model 1, the M step estimates the parameters {✓⇤

a
}a2[k] and ⌃⇤, while the E step

estimates z⇤. It turns out the updates on the parameters (6) - (7) are identical to those in the EM’s M
step. However, the update of z⇤ in Algorithm 1 differs from that in the EM. Instead of computing
a conditional expectation typical of the E step, the algorithm performs a maximization in (8). As a
result, Algorithm 1 effectively consists solely of M steps for both parameters and z⇤, characterizing it
as a hard EM algorithm.

Algorithm 1: Adjusted Lloyd’s Algorithm for Model 1.

Input: Data Y , number of clusters k, an initialization z(0), number of iterations T .
Output: z(T )

1 for t = 1, . . . , T do
2 Update the centers:

✓(t)
a

=

P
j2[n] YjI

�
z(t�1) = a

 
P

j2[n] I
�
z(t�1) = a

 , 8a 2 [k]. (6)

3 Update the covariance matrix:

⌃(t) =

P
a2[k]

P
j2[n](Yj � ✓(t)a )(Yj � ✓(t)a )T I

�
z(t�1) = a

 

n
. (7)

4 Update the cluster assignment vector:

z(t)
j

= argmin
a2[k]

(Yj � ✓(t)
a

)T (⌃(t))�1(Yj � ✓(t)
a

), 8j 2 [n]. (8)

In Theorem 2.2, we give a computational and statistical guarantee of the proposed Algorithm 1. We
show that starting from a decent initialization, within log n iterations, Algorithm 1 achieves the error
rate exp

�
�(1 + o(1))SNR2/8

�
which matches with the minimax lower bound given in Theorem 2.1.

As a result, Algorithm 1 is a rate-optimal procedure. In addition, the algorithm is fully adaptive to the
unknown {✓⇤

a
}a2[k] and ⌃⇤. The sole piece of information presumed to be known is k, the number of

clusters, as commonly assumed in clustering literature [14, 8, 13]. The theorem also shows that the
number of iterations needed to achieve the optimal rate is at most log n, providing implementation
guidance to practitioners.
Theorem 2.2. Assume d = O(

p
n) and mina2k

P
n

j=1 I{z⇤j = a} � ↵n

k
for some constant ↵ >

0. Assume
SNR

log k
! 1 and �d(⌃⇤)/�1(⌃⇤) = O(1). For Algorithm 1, suppose z(0) satisfies

h(z(0), z⇤) = o(k�1) with probability at least 1� ⌘. Then with probability at least 1� ⌘ � n�1 �
exp(�SNR), we have

h(z(t), z⇤)  exp

✓
�(1 + o(1))

SNR
2

8

◆
, for all t � log n.

We make the following remarks on the assumptions of Theorem 2.2: We allow the number of clusters
k to grow with n. When k is constant, the assumption that SNR ! 1 is a necessary condition for
consistent recovery of z⇤, as outlined in the minimax lower bound presented in Theorem 2.1. The
assumption on ⌃⇤ ensures that the covariance matrix is well-conditioned. The dimensionality d is
assumed to be O(

p
n), a stronger assumption compared to [14, 8, 13], where d = O(n) is sufficient.

This is because, unlike these studies, our work requires estimating the covariance matrix ⌃⇤ and
controlling the estimation error k⌃(t) � ⌃⇤k.

5



Theorem 2.2 needs a decent initialization z(0) in the sense that it is sufficiently close to the ground
truth such that h(z(0), z⇤) = o(k�1). It is due to that our theoretical analysis requires the initialization
being within a specific proximity to the true parameters. The requirement h(z(0), z⇤) = o(k�1) can
be fulfilled by simple procedures. A popular choice is the spectral clustering. For instance, we can
use a variant of spectral clustering studied in [13]. Since Model 1 can be seen as a sub-Gaussian
mixture model, in their Proposition D.1, they show the spectral clustering output ẑspectral achieves

h(ẑspectral, z⇤) = O

✓
k

SNR2

◆
, (9)

with probability at least 1� exp(�0.08n), under the same assumption as in Theorem 2.2. Then it can
be used as an initialization in Theorem 2.2 if we pose a slightly stronger assumption SNR/k ! 1.
As a result, we immediately have the following corollary.
Corollary 2.1. Assume d = O(

p
n) and mina2k

P
n

j=1 I{z⇤j = a} � ↵n

k
for some constant ↵ > 0.

Assume
SNR

k
! 1 and �d(⌃⇤)/�1(⌃⇤) = O(1). Using the spectral clustering ẑspectral as the

initialization z(0) in Algorithm 1, we have with probability at least 1 � exp(�0.08n) � n�1 �
exp(�SNR),

h(z(t), z⇤)  exp

✓
�(1 + o(1))

SNR
2

8

◆
, for all t � log n.

3 GMM with Unknown and Heterogeneous Covariance Matrices

3.1 Model

In this section, we study the GMM where the covariance matrices of each cluster are unknown and
not necessarily equal to each other. The data generation process can be displayed as follows,

Model 2: Yj = ✓⇤
z
⇤
j
+ ✏j , where ✏j

ind⇠ N (0,⌃⇤
z
⇤
j
), 8j 2 [n]. (10)

We refer to this as Model 2 throughout the paper to distinguish it from Model 1, as discussed in
Section 2. The key difference between (10) and (1) is that here we have distinct covariance matrices
{⌃⇤

a
}a2[k] for each cluster, instead of a single shared ⌃⇤. We use the same loss function as defined in

(2).

Signal-to-noise Ratio. The signal-to-noise ratio for Model 2 is defined as follows. We use the
notation SNR0 to distinguish it from the SNR used for Model 1. Compared to SNR, SNR0 is much
more complicated and does not have an explicit formula. We first define a space Ba,b ⇢ R

d for any
a, b 2 [k] such that a 6= b:

Ba,b =

(
x 2 R

d :xT⌃
⇤ 1

2
a ⌃

⇤�1
b

(✓⇤
a
� ✓⇤

b
) +

1

2
xT

⇣
⌃

⇤ 1
2

a ⌃
⇤�1
b
⌃

⇤ 1
2

a � Id
⌘
x

 �1

2
(✓⇤

a
� ✓⇤

b
)T⌃⇤�1

b
(✓⇤

a
� ✓⇤

b
) +

1

2
log |⌃⇤

a
|� 1

2
log |⌃⇤

b
|
)
.

We then define SNR0
a,b

= 2minx2Ba,b kxk and

SNR0 = min
a,b2[k]:a 6=b

SNR0
a,b

. (11)

The form of SNR0 is closely connected to the testing error of the QDA, which we will give in
Lemma 3.1. The interpretation of the SNR0, particularly from a geometric perspective, will be
deferred until after the presentation of Lemma 3.1. Here let us consider a few special cases where
we are able to simplify SNR0: (1) When ⌃⇤

a
= ⌃⇤ for all a 2 [k], by simple algebra, we have

SNR0
a,b

= k(✓⇤
a
� ✓⇤

b
)T⌃⇤� 1

2 k for any a, b 2 [k] such that a 6= b. Hence, SNR0 = SNR and Model 2
effectively reduces to Model 1. (2) When ⌃⇤

a
= �2

a
Id for any a 2 [k] where �1, . . . ,�k > 0 are large

constants, we have SNR0
a,b

, SNR0
b,a

both close to 2k✓⇤
a
� ✓⇤

b
k/(�a + �b). From these examples, we

can see SNR0 is determined by both the centers {✓⇤
a
}a2[k] and the covariance matrices {⌃⇤

a
}a2[k].

6



3.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 2.

Theorem 3.1. Under the assumption
SNR

0

log k
! 1, we have

inf
ẑ

sup
z⇤2[k]n

Eh(z, z⇤) � exp

 
�(1 + o(1))

SNR
02

8

!
.

If SNR
0 = O(1) instead, we have inf ẑ supz⇤2[k]n Eh(z, z⇤) � c for some constant c > 0.

Although the statement of Theorem 3.1 appears similar to that of Theorem 2.1, the two minimax
lower bounds differ due to the varying dependencies of the centers and covariance matrices on SNR0

versus SNR. Using the same argument as in Section 2.2, the minimax lower bound established in
Theorem 3.1 closely relates to the QDA between two normal distributions with different means and
different covariance matrices.
Lemma 3.1 (Testing Error for the QDA). Consider two hypotheses H0 : X ⇠ N (✓⇤1 ,⌃

⇤
1) and

H1 : X ⇠ N (✓⇤2 ,⌃
⇤
2). Define a testing procedure

� = I
�
log |⌃⇤

1|+ (x� ✓⇤1)
T⌃⇤

1(x� ✓⇤1) � log |⌃⇤
2|+ (x� ✓⇤2)

T⌃⇤
2(x� ✓⇤2)

 
.

If min
�

SNR
0
1,2, SNR

0
2,1

 
! 1, we have

inf
�̂

(PH0(�̂ = 1) + PH1(�̂ = 0)) � exp

 
�(1 + o(1))

min
�

SNR
0
1,2, SNR

0
2,1

 2

8

!
.

Otherwise, inf
�̂
(PH0(�̂ = 1) + PH1(�̂ = 0)) � c for some constant c > 0.
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Figure 2: A geometric interpretation of SNR0.

Lemma 3.1 provides a geometric interpretation of SNR0. In the left panel of Figure 2, we have
two normal distributions N (✓⇤1 ,⌃

⇤
1) and N (✓⇤2 ,⌃

⇤
2) from which X can be generated, and the

black curve represents the optimal testing procedure �, as detailed in Lemma 3.1. Since ⌃⇤
1 is

not necessarily equal to ⌃⇤
2, the black curve is not necessarily a straight line. If H0 is true, the

probability that X is incorrectly classified occurs when X falls into the gray area, represented by
PH0(� = 1). To calculate this, we transform X to X 0 = (⌃⇤

1)
� 1

2 (X � ✓⇤1), standardizing the
first distribution. Then, as displayed in the right panel of Figure 2, the two distributions become
N (0, Id) and N ((⌃⇤

1)
� 1

2 (✓⇤2 � ✓⇤1), (⌃
⇤
1)

� 1
2⌃⇤

2(⌃
⇤
1)

� 1
2 ), and the optimal testing procedure � be-

comes I {X 0 2 B1,2}. As a result, in the right panel of Figure 2, B1,2 represents the space colored by
gray, and the black curve is its boundary. Then PH0(� = 1) is equal to P(N (0, Id) 2 B1,2), which
can be shown to be determined by the minimum distance between the center of N (0, Id) and the
space B1,2. Denoting the minimum distance as SNR0

1,2/2, by Lemmas C.8 and Lemma C.9, we
can show P(N (0, Id) 2 B1,2) = exp(�(1 + o(1))SNR

02
1,2/8). As a result, SNR0 can be interpreted

as the minimum effective distance among the centers {✓⇤
a
}a2[k], considering the anisotropic and

heterogeneous structure of {⌃⇤
a
}a2[k], and it captures the intrinsic difficulty of the clustering problem

under Model 2.
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3.3 Optimal Adaptive Procedure

In this section, we propose a computationally feasible and rate-optimal procedure for clustering
under Model 2. Similar to Algorithm 1, Algorithm 2 is a variant of Lloyd’s algorithm, adjusted to
accommodate unknown and heterogeneous covariance matrices. It can also be interpreted as a hard
EM algorithm under Model 2. Algorithm 2 differs from Algorithm 1 in (13) and (14), as now there
are k covariance matrices instead of a common one.

Algorithm 2: Adjusted Lloyd’s Algorithm for Model 2.

Input: Data Y , number of clusters k, an initialization z(0), number of iterations T .
Output: z(T )

1 for t = 1, . . . , T do
2 Update the centers:

✓(t)
a

=

P
j2[n] YjI

�
z(t�1) = a

 
P

j2[n] I
�
z(t�1) = a

 , 8a 2 [k]. (12)

3 Update the covariance matrices:

⌃(t)
a

=

P
j2[n](Yj � ✓(t)a )(Yj � ✓(t)a )T I

�
z(t�1) = a

 
P

j2[n] I
�
z(t�1) = a

 , 8a 2 [k]. (13)

4 Update the cluster assignment vector:

z(t)
j

= argmin
a2[k]

(Yj � ✓(t)
a

)T (⌃(t)
a
)�1(Yj � ✓(t)

a
) + log |⌃(t)

a
|, 8j 2 [n]. (14)

In Theorem 3.2, we give a computational and statistical guarantee for Algorithm 2. We demonstrate
that, with proper initialization, Algorithm 2 achieves the minimax lower bound within log n iterations.
The assumptions needed in Theorem 3.2 are similar to those in Theorem 2.2, except that we require
stronger assumptions on k and the dimensionality d since now we have k (instead of one) covariance
matrices to be estimated. In addition, by assuming maxa,b2[k] �d(⌃

⇤
a
)/�1(⌃⇤

b
) = O(1), we ensure

not only that each of the k covariance matrices is well-conditioned but also that they are comparable
to one another.
Theorem 3.2. Assume d = O(1) and mina2k

P
n

j=1 I{z⇤j = a} � ↵n

k
for some constant ↵ > 0.

Assume k = O(1), SNR
0 ! 1 and maxa,b2[k] �d(⌃

⇤
a
)/�1(⌃⇤

b
) = O(1). For Algorithm 2 , suppose

z(0) satisfies h(z(0), z⇤) = o(1) with probability at least 1 � ⌘. Then with probability at least

1� ⌘ � n�1 � exp(�SNR
0), we have

h(z(t), z⇤)  exp

 
�(1 + o(1))

SNR
02

8

!
, for all t � log n.

Given the assumption that maxa,b2[k] �d(⌃
⇤
a
)/�1(⌃⇤

b
) = O(1), Model 2 also qualifies as a sub-

Gaussian mixture model. Consequently, when spectral clustering is used as the initialization for
Algorithm 2, (9) remains applicable. This leads us to the following corollary.
Corollary 3.1. Assume d = O(1) and mina2k

P
n

j=1 I{z⇤j = a} � ↵n

k
for some constant ↵ > 0.

Assume k = O(1), SNR
0 ! 1 and maxa,b2[k] �d(⌃

⇤
a
)/�1(⌃⇤

b
) = O(1). Using the spectral

clustering ẑspectral as the initialization z(0) in Algorithm 2, we have with probability at least 1 �
exp(�0.08n)� n�1 � exp(�SNR

0),

h(z(t), z⇤)  exp

 
�(1 + o(1))

SNR
02

8

!
, for all t � log n.

We conclude this section with a time complexity analysis of Algorithm 2. Compared to the vanilla
Lloyd’s algorithm, our method introduces additional computational overhead due to the need for
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computing the inverse and determinant of covariance matrices. Specifically, the time complexity of
Algorithm 2 is O(nkd3T ). In contrast, the vanilla Lloyd’s algorithm has a lower time complexity of
O(nkdT ). The increase in complexity stems from matrix operations in d dimensions, as both matrix
inversion and determinant computation scale as O(d3).

4 Numerical Studies

In this section, we compare the performance of the proposed methods with other popular clustering
methods on synthetic and real datasets under different settings.

Model 1. The first simulation is designed for the GMM with unknown but homogeneous covariance
matrices (i.e., Model 1). We independently generate n = 1200 samples with dimension d = 50 from
k = 30 clusters. Each cluster has 40 samples. We set ⌃⇤ = UT⇤U , where ⇤ is a 50⇥ 50 diagonal
matrix with diagonal elements selected from 0.5 to 8 with equal space and U is a randomly generated
orthogonal matrix. The centers {✓⇤

a
}a2[n] are orthogonal to each other with k✓⇤1k = . . . = k✓⇤30k = 9.

We consider four popular clustering methods: (1) the spectral clustering method in [13] (denoted as
“spectral”), (2) the vanilla Lloyd’s algorithm in [14] (denoted as “vanilla Lloyd”), (3) the proposed
Algorithm 1 initialized by the spectral clustering (denoted as “spectral + Alg 1”), and (4) Algorithm 1
initialized by the vanilla Lloyd (denoted as “vanilla Lloyd + Alg 1”). The comparison is presented in
left panel of Figure 3.

Model 2. We also compare the performances of four methods (spectral, vanilla Lloyd, spectral +
Alg 2, and vanilla Lloyd + Alg 2) for the GMM with unknown and heterogeneous covariance matrices
(i.e., Model 2). In this case, we take n = 1200, k = 2, and d = 9. We set ⌃⇤

1 = Id and ⌃⇤
2 = ⇤2,

a diagonal matrix where the first diagonal entry is 0.5 and the remaining entries are 5. We set the
cluster sizes to be 900 and 300, respectively. To simplify the calculation of SNR0, we set ✓⇤1 = 0 and
✓⇤2 = 5e1, with e1 being the vector that has a 1 in its first entry and 0s elsewhere. The comparison is
presented in the right panel of Figure 3.
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Figure 3: Left: Performance of Algorithm 1 compared with other methods under Model 1. Right:
Performance of Algorithm 2 compared with other methods under Model 2.

In Figure 3, the x-axis is the number of iterations and the y-axis is the logarithm of the misclustering
error rate, i.e., log(h). Each of the curves plotted is an average of 100 independent trials. We can
see both Algorithm 1 and Algorithm 2 outperform the spectral clustering and the vanilla Lloyd’s
algorithm significantly. Additionally, the dashed lines in the left and right panels represent the
optimal exponents �SNR2/8 and �SNR02/8 of the minimax bounds, respectively. It is observed
that both Algorithm 1 and Algorithm 2 meet these benchmarks after three iterations. This justifies the
conclusion that both algorithms are rate-optimal.

Real Data. To further demonstrate the effectiveness of our methods, we conduct experiments using
the Fashion-MNIST dataset [22]. In the first analysis, we use a total of 12000 28 ⇥ 28 grayscale
images, consisting of 6,000 images each from the T-shirt/top class and the Trouser class. The left
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panel of Figure 4 gives a visualization of the data points using their first two principal components,
showing the anisotropic and heterogeneous covariance structures. Since a large number of pixels have
zero across most images, we apply PCA to reduce dimensionality from 784 to 50 by retaining the top
50 principal components. Our Algorithm 2 achieves a misclustering error of 5.71%, outperforming
the vanilla Lloyd’s algorithm, which has an error of 8.24%. In the second analysis, we incorporate an
additional class, the Bag class, increasing the total to 18,000 images across three classes. Following
the same preprocessing steps, the visualization of the dataset’s structure in the right panel of Figure
4 again confirms the presence of anisotropic and heterogeneous covariances. Here, Algorithm 2
achieves an error of 3.97%, an improvement over the 5.67% error rate observed with the vanilla
Lloyd’s algorithm.

Figure 4: Visualization of the Fashion-MNIST dataset using the first two principal components. The
data points are color-coded to indicate class membership: Red represents the T-shirt/top class, green
denotes the Trouser class, and blue signifies the Bag class. This illustration shows the existence of
anisotropic and heterogeneous covariance structures.

5 Conclusion

This paper focuses on clustering methods and theory for GMMs,with anisotropic covariance structures,
presenting new minimax bounds and an adjusted Lloyd’s algorithm tailored for varying covariance
structures. Our theoretical and empirical analyses demonstrate the algorithm’s ability to achieve
optimality within a logarithmic number of iterations. Despite these advances, our results have some
limitations that are worth addressing in future work:

1. High-Dimensional Settings: Current results are restricted to dimensions d growing at
a rate slower than n, specifically d = O(

p
n) as stated in Theorem 2.2. Theorem 3.2

further requires a stronger assumption d = O(1). These constraints stem from technical
challenges in estimating covariance matrices accurately. Adopting more sophisticated
analytical tools could potentially relax these bounds to d = O(n). In scenarios where d
exceeds n, the misclustering error deviates from the simpler exponential decay observed
under isotropic GMMs, as shown in [15]. This suggests that our model might also exhibit
similar complexities, warranting further exploration into the technique used in [15] for
potential extensions.

2. Ill-Conditioned Covariance Structures: Our analysis relies on the assumption of well-
conditioned covariance matrices, where maxa,b2[k] �d(⌃

⇤
a
)/�1(⌃⇤

b
) = O(1). This con-

dition is crucial for the current analytical framework, as it helps manage the estimation
errors of covariance matrices and their inverses. While more advanced techniques may
allow for a relaxation of this assumption, handling ill-conditioned or degenerate covariance
matrices remains challenging, particularly due to the difficulty of working with matrix
inverses in such cases. While minimax lower bounds suggest that clustering is still possible
even when the covariance matrix is degenerate, it raises computational challenges for our
current algorithms. This highlights the need for developing new algorithms that can function
effectively under less restrictive conditions.
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