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The supplement includes a few more examples and all the technical proofs. We first an-
alyze approximate ranking in Appendix A. Z/kZ synchronization and permutation synchro-
nization are studied in Appendix B and Appendix C, respectively. We then prove Theorem
3.1 in Appendix D. The rest of the proofs are organized from Appendix E to Appendix I.

A Approximate Ranking

In this section, we study the estimation of z* € [p|P using the pairwise interaction data
generated according to Y;; ~ N(8*(zf — z7),1) independently for all 1 < 7 j < p. This
model can be viewed as a special case of the more general pairwise comparison model Y;; ~
N (9:; —0%.,1), where 0 parametrizes the ability of the ith player, and the choice 0] = o*+ /5%
leads to Yzj ~ N (B*(2} — z),1) that will be studied in this section. Let IT, be the set of all

possible permutations of [p]. We assume the rank vector z* belongs to the following class,

R = {ze [p]P : min ||z — 2|2 §cp}, (A.1)
Zell,
for some sequence 1 < ¢, = o(p). In other words, R is a set of approximate permutations. A
rank vector z* € R is allowed to have ties and not necessarily to start from 1. To be more
precise, a z* € R should be interpreted as discrete positions of the p players in the latent
space of their abilities. This is in contrast to the exact ranking problem, also known as “noisy
sorting” in the literature, where z* is assumed to be a permutation [1, 11, 14].
For the loss function ,
1
LQ(Z7 Z*) =~ Z(zj - Z;)zv (A2)
j=1

the minimax rate of estimating z* takes the following formula,

e —(1+o(1 p(/B*)Q , *\2
inf sup ELy(Z, 2") < Xp( (1+0(1))75 ) p(5)

>
Z v eR W /\p2’ p(ﬁ*)Q < 1.
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See Theorems 2.2 and 2.3 in [5]!. Interestingly, the minimax rate either takes a polynomial
form or an exponential form, depending on the signal strength parametrized by p(8*)%. In
the paper [5], a combinatorial procedure is constructed to achieve the optimal rate (A.3), and
whether (A.3) can be achieved by a polynomial-time algorithm is unknown. This is where our
proposed iterative algorithm comes. We will particularly focus on the regime of p(3*)% — oo,
where the minimax rate takes an exponential form.

Specializing Algorithm 1 to the approximate ranking problem, we can write the iterative
feature matching algorithm as

2
, S e +1 .
0 —arguin| S (- vi) - 23 ) (- E52) | el
<l i)
where for each z € [p]P, we use the notation
5(2) _ 2i<izj<plFi — Zj)Yi'. (A.4)
Zlgi;ﬁjgp(zi — zj)?
A.1 Conditions
From (11), we have
20°(5*)? 1y p+1
Ai(a,b)? b2 —2(a—0b) | - -, A5
D S CRCEE LI WA (A5)
and
o 2B ]
a2 = ZEL Yoy - 552 (A6)
j=1

in the current setting. It is easy to check that Aj(a,b)* > 0 for all a # b as long as z* € R.
From (10) and (11), we have T = p;(B*,2}) + ¢; where ¢; ~ N(0,1) for all j € [p]. One
can also write down the formulas of Fj(a,b; z), Gj(a,b; 2) and Hj(a,b), which are included in
Appendix F due to the limit of space.

Lemma A.1. Assume z* € R, 7 = o(p*(8*)?), and p(B*)* > 1. Then, for any C' > 0, there
exists a constant C' > 0 only depending on C" such that

P * 2 * * %) (|2
Fj(zjvb;z) ||MJ(B 7b)_uj(B 7Zj)|| 2
max max " <Cp =, AT
{zzé(zz*)«};bew\{z;} Aj(z5,0)4(z, 2*) (A7)
xS e GBI (B I
{zt(zz")<r)  TClpl 4AZ [T+ 7 o belpl\E) Aj(25,b)4(2, 2*)
T 1

<c n ) A8
(7 * (A8)

1 The paper [5] considers a parameter space that is slightly different from R. However, the proof of [5] can
be modified so that the same minimax rate also applies to R



and

H;(z%,b 1
max (=5, 0)] < , (A.9)
j€

max <
[p] bep\{z;} Aj(2],0)? Vp|B*
with probability at least 1 — (C'p)~! for a sufficiently large p.

Lemma A.1 implies that Conditions A , B and C hold with some sequence § = 6, = o(1)
as long as 7 = o(p?(*)?) and p(8*)? — oo.
Next, we need to control &gea1(0) in Condition D. This is given by the following lemma.

Lemma A.2. Assume p(8*)? — co. Then, for any sequence &, = o(1), we have

p(i*)2> 7

gideal(ép) < pexp <_(1 + 0(1))

with probability at least 1 — exp <f\/p(ﬁ*)2) —p L
We note that the signal condition p(5*)2 — oo implies that Conditions A, B, C and D
hold simultaneously.

A.2 Convergence

With the help of Lemma A.1 and Lemma A.2, we can specialize Theorem 3.1 into the following
result.

Theorem A.1. Assume p(B*)?> — oo and z* € R. Suppose 2O satisfies E(z(o),z*) =
o(p*(B*)?) with probability at least 1 —n. Then, we have

p(B3*)?
4

0(z), 2*) < pexp (—(1 +0o(1)) ) + %E(z(tfl),z*) for all t > 1,

with probability at least 1 — n — exp (— p(ﬁ*)Q) —2p~ L.

Using the relation from (A.2) and (A.6) that

Lo(z,2") = 2;;(_6*1)25(2, 2", (A.10)

we immediately obtain the following result on the loss Lo(z, z*).

Corollary A.1. Assume p(f*)?> — oo and z* € R. Suppose 20 satisfies £(2(0), 2*) =
o(p%(B*)?) with probability at least 1 —n. Then, we have

p(8*)?
1

Lo(z®, 2*) < exp ((1 +0(1)) ) +27t forallt>1, (A.11)

with probability at least 1 — n — exp (— p(B*)Q) —2p~ L



We observe that Lo(z, z*) takes value in the set {j/p : 7 € NU {0}}, the term 27 in
(A.11) is negligible as long as 27t = o(p~!). We therefore can claim

p(5*)?
4

Lo(z®, 2*) < exp (—(1 +o0(1)) > for all t > 3logp.
Hence, by (A.3) the iterative feature matching algorithm achieves the minimax rate of ap-
proximate ranking in the regime of p(8*)? — oo after at most [3logp] iterations.

A.3 Initialization

To initialize the iterative feature matching algorithm, we consider a simple ranking procedure
based on the statistics {7}};c. That is, letting Ty < --- < T{;,) be the order statistics of
{T}}jepp), we define 2(9) to be a permutation vector that satisfies T (o) = 1{;) for all j € [p].

J

Proposition A.1. Assume z* € R and 5* > 0. Then, we have

W Ap?, p(B%)? =0(1),

with probability at least 1 — p~!.

Note that the additional condition 8* > 0 guarantees that z(°) estimates z* instead
of its reverse order. In the regime of p(3*)? — oo, the initialization procedure achieves
Ly(2®), 2*) = o(1) with high probability. Given the relation (A.10), this implies that
0(2), 2%) = o(p?(*)?), and thus the initialization condition of Theorem A.1 is satisfied. In
the regime of p(8*)? = O(1), the initialization procedure achieves the rate W A p?, which
is already minimax optimal according to (A.3), and there is no need for the improvement via
the iterative algorithm.

B Z/kZ Synchronization

Z/kZ synchronization is known as the famous problem of joint alignment from pairwise
differences [3]. It has some interesting applications in the haplotype assembly problem [15]
and and Dixon imaging [18]. The group Z/kZ consists of elements {0,1,2,--- /& — 1}. For
any g,h € Z/kZ, the group operation is defined by g o h = (¢ + h) mod k. Since it implies
the inverse of an element g is g~ = (k — g) mode k, which is equal to k — g if g # 0 and 0 if
g =10. Then we have goh~! = (g — h) mod k.

In Z/kZ synchronization, we have independent observations Yj; ~ N (A*(z] o z;-‘_l), 1)

for all 1 <4 # j < p with A* € R and 27, ,2, € Z/kZ, and our goal is to recover
21, ,%,. When k = 2, the problem is very similar but not identical to Zg synchronization.

Though Z/2Z = {0,1} is isomorphic to Zy = {—1, 1}, the current model assumption Yj; ~

N(\* (zg‘ozj’-‘il), 1) does not lead to the symmetric property EY;; = EYj; in Zy synchronization.



This is because (2] — z7) mod k # (2] — 27) mod k. As a consequence, it is required that
both Y;; and Yj; are observed in the more general setting of Z/kZ synchronization.

Minimax rate for estimating 27, , z; is unknown in the literature. We first present a
minimax lower bound for the problem.
Theorem B.1. If pA\*? — oo, we have
. 1 (1 + o(1))pA*2
nfsupE min {5 2 Hamea) | 2050 <‘ — 1 )
j:

Otherwise if pA*2 = O(1), we then have

12
infsupE min | — | S > ¢,
= z*p e pjz; {z]'#zjoa 1} =

for some constant ¢ > 0.

Next, we will show the above minimax lower bound can be achieved via an computa-
*2
tionally efficient algorithm under the signal-to-noise ratio condition #ng — 0o. We first

explain how to view the Z/kZ synchronization problem from the perspective of our gen-
eral framework. Though it is not obvious because of the nonlinear group operation in the

model, we can still adopt a similar idea used in Zy synchronization and view one of the z;-“ in

A (2} o z;il) and \* jointly as the continuous model parameter. Write Y = EY + W € RP*P

with EY;; = A*(2f o z;_l) and W;; ~ N (0,1) for all i # j and EY;; = W;; = 0 for all i. Define
g* = (\*,z%). It is clear that * € B,» = {(\,2*) : A € R} = R x {z*}. We can then write
EY = Z.-(8*), where the operator 2>+ (-) is determined by [Z>«(5%)]ij = [Z2+((X*,2%))]i; =
X (2 o z;_l).

To derive an iterative algorithm, we define the local statistic 7; = Y; € RP, the jth column
of the matrix Y. We then have ET; = (8", 2}) = v;(B*, 2) € RP. For any i € [p] and any

a € Z/kZ, the ith entry of p;(8*,a) = v;(8*,a) is

(8%, @)l = (8", a)li = X* (2 oa™").

Then, we can specialize Algorithm 1 into the following iterative procedure,

BO = argmin Y — 2.0 (D) (B.1)
B=(A,z(t=D):AeR

20 = argmin||Y; — (8%, )| (B.2)
a€Z/kZ

The second step (B.2) is straightforward, since one can easily evaluate ||Y; — u1;(8¢Y, a)|?
for all a € Z/kZ. The first step (B.1) looks complicated, but thanks to the constraint

B = (X z=1), it is a simple one-dimensional optimization problem. In fact, there is a closed



form solution to (B.1), and we can use that to write down an equivalent form of the algorithm
(B.1)-(B.2) as follows,

Srcisicy Vi (Zi(tfl) o (Z](tfl))—l)

A = = =" =, (B.3)
2i<iti<p <Zz' ° (2 )_1)
p
©) _ i B LD 1)
z;’ = argmin Yii — AV (% oa . B4
. an/kz;<] ( )) (B.4)

This example really demonstrates the flexibility of our general framework, especially the
possible dependence of the space B, on the discrete structure z. It allows us to separate z;
from z; in z; o z;l, and derive the simple iterative algorithm (B.3)-(B.4).

B.1 Conditions

To analyze the algorithmic convergence of (B.3)-(B.4), we note that

P
Aj(ab)? =AY ((zFoa ) = (70 b7)",
i=1
under the current setting. Thus, the loss function is

U(z,2%) = \*?

p
Jj=

i ((zl* o z;l) — (2o z;ffl))Q. (B.5)

14=1

One can also write down the formulas of Fj(a,b; 2), G;(a,b; z) and Hj(a,b), which are given
in Appendix I.2. The error terms are controlled by the following lemma.

*2
p24 — 00 and MaXqez,/47, Z?Zl l{z;:a} < (1—a)p for some constant

Lemma B.1. Assume

a > 0. Then, for any constant C' > 0, there exists a constant C > 0 only depending on C’
such that

2

» Fy(z5,652)2 g (B*,b) = 11 (B*, %) it

<Cc-_, B.6

z:é(rg%g;bez%%ﬁz;} Aj(z;f,b)%(z,z*) — pA*2 (B.6)

* 2 * * % 2
O L LE s (B*,0) = s (B*, 27)
(z:(z,2) <7} TClp] 402 |T|+ 7 S bEL/RIN (5} Aj(25,0)2(z, z%)
TkS

and

[Hj(2, a)| k> k2
max max —————=<C(C +4/—— 1, B.8
jelp] acz/kz\{z;} Aj(25, a)? PA*? pA*2 (B8)

/

with probability at least 1 — e C'P.



From the bounds (B.6)-(B.8), we can see that a sufficient condition under which Condi-
tions A, B and C hold is 7 = o <p2)‘*2> and

kG

P . (B.9)

The signal-to-noise ratio condition (B.9) extends the condition pA*?> — oo required by Zs
synchronization.
Next, we need to bound &gea1 in Condition D. This is given by the following lemma.

Lemma B.2. Assume pA*?> — oo, p/k? — oo and max,ez k7, Zﬁ-’:l l{zf:a} < (1 —=a)p for
J

some constant o > 0. Then, for any sequence 6, = o(1), we have

*2

gideal((sp) < pexp <_(1 + 0(1))])8 ) y

with probability at least 1 — exp(—+/pA*2).

Thus, under the conditions p/k? — oo and (B.9), Conditions A, B, C and D hold simul-
taneously.
B.2 Convergence

With the help of Lemma B.1 and Lemma B.2, we can specialize Theorem 3.1 into the following
result.
Theorem B.2. Assume p/k* — oo, %‘—ZQ — 00, and MaX,ez/kz -1 1{Z;:a} < (1—=a)p for

some constant a > 0. Suppose 20 satisfies

2y *2
. A

with probability at least 1 —n. Then, we have

*2

(0, %) < pexp (—(1 Fo()? ) '

%ﬁ(z(t_l),z*) for all t > 1,

with probability at least 1 —n — exp(—+/pA*2) — e P.

According to the definition of the loss in (B.5), we have the inequality
12
N>y 1 g, B.11

This immediately implies the following corollary for the Hamming loss.



Corollary B.1. Assume p/k?* — oo, k:4 — 00 and MaX,ez,/k7, Z] 1 1{Z —a)} S < (1—a)p for

some constant o > 0. Suppose 20 satisfies (B.10) with probability at least 1 — 7. Then, we

have
*2

12
- g 10 v, \ <exp (—(1 + 0(1))p ) +27" forallt>1, (B.12)
P 3 {Zj 752]'}

8

with probability at least 1 — n — exp(—+/pA*2) — e P.

By the property of the Hamming loss, the algorithmic error 27 is negligible after [3log p]
iterations, and we have

p)\*Q
< — >
Z 1{ 2, } < exp < (1+0(1)) 5 ) for all t > 3logp.

Thus, the minimax rate is achieved given that the initialization condition (B.10) is satisfied.

B.3 Initialization

Unlike the Zs synchronization setting, the vector z* € RP does not correspond to any eigen-
vector of EY. However, we observe that the columns of EY has only k possibilities, and
the k different vectors that each column can take are well separated. We thus propose the
following initialization algorithm based on a spectral clustering step.

1. Apply the spectral clustering algorithm (38)-(39) to Y and obtain the column clustering
label vector z € {0,1,.--- k. — 1},

2. For any [ € {1,2,--- ,k — 1}, compute Y] = ﬁz(i,j)eézo Y;j, where Zg = {(i,7) €
[p] x [p] : Z = a,z; = b} for any a,b € [k].

3. Sort [Y1],- -+, |Yi—1| into the order statistics [Y]1) <--- < [Y]_1). Let @ be a permu-
tation of the labels I € {1,2,--- ,k—1} so that [Y|z@)) = |Vi] foralll € {1,2,---  k—1}.

4. Output the estimator z](»o) = 7(z;) for j € [p].

Let us give some intuitions why the above algorithm works. By Proposition 4.1, it is
clear that there exists some label permutation 7 such that 7(Z;) recovers the underlying true
label z;f. This is the purpose of Step 1. We then use Steps 2-4 to recover this unknown
label permutation m. Under an appropriate signal-to-noise ratio condition, we can show that
maxjefi... g—13 |Y7 — A*(w(1) o w(0)~)| = o(|]A*|). This error bound immediately implies

max Y| — IN|(7(1) o w(0)"H)] = o(|N]).
V= V(D) 0 7(0) )] = of| )
By the fact that ming ||X°|(r(a) o w(0)~1) — \*|(x(b) o w(0)"1)] = |X*], we can deduce
the fact that the order of {|Yj|}1<i<x_1 perfectly preserves that of {m(l) o m(0)™*}1<i<k_1.
Therefore, the unknown label permutation 7 can be recovered via sorting {|Y;|}1<i<x—1.



Proposition B.1. Assume min,cz 7, 25:1 1{2,5:a} > % for some constant o« > 0 and
J

% — 0o. For any constant C' > 0, there exists a constant C > 0 only depending on «

and C' such that

in 029 2*oa™ VY < C(M+ 1)k
oLl o) = COT+ Dl

with probability at least 1 — e C'P. We have used the notation z* o a™* for the vector {z} o
™ i)

Proposition B.1 shows that z(?) achieves the rate O((M + 1)kp) for estimating z* up to
a group multiplication. This uncertainty cannot be avoided since z; o zj_l =(zoa 1) o(zo
a~1)~!. The factor M in the bound comes from the computation of the M-approximation
of the k-means objective, and one can take M = O(log k) when the k-means++ algorithm is
used for the approximation. In order that (B.10) is satisfied, we thus require
PAY2
(M + 1)k7

a condition that implies (B.9). Hence, according to Corollary B.1, the iterative algorithm

— 00, (B.13)

initialized by spectral clustering converges to the minimax error with a linear rate under the
condition (B.13).

C Permutation Synchronization

Permutation synchronization is a problem first proposed by [13] in computer vision as an
approach to align multiple images from observations of pairwise similarities. Polynomial al-
gorithms for this problem are mostly based on convex relaxation [4, 8, 17, 19] with theoretical
guarantees in the form of exact recovery [4] and polynomial convergence rate in Frobenius
norm [8]. In this section, we will derive the minimax rate of the problem with exponen-
tial convergence and show the optimal rate can be achieved by Algorithm 1 under some
signal-to-noise ratio condition.

Let II; be the set of permutations on the set [d] = {1,---,d}. The set of permutation
matrices is defined by Py = {(ex(1), " ,exa)) : ™ € Ilg}, where e; € R? is the ith canonical
vector of R?. In permutation synchronization, we observe Yij = N2 Z;‘ T4 Wi; € R* for
1<i<j<pwith \* €R, Z7,---,Z; € Py, and W;;’s are independent error matrices with
i.i.d. entries following A/ (0,1).

We first present the minimax lower bound for the problem.

Theorem C.1. If pA*? — oo, we have

(1+ 0(1))1))\*2)

infsupE — 1 . > e
o pln 33 105, 0my > o (2

Otherwise if pA\*? = O(1), we then have

inf sup E - 1 . >
Wiy 23 105 >



for some constant ¢ > 0.

Computationally efficient algorithms to recover the permutation matrices Z7, - - - , Z, with
minimax error are unknown in the literature. The problem is hard even when the dimension

of the permutation d is a constant. We will show our general iterative algorithm leads to a
pgf
fied. We first put the problem into our general framework by organizing all the observations
{Vi;} into a single matrix Y = A\*Z*Z*T 4+ W € RPP4, Here, 2*1 = (Z{7,--. , Z3T) e RxPd
is a matrix by concatenating the p permutation matrices together. For each Wj;, it can be
viewed as the (i, j)th block of W. We have W;; = Wﬁ to be independent standard Gaussian
matrices for all 1 <i < j <p and W;; =0 for all i € [p]. We identify z* with Z* and define
Bz« = {\Z* : X € R} as the space of model parameter. Then, we can write Y = Z*(B*)T +W

with B* € Bz~. This is the same strategy that has been used for Zy synchronization. To

solution of this open problem whenever the signal-to-noise ratio conditoin — 00 is satis-

derive an iterative algorithm, let 7; = Y; and the definition of the matrix Y; € RP4*d i given
by YjT = (Y{g, e ,Yp?). We then have v;(B*,U) = puj(B*,U) = B*UT for any U € Py. The
iterative algorithm is

B = argmin  ||Y — 24D BT|2, (C.1)
B=X\Z({t=1):\eR
Zj(t) = argmin||Y; — BOUT|2. (C.2)
UePy

The computation of (C.1) is a one-dimensional optimization problem, and its solution is given

~ ~ T
by B® = \(ztD)zED | with \(Z) = <Y]’§dZQ > For (C.2), we have the equivalent form

Z](t) = argmax <YJ»TB(’€)7 U> ,
UePy

which can be solved by the Kuhn-Munkres algorithm [6] with O(d®) complexity.

C.1 Conditions
To analyze the algorithmic convergence of (C.1)-(C.2), we note that
Aj(UV)? = |B*(U = V)T = pA2(|U = V|3,
for any U,V € P;. Therefore, the natural loss function of the problem is
P
UZ,Z7) = pX2 > 12— Z|Ig.
j=1

To write down the error terms, we introduce the notation B(Z) = /):(Z )Z. The error terms
are

FUV:2) = (e(B(Z") = BZ)U-V)T).

<
Gy(U,V:2) = (B(2)~B(2).B"(la~U"V)).
H;U,V) = {

B* — B(Z*), B* (I — UTV)> .

10



Here ¢; € RP¥? is an error matrix defined by e]T = (Wil;, e ,Wij). The error terms are
controlled by the following lemma.

Lemma C.1. For any C' > 0, there exists a constant C > 0 only dependz'ng on C' such that

p Fy(2:,U; Z)? H“J (B*,U) — u;(B", Z*)
{Z:e(%l,%}f)gr} ;gfgj A (Z3 LO)M(Z, Z+)
<C < 2\*2 2)\*4) (C 3)
2
. G(72;, U3 2)2 s (B7,U) = piy(B*, Z5)
(z:0Z.2%)<r) ANZ. T+ 7 p=rt U2z, Aj(Z:,U)(Z, Z¥)
<A*2 d)
< 07”, C.4
— (pA*Z) ( )
and
max max M <C d (C.5)
jelp) UAZ; Aj(Z;‘,U)2 - pA*2’ '

with probability at least 1 — e=C'pd,

From the bounds (C.3)-(C.5), we can see that a sufficient condition under which Condi-
tions A, B and C hold is 7 = o(p?\*?) and p)‘ — 00.
Next, we need to bound &jgea) in Condltlon D. This is given by the following lemma.

pA*? _
Lemma C.2. Assume dlogd — - Then, for any sequence 6, = o(1), we have

1+o(1) -,
gidoal(ép) < b exp <_ 20( )p)‘ 2) )

with probability at least 1 — exp(—+/pA*2).

Thus, under the condition %ﬁd — 00, Conditions A, B, C and D hold simultaneously.

C.2 Convergence

With the help of Lemma C.1 and Lemma C.2, we can specialize Theorem 3.1 into the following
result.

Theorem C.2. Assume dp{(\;d — 0. Suppose ZO) satisfies

029, 7%) = o(p*\?), (C.6)
with probability at least 1 — 7. Then, we have
*2

(2", 2%) < pexp <—<1 +o(1)% ) F U2, 7 forall 1 21,

with probability at least 1 —n — exp(—+/pA*2) — e P4

11



According to the definition of the loss ¢(Z, Z*), we have the inequality
12
* 2y %2
U(Z,2*) > 4p°\ p?_l (s 02: )

This immediately implies the following corollary for the Hamming loss.
Corollary C.1. Assume %*;d — 0. Suppose 20 satisfies (C.6) with probability at least
1 —n. Then, we have

p)\*Q _
Z 1{2(”7&2* < exp <—(1 +o0(1)) 5 > +27 forallt>1, (C.7)

with probability at least 1 —n — exp(—+/pA*2) — e P4,
By the property of the Hamming loss, the algorithmic error 27 is negligible after [3log p]
iterations, and we have

p>\*2

Z 1{2“);&2* < exp (—(1 +0(1)) ) for all t > 3logp.

Thus, the minimax rate is achieved given that the initialization condition (C.6) is satisfied.

C.3 Initialization

Since Y = N Z*Z*T + W, the matrix EY € RP?*P? has a low rank structure, and thus we
can recover the information of Z* via eigenvalue decomposition. Let U € Rrxd collect the
leading eigenvectors of Y. We use the notation ﬁj € R4 for the jth block of U so that
T = (Uy,- - ,ﬁp). For each j € [p], find ZJ(.O) = argminy ¢p, H\/f)[?] — V|3, Again, this
optimization is equivalent to
Z](-O) = argmax <ﬁj, V> ,
VePy

and can be solved by the Kuhn-Munkres algorithm [6] with O(d®) complexity. The statistical
guarantee of Z(© is given by the following proposition.

Proposition C.1. For any constant C' > 0, there exists a constant C > 0 only depending
on C' such that

min (2, 2*UT) < Cpd?,
UePy

with probability at least 1 — e~ C'P4,
Proposition C.1 show that Z(®) achieves the rate O(pd?) for estimating Z* up to a global

permutation. This uncertainty cannot be avoided since ZiZ]T = Z;UTU ZjT. In order that

the initialization condition (C.6) is satisfied, we thus require p2;2 — 00, which implies the

condition for algorithmic convergence %:d — 00. By Corollary C.1, we can thus conclude
that the iterative algorithm initialized by the spectral method converges to the minimax error

12



D Proof of Theorem 3.1

Suppose £(2¢1), 2*) < 7, and we will show £(z(®), 2*) < 2&geu(6) + 36271, 2%). By the
definition of the loss (21), we have

p
00,27 = 3 (B, 2) — i (B*, 21
7=1
p
= Z Z Huj(B*,b)—uj(B*,zj)!!21{th>:b}- (D.1)
j=1be[k]\{z 7
To bound (D.1), we have
)
J
S L (BED) IR <ITy -y (B(0-1),20))12} (D.2)
= 1{<6],Z/J(B(Z )z )— V](E(z*),b)>gf%Aj(z;,b)QJer(z;,b;z“*l))+Gj(z;,b;z<t*1))+Hj(z;f,b)} (D3)
S (B (B b)) <~ 152 A (=,0)2) (D.4)
+1{6 (2] .0)2<F; (2} bzt 4G, (=} ;2 (t= 1))—I—H( )}
S (B, —rs (B=)0) <~ 152 A (=1,0)2} (D.5)
+1{ZA (25.0)2<F;(2} biz(t=D) 4G, (2 bz (= 1))}
< 1{<Ej,1/j(B(z*),z;)—l/j(E(z*),b)>§—%5Aj(z;,b)2} (D.6)
32Fj(z;-‘, b; 2(t=1))2 32Gj(zj, b; 2(t=1))2
52Aj(z;f7b)4 52Aj(2;,b)4

The inequality (D.2) is due to the definition that z](-t) = argmingepy || 7; — v; (B(z(=1), a)|2.
Then, the equality (D.3) uses the equivalence between (24) and (25). The inequality (D.4)
uses a union bound, and (D.5) applies Condition C. Finally, (D.6) follows Markov’s inequality.

13



Apply the bound (D.6) to (D.1), and then £(z(®), 2*) can be bounded by

p

* * k(12
2 D (B0 =y (BT DL By By <500, 5 02)
=1 belN =)

P 32F; (2%, b; 2(-1))2
2 D (BN = (BP0 ) A
J=1belk]\{z} ’ e

L . .. 32G; (23, b; 21712
+Z Z ||:U’](B 7b) _/I’J(B ’Zj)HZl{z(.t):b} (;ZA]‘(Z% b)4
7=1 be[k]\{z}} ! A

< Ga®+Y s (B°,5) = (5, =) 22T b
idea’ max j ) - My y 2 *
= el LTy IS % 024 (=3, b)*
P 32G (2%, b; 2(t71))2
+3 "1 4 max (B*,b) — p;(B*, 2 ||P 2L D.7
; [0 ) el I (B 0) = (B 20" g3 8 (o (D7)
1 0 e AAZ B(z®0) ) 7 1)«
< Gaen(®) + 20070, ) ¢ PR LD ATy oy (D3
1 1
< Eideal(8) + 5Afmnh(z“), 2) + Zz(z<t—1>, 2*) (D.9)
1 1
< Eideal (8) + 5z(zﬁt), 2) + Zz(zﬁt—l), 2", (D.10)

where we have used Conditions A and B in (D.8). The inequality (D.9) uses the condition
0(z=Y, 2*) < 7, and (D.10) is by (22). To summarize, we have obtained
1

(=9, 2) < Gaea (0) + (=0, 2) + 017D, 2%),

which can be rearranged into
1
0z, 2") < 2iaear (0) + (=Y, 7).

To prove the conclusion of Theorem 3.1, we use a mathematical induction argument. First,
Condition D asserts that £(z(?), z*) < 7. This leads to £(2(}), 2*) < 2&gea (8)+50(2), 2*) < 7,
together with Condition C that &gea(d) < %T. Suppose K(z(tfl),z*) < 7, we then have
020, 2%) < 26iqeal(8) + 20(2D, 2%) < 7. Hence, £(2~1), 2*) < 7 for all ¢ > 1, which implies
that £(z(1), 2%) < 26qeal(6) + 20(27Y, 2*) for all t > 1, and the proof is complete.

E Proofs in Section 4

In this section, we present the proofs of Lemma 4.1, Lemma 4.2 and Proposition 4.1. The
conclusions of Theorem 4.1 and Corollary 4.1 are direct consequences of Theorem 3.1, and
thus their proofs are omitted. We first list some technical lemmas. The following x? tail
probability is Lemma 1 of [7].

14



Lemma E.1. For any x > 0, we have

IN
®
&

P (XG> d+2Vde + 20)
P(xj<d-2vidz) < e

Lemma E.2. Consider i.i.d. random vectors €1, ..., e, ~ N(0,13) and some z* € [k]P and
k € [p]. Then, for any constant C' > 0, there exists some constant C' > 0 only depending on
C' such that

8
o
N

C+/d+logp, (E.1)

< C+/d+p, E.2
TC[p \/‘T; J p ( )

IN

1
aE[k] d+zj 1 1{2 —a} Zl{z —a}EJ J C, (ES)

with probability at least 1 — p‘Cl. We have used the convention that 0/0 = 0.

Proof. By Lemma E.1, we have P(Xg > d+ 2Vzd + 2x) < e ®. Then, a union bound
argument leads to (E.1). The inequalities (E.2) and (E.3) are Lemmas A.1 and A.2 in [10].
We need to slightly extend Lemma A.2 in [10], but this can be done by a standard union
bound argument. O

With the two lemmas above, we are ready to state the proofs of Lemma 4.1 and Lemma
4.2.

Proof of Lemma 4.1. We write ¢; = Y —HZ; and consider the event that the three inequalities

E.1)-(E.3) hold. For any z € [k|P such that ¢(z, z* <T<M we have
(E.1)-(E.3) y : 7

p
Y 1l=a)
j=1

v
(7=
e
—
A
Il
Q
—
|
—
[
<
S
N
Sox
—

AV
o
I M'@
—
—~
X
i
)
—
~
—~
S
<k
N
*
S—

1 min
> ap_ap
-k 2k
_ @
2k
which implies
p
. P
1, — E.4
miny 1m0 > o (E-4)



We then introduce more notation. We write 6,(2) = E6, (z) and

€alz) = 2

Lz=a}€s

Z§:1 Lizj=a} .

We first derive bounds for max,¢/y) Haa(z*)—@; |, maxgep [10a(2)—0a(2") | and max, ey [|€a(2)—

€al

By

max ||9
aclk]

(E.4), we have

max ||0,(z) — 04(2

a€lk]

By (E.4), we have

IN

IN

max ||€,(2) — € (2")]]

a€lk]
P .
P S D e R G o
max D — D
a€lk] Zj:l L N —_" Zj:l 1{,3;:@}
p .
>j=1 Liz=a) € 2j=1 1=}
max P — D
ac[k] Zj:l 1{Zj=a} Zj:l 1{Zj:a}
p
— 1 gy — 1y i
ap gé?i]{ Z {Z]—a} {Zj :a})ﬁj
2% |k | P
ap\ ap ;1{zj=a} - ;1{4:&} m

(2

Pl

z*)||. By (E.1) and (E.4), we have

—9F =
) — 0l max

[ k
— Inax
ap aclk]

k(d + logp)

N

1

7
ZJ 1 {ZJ_G}J 1 belk]\

i lay

Z?:l 1{2}‘:@}

P
=1 1{2]‘*:11} €j

J
p
Vi1 =a)

p

Z z] a,z} :b} (

< z S 16— Oy
= 1 be[k]\{a}
2k

< ).

o apAming(z, : )

16

ax
a€lk]

Y1 lsaye

0 —0.)

(E.5)

(E.6)

Y1 lma)€

+ max
a€lk]

Z§=1 1iz=a)

p:l 1{,3;:@}6]'
Z?zl l{z;fza}

N Z?:l 1{2}‘:(1}




where the first term in the above bound can be bounded by

2%k 2%k

o 22 Z k] vyl PORCERL
< kvd+p [l(z,z *)
Yoo Al

Uz
because of the facts that max,¢/ Zj 1 {Z] a1 #a) < (A n) Max (k] Zj 1 l{z —a zﬂéa} <
gfzz ) and the inequality (E.2), and the second term can be bounded by

min

P
o2k | k > -1 1{z;:a}€j
- E 1 E 1
ap\| ap acli) =10y el £ (o} T ffé?,fj {5j=azza}
J

¥4 .
R R X
ap\ ap A12nin a€lk] Z?:l 1{2’.‘:a}
J

< kVEl(z,2)y/dFTogp
~ p\/>Am1n .
2

Under the condition that £(z,2*) < 7 < M, we have

IA

maxHéa(Z) — &2l

a€(k]
< kvd+p Uz, z* + EVEL(z, 2*)/d + Togp

p Ar2n1n p\[Amm
kvd+p [l(z,z*)
< E.7
~ p Afmn ( )

Combining the two bounds (E.6) and (E.7) and using triangle inequality, we also have

0, 0, (2"
gé?ﬁll (2) — 0a(2)]]

< infﬁlw a(2) = 0a(z7)|| +gé?)]<||€a(z)—€a(z*)\|
< gy VAR T (E.8)

pAmin pAmln

17



Now we proceed to prove (31)-(33). For (31), we have

Fj(z;fa b; Z)2||/Lj(B*, b) - 'uj(B*a Z;)H2

p
max
;be[ K\{z7} Aj(z7,b)4(z, 2*)

~ ~ ~ ~ 2
(66,05 (=) = 03 (2) = By(=") + Dul2) )|
6% — 6 PU(z, =)

(65:80(2") — Bul2) — (=) + ()|
[ 6P, 2)

1]
Mw

INA
o
] M?r
M=
[y
—
kN
*
i
=}
—

p

—~ ~ -~ -~ 2
0u(=") = Ba(2) = Bu(=") + Ou2)
[6: = G5 P2z, 27)

I
M

T
Hz=a} 5

b=1 aelk]\{} j=1
o K(kd/p+1) (1 L Kd/p+ 1))
~ AIQHIH AIZIIIH

where we have used (E.3), (E.8) and the condition that £(z, z*) < 7 < mm P Next, for (32),
we have

Gila bl < Slu() — Bale)IP + 51B0(=) — =)
HO(E) = E1I(e) = Bl + 1) = 5 1atz) — )
< maclBu() ~ Bu(e) P + 2 (1) — 021 ) (e () — 8ot

oz — o) (maxue (=) - ea<z*>u).
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This implies for any subset T C [p|, we have

T Gz, b5 2)% i (B*,b) — pu;(B*, 25)||?
—a Z max Y .
AAZ T + T belk\{E) Aj(z5,0)4(z, 2*)

min

<
- 4A2

l'l’lll’l

. 12 (maoe g 10a(=7) = 0:12) (maxacy 18a(2) - Ba(=")]2)
4A2 |T A2 ((z, 2*)

min jET min

Z 3maxae [|0a(2) — Oa ()]
| A2 0(z,z*)

min

3 maxg e[y H9 (2) — 0, ()17
Z

0(z,z*)

4A2

mln

3T max,e H9 (2) — Oa(2")]|* | BT maxeep 10a(2) — 0a(2*)]1?
AAL . ((z, 2*) AN ((z, 2*)

min min

z
37 (maxae[k} 18 (=) _9*,,2) (maxae[k] 10a(2) — Ba(z >!!2)
Afmnﬂ(z z*)
b k(d+p) | K(d+p)
pAQ pA2 2A4 ’

min min min

—+

S

where we have used (E.5), (E.8), and the condition that £(z,2*) < 7 < m“‘ P Finally, for
(33), the bound (E.5) leads to

[Hj(a.b)|  _ 3l10a(=") = 6211 + 51106(=") — 6511 + 1162 — 65111105(=") — 6511

Aj(a,b)* — 105 — 0112
< k(d + logp) n k(d+ logp)
~ pA?run pA?mn
By taking maximum, we have obtained (31)-(33). The proof is complete. O

Proof of Lemma 4.2. Note that

P <<6j,0a(z ) — Op(2 )> < _T”ea - 9b”2>

. 1—=6—-6,,, .
< P <<ej,ea —0;) < ————0: - ‘9b”2>

+P <e- Ba(z%) — 9*> < _5\\9* — 05

Ji»Ya a/ =", Wa b
D[ * * 6 * *
+P (— <€j79b(2 ) — 9b> < —zHoa - 917H2> )

N

\)

where § = 5p is some sequence to be chosen later, and we need to bound the three terms
on the right hand side of the above inequality respectively. For the first term, a standard
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Gaussian tail bound gives

. 1—=6=08, . s 1-6-6)% . .
P (te 00— 05) < =2 =521 - 51 ) < exp (-G R0r - g1?)

To bound the second term, we note that

8

R Loy llel?
€j,00(2%) — 02 ) = ! +
< ! > Zi?:l 1{zl*:a}

This implies

T T
L\t Hz=a} 5 Lielphia) L {z7=0) % €
Zf:l 1{zl*:a} N Zf:l 1{zl*:a}

P ({e,0u(: W>SSWZ%W>

IN
=

Zl 1 1{2 —a}
Zlepl\{J}l{zl —a}€; €

IA
=

l 1 1{z —a}

(qup]\{]} Li_a)€ @
P

S * k
—ﬂ%—%W)

5 * *
<-216; - 65

+ (|\el||2>d+2f+2x)

IN

52H0* 0*H4
Efexp|—

=1 1m0}
wmw

+P (HQHQ > d+2Vad + Qx)

IN

32k (d+ 9zd +

S2(19% _ p*||14
S B U R B
xd 2:6)

Choosing = = /|0 — 0;||*\/ap/k, we have

<30 - 1)

(i) -

21| n* * 4
< exp <—C’6H9kd9||>+ex (

To bound the third term, we note that

1{2;:1,}||€j||2

lel|* < d+2Vxd + 2m>

el < d+2vVxd + 23:)

o019 — 611°vp
PP

T
ey L) @

- <€j7§b(2*) - 9§> =-

2 Lz
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and we then have

D * ) * *
P~ (e B0 - 65) < ~510; - 651P)

Le_pllgl® 5
z¥=b J ) " "
< P(—{pﬂl}s—guea—ebrr?)
1=1+{z;=b}

T _

Yicph\i) Y=} 5

‘HP — D 1 S_gHea_ebH .
21 {z=b}

The second term on the right hand side of the above inequality can be bounded in the same
way as (E.9). For the first term, we have

Lglel? 5
z¥=b J
p(-F < g
Zl:ll{zl*:b} 8
0 e pey2QD
< P (llal? > gloz - 6177
< exp (—C3)0; - 6172,

under the condition bgf% — 00. Combining the bounds above, we have
D (% D 1-46 * *
P (o8 - ) < 150 10; - 1

1—0-6)2 . . Siak o
< o (U500 - 6512+ exo (~CB0z - 6511

0%)165 — 031l 01105 — 05 11*v/P
+2exp <_de> + 2exp <_C\/E>

1-6-6)2% . .
< e (-0 - g1?).

where the last inequality above is obtained under the condition that logi% — o0 and

p/k — 00, so that we can choose some § = §, = o(1) that is slowly diverging to zero.
Now we are ready to bound &gea1(9). We first bound its expectation. We have

* * n * N % 1-9¢ * *
Boaa®) = > 3 165 - 058 ({050 -y < =25 0005; - 6512

J=1be[k\{=]}
* * 1-6— 5 2 * *
<6 Y -0 Pew (- 5=z - ae).
J=1be[k\{=7}
With § = 6, = o(1), we then have
loz, — 62

. Zj AI2nin
IEgldeaﬂ S Z Z }exp <_(1 + 0(1))8> < pexp <_(1 + 0(1))8> )

J=1belk]\{z]
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under the condition that — o0o. Finally, by Markov’s inequality, we have

A2
Tog k+kd/p
g (gideal(ép) > Egideal(ép) exXp (Amin)) S €Xp (_Amin) .

In other words, with probability at least 1 — exp (—Apin), we have

éideal(dp) < Egideal((sp) exXp (Amin) .

By the fact that A — 0o, we have

AZ.
Bbaea) 0 (Aun) < pesp (—(1+o(1) 22 ),

and thus the proof is complete. O
Finally, we prove Proposition 4.1.

Proof of Proposition 4.1. We divide the proof into three steps.

Step 1. Define P = UUTY € R¥? with ﬁj being the jth column of P. Since ﬁ] = ﬁ,ﬂ] for
all j € [p], we have ||P; — Py| = ||fij — fij|| for all j, 5" € [p]. This implies

min ZIIP 0,17 = Zl\ug Be 1%

01,...,0,, ERF 51, 5Bk E =1
z€[k]P ze[kz]P

Similarly, define 9&0) =U ,6’((10) for all a € [k], we have

p p
~ 0
S IB 6P = ZHUMJ s @u? >l =B
j=1 “ j=1 j=1 J
Thus, (39) leads to

p ~
Z |P; — (0)H2<M mlne ZHP 0., (E.10)
=1 lééﬁp J=1

That is, any z(0) € [k]? that satisfies (39) with some Bgo), : ..B,(CO) also satisfies (E.10) with
© O

some 6;7,...0,".

Step 2. It is sufficient to study any 0(0) . ,0,20) € R% and z(7) ¢ [K]? that satisfies (E.10). Let
us define P* = EY’, and we have P’ = 7. according to the model assumption. We first give
J

an error bound for || P— P* |Z. Since P is the rank-k approximation of Y, we have ||Y—ﬁ||12; <
”Y — P*H%, which 1mphes that ||P — P*H% S 4maX{AeRpr:HAHFSLrank(A)SQk} ’ <A,Y — P*> ‘2

Use a standard random matrix theory result [16], we have ||Y — P*||? < p+d with probability
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at least 1 — e~¢"(4+P) For any A such that |A|p < 1 and rank(A4) < 2k, its singular value
decomposition can be written as A = ZZQL dlulvlT, where 21251 d? < 1. Thus, we have
2 9

<> Juf (V= P) vl\ <2k||Y — P*||2 < k(p + d).
=1

|(A,Y — P¥) (v — P*)y,

Taking maximum over A, we have || P— P* |2 < k(p+d) with probability at least 1—e~C"(@+p),
By (E.10), we have

P
S IIP; —e“’%u? < M||P — P*||3 < Mk(p + d),
=1
and as a consequence,
- (0) SN APSING, 5
SN0z 00 1P <2y (I\Pj — 60 12+ 16z, — Pjn?) S(M+Dk(p+d).  (B11)
L J ]:1 J

Define

and we have

P ez — o012
=TT (M Dkt d)

2 ~ 2
(%) Arnln

5] <

We are now going to show that all the data points in S€ are all correctly clustered. We define
Ca:{je [p]:z;-‘:a,jGSc},
for all a € [k]. Under the assumption A2. /((M + 1)k*(1 + d/p)) — oo, we have
S| = olp/k). (E12)
We have the following arguments:
e For each a € [k], C, cannot be empty, as

el =a}l _ ap
2 =T

ICal 2 {7 € [p] : 27 = a}| = |S] =

: (E.13)

e For each pair a,b € [k],a # b, there cannot exist some j € Cq,j' € Cp such that

.

zj(o) = z(,) Otherwise 9(?())) = 9((())) would imply
7

contradicting the definition of Apjy.

16— 051 = | %~ 0 < A

9** _ *
Zj

Z.
Jl

© O
00 — 0%,

ot

© _ gr
‘93(9) -0z,
J
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(0)

Since z; * can only take values in [k], we conclude that {z](-o) : j € Co} contains only one and
different element for all a € [k]. That is, there exists a permutation 7y € IIj, such that

20 = o(29), (E.14)
for all j € S°.

Step 3. The last step is to establish an upper bound for €(7r0_1 020 2*). By (E.11), (E.13)
and (E.14), we have

* 0 * 0
o | ]| o i |5~ O 2o, d
O — 0 = L < ! ,§M+1k:(1+>,
mo(a) Cal Cal ( ) D

for all a € [k]. As a result, together with (E.11), (E.12) and (E.14), we have

2 2
—1 0) = — ** _ p* — ** _p*
¢ (WO CFE ) ]%] 0> 9ﬂ51<z§o>) ]%%} 02 Qﬂal(zj(o)) 1{2;#ﬂ51<z§o))}
2 2
* (O) ) *
e R o
P
x« _ p(0) 0) _ p= 2
« _ g0 (0) «||?
< 2%} 0 o) +ISImax o, ~ 03
S(M+1DEk(p+4d).
The proof is complete. O

F Proofs in Appendix A

This section collects the proofs of Lemma A.1, Lemma A.2, and Proposition A.1. The
conclusions of Theorem A.1 and Corollary A.1 are direct consequences of Theorem 3.1, and
thus we omit their proofs. We first need the following technical lemma.

Lemma F.1. Consider i.i.d. random variables w;; ~ N(0,1) for 1 < i # j <p. Then, for
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any constant C' > 0, there exists some constant C > 0 only depending on C' such that

max Zl<7,75]<p( — az)wi; < CVp, (F.1)
N Crciniplai — aj)?
2
P
Z Z (wj; — wij) < Cbp, (F.2)
J=1 ZE[;D]\{J}

max Z (wji —wiz)| < Cy/logp, (F.3)
<l | V20 = 1)

with probability at least 1 — (C'p)~1. We have used the convention that 0/0 = 0.
Proof. To bound the first inequality, we define
A={A= {aij}ijyep? : @iy = ai — a; for some a € R?, [|A][p < 1},

and
B= {B = {bij}(i,j)e[p]2 : rank(B) < 2, ||B||F < 1}

Then, we have A C B, and

. a; — aj)W;j
max Zlgz;ﬁJSP( ]) J = max| <A W>|

acRP Zlgi;ﬁjgp(ai _ aj)Q AcA

By Lemma 3.1 of [2], the covering number of the low-rank set B is bounded by e9®) | which
further implies the same covering number bound for A by the fact that A C B. In other words,
there exists A, ..., A, € A, such that m < e“1?, and for any A € A, ming<j<pm, [[4; — Allr <
1/2. Let us choose any A € A, and then let A; be the matrix in the covering set that satisfies
|A; — Allr < 1/2. We then have

(A W) [ <A = Al

A— A 1
—_ W AL WH| < = A A
(W) 109 < S AW+ (W

which implies
1
A <= A A .
max | (A, W)| < 5 max | (A, W) |+ max {4, W)]
After rearrangement, we get maxac | (A, W) | < 2max;<i<y, | (4;, W) |. Then, the conclu-

sion follows by a standard union bound argument.
For the second inequality, we use the notation r; = \/ﬁ Diep\ it (Wi — wiz). Tt is
—

clear that r; ~ N (0,1) for all j € [p], and thus we have E (Z?Zl r?) = p. We then calculate
the variance. We have



For j =1, we get IE(TJ2 —1)2 = 2. For j # [, we have IE(?“]2 —1(rf-1)= Er?r? —1, and

2.2 _
Eriry =

4(p —1)?

iclp\{1}

D (wyi — wij) + (wy — wyy)

2

2: (wi; — wir) + (wij — wjr)

ilp]\{7}

Since the three terms 3 ;. (13 (Wji—wij ), 3 iepp 53 (Wi —wir) and (wji—wy;) are independent,
we can expand the above display and calculate the expectation of each term in the expansion,

and we get

Therefore, Var (
equality. Finally, the last inequality is a direct consequence of a union bound argument.

D 2
j=1"7

)

Erzr% =

J

4(p—2)2 +4+8(p—2)

4(p —1)?

= 2p, and the desired conclusion is obtained by Chebyshev’s in-

=1.

O]
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Now we are ready to state the proofs of Lemma A.1 and Lemma A.2. Note that under

the setting of approximate ranking, the error terms are

Fj(a,b; z)

Gj(a,b; 2)

Hj(a, b)

2p
€j
2(p—1)
p° g
p—1

2

p *
- B
p—1
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p *
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p—1

2

p *
+p_1 B
P’ g
p—1
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p *
- B
p—1
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p *
- B
p—1
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p *
+p_1 B
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*
a*;sz
j=1
1<,
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pj; !
1 p
a—~=» z
P
1N,
a— — Z5
p; !
1
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j=1
1<,
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1<,
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1 p
a——=» z
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o(p(87)2), we have

Proof of Lemma A.1. For any z € [p]P such that ¢(z,2*) <7

Y (s —z+2)?<4lp-1) Z(zj —2)?< (B*)QZ(Z’ 2*) = o(p?). (F.4)

1<ij<p

<

For any 2* € R, we have > ;i (2 — z;‘)2 < p*. Moreover, by the definition of R, there
exists a z € II, such that ||z* — Z||? < ¢,. This implies

2 2
1~ , p-—1 1~ _ 1, , g _c
St | =, ] Sl AP =), (R
=1 j=1 j=1
and
p p
DED? =D = 1P = 1EIP] < = =2+ 121D S %™ = ().
j=1 j=1
Thus,
2
p p
> E=E) = 2wy -2 )
1<i#j<p j=1 j=1
2
p p
> 2D 7 —o) | —(1+o(1)2 (D
j=1 j=1
4
p
> . F.6
- 12 (F-6)
Therefore,
2 1 *\ 2 * *\ 2
Z (2 — 2)" = B (2 —2)" — Z (zi — 2 — 25+ 7j)
1<i#j<p 1<i#j<p 1<i#j<p
p! 2
> £
> 57— o)
4
p
- P F.7
> 2 (r.7)

where the last inequality assumes p is sufficiently large. We then introduce more notations.

We define i i}
« Zlgi;éjgp(zi — zj) (2} — Zj)

Zlgi;ﬁjgp(«zi — zj)?

B(z) =8

)

and
_ Z1§z‘¢jgp(zi = zj)wij

a Z1§z‘¢j§p(zi —z)?

w(z)

27



We write w;j = Yj; — B*(2] — 2}) so that ¢; = \/ﬁ Zie[p]\{j}(wji — wjj). We consider the
event that the three inequalities (F.1)-(F.3) hold. We first derive bounds for |3(z*) — %],
|B(z) — p*| and |w(z) — w(z*)|. By (F.1), we have

Zlgi;ﬁjgp(z;k - Z;)wij
2a<izi<pF = 7)?

<pls, (F.8)

~

B(z") = 8*| =

By (F.4) and (F.7), we have

Zl§i¢j<p(zi —2i) (2] — 2} — zi + zj)

B Zl<z7é]<p( Z])2

B(z) =% =

2 *
< 5|B Do Gi—z)? | Y (-2 —atz)?
P\ <Fe 1<iZj<p
25| 6%
< Uz, z*
- pr () (=.27)
0(z, 2*)
P (F.9)

Next, we bound |w(z) — w(z*)|. We have

()~ (=] < ‘Z@#Sp(zﬁ‘%"ﬁ * v

Z1§i;ﬁjgp(zi — zj)?

El<i7éj<p(zi - ')2 - Zl<i;ﬁj<p( z = Z;)z Zlgi;ﬁjgp(zj - z;)wij
Z1<¢¢]<p Zi = \/Z1<z¢j<p - Z}‘)z \/Zgiﬁgp(zf - Z;)Q

We bound the two terms on the right hand side of the above inequality separately. The first

+

term can be bounded by

k. 2
\/Zl<i7$j<p %=z — 2+ 2}) D i<izj<plZi — 25 — 2] + 25wy

2
2i<izjep(Zi = %)) \/21§i#j§p(’zi_z; — 2+ )’
z +z W5
< 2 (52 (e, ) | Bzl y
\/Zl<7,7£]<p Z' % + Zj)2
pl(z, 2*)
~o gt

where we have used the inequalities (F.1), (F.4), and (F.7). By (F.1) and (F.7), the second
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term can be bounded by

IN

S

I RCET D St

1<iz#j<p 1<izj<p

Cp~ 5P Z (2i — 25) (27 — 2z} — 2 + 2j)

1<ij<p

+Cw P D (2 =) - 2zt )

1<i#j<p
> Goare [ 2 Gegp) [ X eaosegp
1<i#j<p 1<i#5<p 1<iz##j<p
pl(z,z*)

|B*|pt 7

where we have used (F.4) in the last inequality. Combining the two bounds, we obtain

7(:) - ()| £ Yo (F.10)

From (F.8), (F.9) and (F.10), we can further derive

18(2) =BGl < 18(z) = BT+ [0(2) @ (=0 S =—F5— (F.11)
under the condition p(8*)% > 1.
_ 1 o aps
We are ready to prove (A.7)-(A.9). Recall that ¢; = W) > icp)\(j} (Wji — wiz), and
we have
2
P P
29 < Xl ap=y 2 (i)
J=1 J=1 %E[p \{i}
S b (F.12)
by (F.2). Moreover, from (A.5), since z* € R, we have
2(13%)\2
Aj(a,b)? = (1 —|—0(1))2pp(_61)(a—b)2. (F.13)
Thus,
& Fj(z, b 2)% [l (B*, b) — 11 (B*, 25) |
max T ”
— befkl\{}} Aj(z7,0)*(z, z*)
) o Drox\2 P
B B -
< L
~Y p27
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where we have used (F.11), (F.12), (F.13) and the condition p(3*)? > 1 in the last inequality.
Taking maximum, we obtain (A.7). For (A.8), we note that

2 1 1 ~
Grtaial < P l(a-2EY - (- 28 e - e
2
+ 2 (0= 2E0) B - BB - 5
2p? p+1 ~ p+1\ =, . p+1
+p—1 I “5( ) = B(2") ‘(b—2>5(2’ )_<@—2>/3
~ 1< 1
+ L1518 - B | D - T
j=1
4 o~ o~ o~
< SEHIBG) = BEP + 1) — BEIIBE") - 6]
4p? ~
-l = I8 1B (=) - Bl
Therefore, for any subset T C [p], we have
T S max Gj(25,b; 2)2 (| (B, b) — pi(B*, 25) |12
4A2 . T+ 1 = belk\{z3} Aj(z;f, b)4(z, 2*)
- B - BEI, m1B() ~ BEPIBE) - B, mPIB() — B
S TG, 2 [B[16(z, =) B Pe(z, )

T 1
< + ,
pB*P - plBHP
where we have used (F.8), (F.11), and £(z, 2*) < 7 = o(p?(5*)?). Taking maximum, we thus
obtain (A.8). Finally, for (A.9), we have

1Hj(a.0)] 1(3(2*)—5*)2<a—p+1> 1|2<3( - 5)2<b_p+1>2

Aa b = 2AFP > ) T 2
B(z") — 5]
foplE
5]
Sz ;7
VI8
where we have used (F.8). We thus obtain (A.9) by taking maximum. The proof is complete.

O]
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Proof of Lemma A.2. By (F.13), there exists some §' = §;, = o(1), such that

L e g (B2 vy (B ))<= 152 853002

1 e
{e L f(e) (2] —b) < - =5 2”1@1)2@;4)2}

B (2] —b) <~ 18IS 2GR (e o }

IN

IN

ot
+1{

€ s (=) -8) (5 -0 < - § O (g -ty2
By (F.3), (F.8), and p(3*)? — oo, we have

2 (B(2*) — B*)(zF —
o0 -6 M'O(VM“?
j€l B (2 — b2 p )

with probability at least 1 — p~!. Therefore, we can set § = dp for some sequence Sp — 0 and
5p 2 7%?1”, and then

:O,

1 ~ N *
{6 a2 Bl 0= § 25000 502
for all j € [p] with probability at least 1 — p~!. This immediately implies that &geal(d,) <
Eideal (Op + 0, + 8p) with high probability, where

51 0, +5/+(5 2 —b 29 ) *
deal( ;be[p]z\;z} {j 2(25_1),3*(z;f—b)<_1 ap 55 —3p 2p2(6 )2( 2 }

A standard Gaussian tail bound implies

Egdeal(é + 5, + 3 )

_ 2p 5* Z e —b2P<N(o,1)g—1_5p_25’/’_5p\/2p;(_51)2(z;—b)2>

J=1oep\{=;}
p oo 2 2%\2 ! 5\ 2 2 (k)2
Ap(B*)* 5 1—0p,—0,—0p\ p*(6%)° 5
< N U _
< ZZ b1 [ exp 5 pfll
Jj=11=1
*\2
< pexp (—(1+0(1))p(i) )

where we have used the conditions p(3*)* = oo and 6, + 0/, + 6, = o(1) in the last inequality.
Finally, by Markov’s inequality, with probability at least 1 — exp (— p(ﬁ*)2>, we have

gdeal(ép + 5;; + Sp) < IEgdeal((sp + 52/9 + Sp) €Xp ( p(ﬁ*)Q)
*\2
<pewp (~(1+o) 2.

as p(B*)? — oo. Since Eigeal (6p) < édeal(ap + 51’) + 6,), the proof is complete. d
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Finally, we state the proof of Proposition A.1.

Proof of Proposition A.1. Note that we have the following fact. Consider any x = (x1,z2,...,2m)" €
R™. Let y = argmin ¢y >P_(z; — 2)% Then for any pair (4,7) such that z; < z;, we must

have y; < y;. Otherwise if y; > y;, since ((z; — y:)” + (x; — y;)?) — (@ —y;)* + (x; — vi)?) =

—2(x; — x;)(yi — yj) > 0, we can always swap y; and y; to make Y b (x; — y;)? strictly
smaller. This indicates that y preserves the order of x.

As a result, since a linear transformation does not change the rank, we can write z(9) as

» 2
20 — argminz ( 22(;%* 1)TJ + p;— L_ zj> . (F.14)

Since z* € R, there exists some z € II, such that Ly(Z, 2*) = o(1). By (F.14),

p
2(p—1 1
Z( 2(17* )T’j‘i‘p—; 0))
= PP
We then have

P 2
<y 7o Pl o
— 2p/3* J 2 J .

7=1

p

Lo(29),%) = p*IZ 022

p p 2
_ 2 p+1 (0) _ p+1
1 1
<2p E < QPB* T + 5 — 2 +2p g 2pﬁ* T + 5 —Zj
J=

7=1
<4 1y ptl_s 2
= ep Z 2B* ]+ 2 —Zj

7=1

p \/7 2 p p 2
—1 1
12p ; 25 T; + — Zz —zj + 12p~ ; —z 2412 g
2

6(p—
=5 Zj—l-lZLg(zz +12 Zz—i ,

J=1
where the last equation is due to the fact that T; = p;(B*, 2) +¢;. By (F.12), (F.5), and
Lo(z,2*) = o(1), we have

1
Ly(29,2) < ()2 +o(1),

with probability at least 1 — p~'. By L(z(?), 2*) < 2L(2(9),2) 4+ 2Ly(Z, 2*), we have
1
p(6*)?
with high probability. When p(3*)?2 — oo, we clearly have Ly(z(?,2*) = o(1). When
p(8*)? = O(1), we have Ly(2(9,2*) < min <p2, L 2), where Ly(2(9),2*) < p? is by the

p(8*)
definition of the loss. O

Ly(z1%,2%) < +o(1),
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G Proofs in Section 5

In this section, we will prove results presented in Section 5. Most efforts will be devoted to
the proofs of Lemma 5.1, Lemma 5.2, and Proposition 5.1. With these results established,
the conclusions of Theorem 5.1, Theorem 5.2, and Corollary 5.1 easily follow.

Let us introduce some more notation to facilitate the proofs. Given some vector v € R%,
some matrix A € R¥*? and some set S C [d], we use vs € RIS for the sub-vector (v; : j € S)
and Ag € RY*IS! for the sub-matrix (A;; : i € [d],j € S). We denote span(A) to be the
space spanned by the columns of A. For any j € [d], we denote [v]; = v; to be the jth
coordinate of v. We also write ¢ : [d] — [|S|] for the map that satisfies v; = [vs]y4(j)- The
domain of the map ¢g can also be extended to sets so that for any S’ C S, we can write
vsr = [vslpg(sr)- For any j € S, we write S_; = S\{j}. We use Iy for the d x d identity
matrix, and sometimes just write I for simplicity if the dimension is clear from the context.
Given any square matrix A € R¥9, we use diag{A} for the diagonal matrix whose diagonal
entries are identical to those of A. For two random elements X and Y, we write X Ly it
their distributions are identical, and X | Y if they are independent of each other.

We first state and prove three technical lemmas.

Lemma G.1. Assume slogp < n. Consider a random matriz X € R"*P with i.i.d. entries
Xij ~ N(0,1), an independent w ~ N(0, 1), some S* C [p] satisfying |S*| = s, and some
B* € RP. For any S C [p], denote Ps = Xg (Xng)_l X;‘C to be the projection matriz onto
the subspace span(Xg). We also use the notation P; = XijT/HXjHZ, where X; represents
the jth column of X. Then, for any constants Cy, C’ > 0, there exists some constant C > 0
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only depending on Cy,C’ such that

max(ux 2~ n| < CVnlogp <n/2, )
max (XEXs)™ H < g’ )
SCpl:|S|<2Cps - n
- 2 slogp
Xixs)xixe| <c a3
STC[p}'Sm{E%)Tﬂ |T|<2C0s (X5 Xs) sAT| = = (G-3)
LT 2 _Clogp
Xr(I - Ps)Xr) Xz (I =P H < , G.4
STCI: ST 81, TI<2C0s T H r( s)Xr)  Xp s)w|| < - (G.4)
XTPsX;| < Cs1 s
S e 58085 |XJ PsX;| < Cslogp, ©5)
XF(I — Ps) Xy — diag { X} (I — Ps)Xr}|” < Cnslogp,  (G.6
S,TC[p}:Sﬁ]I“g%?TﬁJTlSQCOSH 7( 5) X — diag { X7 ( s) T}H < Cnslogp (G.6)
1 2
Xj Psw)” < Cslog®p, G.7
SC[PﬁléT}S{?COS |S* NS¢+ |S*nN S| Z ( J Sw) < Cslog™p ( )
JeES*NS
n;lé%x (X Ps*w) < Cslogp, (G.8)
j *
L1 2 _Cslogp
XH(I = Ps)Xr) " XfPou|[ < : G.9
5,TClpl: sn= VJISI T|<2Cos | T H 7 s)Xr)  XpPsw| < o (G.9)
2
Xp(I = Ps)Xr — (n = |Sir(|” < Onslog, G.10
S,TC[p}:Sfﬂ{ri%?I(SHTIQCOSH 7 s) X1 — (n—15]) |T|H < Cnslogp ( )
- C
XU - Poyxn) | < 2 G.11
SvTC[P}:SﬂC;n%}Tﬁ |T|<2Cos ( lt s) T) = ( )
Tw||” < Cnlogp, o1
Sclpl: |5|<2cos\Sy X5 H &P ( )
1 1 )
XT(I - Ps)XsengBiens- || < Cnlogp, (G.13
STC@}:Sr%a:)(% |S]<2Cs Hﬁgcms* 2 ’T‘ Vs H 7 5)Xsens Bsens < Cnlogp ( )
1

XX(Pg — P < Clog?p, (G.14
S,TCp): Tn(Sus*) 0,/5|<2Cos |S* N S| 4+ [S* N S| |T] Xz ( s) wH og’p: )

-1 | Cslog?
max 111 XT Xge (Xg*,(I—Pj)XS*j) ng*,(I—Pj)w‘ <y 22282 (Gas)
€S* —J - —J n

with probability at least 1 — exp (—C"log p). We have used the convention that 0/0 = 0.

Proof. We first present a fact that will be used repeatedly in the proof. For two independent
€1, ~ N(0,1y), we have £76 = |l&] (1] €)7& £ |I€1]|¢, where ¢ ~ A(0,1) and
¢ L & . Throughout the proof, we will use ¢, cy,ca,... as generic constants whose values
may change from place to place. We refer to Lemma E.1 for the x? tail probability bound.

Equation (G.1): We have | X;||* ~ x2. Then the x? tail bound and a union bound
argument over j € [p] lead to the desired bound.

Equation (G.2): Tt is sufficient to study the smallest eigenvalue of X2 Xg. For a fixed S
and 0 € RIS! such that [|0]| = 1, we have 67 XTI X0 ~ x2. Thus P (|7 XL Xs0 —n| < 2) <
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2exp (—n/16). By a standard e-net argument [16], we can obtain

P < min AT XE X0 < cln> < cIQSI exp (—n/16).
9eRIS|:|6]|=1

We then take a union bound over S to obtain

P i in 0TxTxq0 < <2 P V\lexp (=n/16).
(Sc[p]%g2coseeﬂglgl;mel 548 _Cln) - <2008 ¢y exp (=n/16)

Thus

(x5x0) | 2 1) < exp (cean).

P max
SC[pl:|S|<2Cps cin

for some constant c3 > 0.
_ _1
Equation (G.3): Conditioning on Xg, we have (X% Xg) ! XEXr 4 (XIXg) ¢, where

¢~ N0 i) Ths [[(XZx6) ™ X2 £ 7 (xEX9) ™" ¢ < || (xEx) 7| I, We
have

([ e 1 S e

X5> < exp (—cslogp) .

A union bound over T gives

(xFxs)™" X’§XTH2 > de|(XTXs) || s1ogp

p
. it Xs | < _eslogp) .
(Tc[p]:u@)ézcos S) < (2(}05> exp (—cslog p)

Consequently, for a fixed S,

(XEXS)’1X§XTH2 >

4cslog p>

P max
TClpl:|T|<2Cyhs cin

p T -1 1
< (2005) exp (—cslogp) + P (H(XSXS) ‘ > cln> :

Using the result established above when proving (G.2), together with a union bound over S,
we have

()fgxs)‘lngTH2 >

4cs logp)

max
S, TC[p]:SNT=0,|S|,|T|<2Cos cin

b p
< —cs P
- (2008) (20{)8) exp( s ng) + <SC[p]r:I|ISE'i|D§(QCos

p D
= —csl _
- <2008> <2003> exp (—cslogp) + exp (—can)

< exp(—czslogp).

T -1 e
(X5X5s) ‘ > cm)

Equation (G.4): The proof of (G.4) is very similar to that of (G.3). Conditioning
on X, X7, we have (XZ(I — Ps)Xr) ™' XL(I — Ps)yw £ (XZ(I — Ps)X7) "' ¢ where ¢ ~

35



2
N(0,Iip)). Consequently, ‘ (X1 - PS)XT)_1 XE(1 - Pg)wH is stochastically dominated

by H(X%‘(I — PS)XT)_1’

[¢|[%. Similar to the proof of (G.3), we have

1
7|

cin

2
1 7 4clogp
X+(I — Ps)X X+(I—-P >
(STC[p] SmT Q)ISI |T|<2Cys ( T( s) T) 7 S)wH B )

2Chs
< Z Z Z P (an > 4emlogp)
SC[p:S|<2Cos m=0 TC[p]:|T|=m

(XF( = Ps)xr) | = 1)

max
S, TC[p]:SNT=0,|S1,|T|<2Cos

2Chs
< (ﬁ;) mz::O <20pos> exp (—emlogp) 4 exp (—cn)

< exp (—c logp) ,

c1n

where in the second to the last inequality, we use (G.11), which will be proved later.
Equation (G.5): First we fix some S. Then X]TPSXj is stochastically dominated by a

X|25\' We have P X]TPSXJ- > 4ces logp) < exp (—cslogp). A union bound over S and j leads
to the desired result.
Equation (G.6): For any pair (S,T), we have
| XT(I — Pg)Xrp — diag {X7.(I — Ps) X7}
< | XE( = Ps)Xr — (n—|S) 1]| + ||(n — |S]) T — diag {XA(I - Ps)Xr}| .
The first term can be controlled by (G.10), to be proved later. For the second term, we have
|(n—|S)) I — diag { X7 (I — Ps)X7}| = max | X[ (I - Ps) X; — (n—1S))]

< X |2 - ( xTpsX; —|S
< mae| |11 — | + max | XT P X; — |51].

which can be bounded by (G.1) and (G.5). Combining the two terms together gives the
desired result.

FEquation (G.7): For a fixed S and any j € S*NS€, using the fact we give at the beginning
of the proof, we have XTPSw = ||Pswl| & where & ~ N(0,1) and & L ||Psw]|.
only depends on X]T(HPSwH Pgw) we have the independence among {{;}jcs+nge. As a

Since §;

result, we have Zjes*msc <Xj Pgw> = (&, where ¢ ~ X‘QS" £~ X|2$*mSC\ and ¢ L & Similar
arguments will also be used later to prove (G.8)-(G.9) and (G.12)-(G.15) and will be omitted
there. Then

P Z (X]TPSw)2 > 16¢%slog? p (]S* N S| +15* N S)|)
JES*NSC

<P (¢ >4eslogp) +P(§ > 4c(|S* NS+ [S* N S|) logp)
< exp(—cslogp) +exp (—c(|S* NS+ 15N S|)logp) .
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After applying union bound, we get

1 2
XTP > 16 2 1 2
Schlisi<2chs [S7 N 59 + (5N S| jesz*r:wsc( y Psw)” 2 16¢%slog™p

2Cos
P
< —esl —eml
< mEO (m> (exp (—cslogp) + exp (—cmlogp))

< exp (—c/ logp) .

FEquation (G.8): For each j ¢ S*, we have (X]TPS*w)2 stochastically dominated by &£¢
where &€ ~ x2, ( ~ x? and £ 1 (. We get the desired result by the x? tail bound and a union
bound over j ¢ S*.

Equation (G.9): By (G.11) to be proved later, it is sufficient to establish

L T 2 _
(arcopar2Fin s, PFPovl = coog) < o (- o).

Note that for any fixed S,7T, we have HX%:PSwHQ stochastically dominated by £¢ where
£~ X%Cos’ ¢~ X|2T| and £ L ¢. Then we have P (HX%ﬂPng2 > c2s|T| logp) <P(>c|T))+
P (¢ > eslogp) which can be controlled by the x? tail bound. A union bound is then sufficient

to complete the proof.
Equation (G.10): For any fixed S, T, and any 6 € Rl such that [|§]| = 1, we have

0" (X7 (I — Ps)Xr) 0 ~ X5 i)

and 67 (n — 1S 110 = (n—[S]). By a standard e-net argument [16], the x* tail bound, and
a union bound over S,T, we conclude its proof.
Equation (G.11): Its proof is similar to that of (G.2). We can show

(XE(I - PS)XT)‘1H > 1) < exp (—c'n)

max
S, TClp:SNT=0,|S|,|T|<2Cohs cn

for some ¢, ¢. Its proof is omitted here.
Equation (G.12): We have HngHQ 4 £¢ where € ~ x2, ¢ ~ XIQS\ and £ L (. Thus,

P (||xFuwl” = *n[S|logp) < P(€ = en) + P (C = c|S|logp).

A union bound over integers 0 < m < 2Cps and over all sets {S C [p] : |S| = m} leads to the
desired result.

Equation (G.13): For a fixed pair S,T, we have |8 g | Xsens+ Bheng: ~ N(0,1,),
and consequently || 5% g- |2 HX%(I — Pg) X gens+ f&eng+|| is stochastically dominated by £¢
where & ~ X2, ¢ ~ X|2T| and & L (. Note that £ only depends on S°NS* and ¢ only depends
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on T'. For a fixed S, in order to take a union bound over 7', we add a subscript to ¢ as in (1
to make the dependence explicit. We have

1 _
P <maX ———||B%ns- | || XF (I — Ps)Xsens=Biens-

2 2
> 16¢nl
Tclp |T|V s =ven ng)

<P >4en)+P <max

— (> 4cl
rcip) |T|V SCT = =¢ ng)

< exp (—cn) + Z Z exp (—c(m A s)logp)

m=0TC|[p]:|T|=m
< exp (—c’slogp) .

The proof is completed by an additional union bound argument over S.
Equation (G.14): Consider a fixed pair S,T. For any = € R", we have (Ps« — Pg)x =
Ps 12— Ps sx, where Pg; is the projection matrix onto the space span(Xg« )\ (span(Xg+) Nspan(Xg)),
and Ps is the projection matrix onto the space span(Xg) \ (span(Xg-) Nspan(Xg)). Then
we have

|IXF(Ps- = Poyul|” = || XFPsyw — XFPsow* < 2 (| XF Psyw|” + || XF Pogu]|”) .

Note that span(Xg«ns) C span(Xg+) Nspan(Xg), and thus the rank of Pg; is bounded by
|S* N S€|. Hence, HX%PSJUJHQ is stochastically dominated by £¢ where & ~ X\QS*QSC\HS*CQS\’
¢~ X‘QT‘ and £ L (. Note that £ only depends on S and ¢ only depends on T'. For a fixed
S, in order to take a union bound over T, we add a subscript to ¢ as in {p to make the
dependence explicit. We have

1

P 7XTP 2>162 S*msc S*Cmsl 2
(Tc[p}:TI%?é(us*):@ IT|V s H T s,1w}| > 16¢” (| | + | |) log” p

<P(¢>4c(]S* N S +15* N S)) logp) + P (max

— (p>eslo
Tclp] |T)| \/SCT - gp)

p
<exp(—c(|S*N S +|S*NS|)logp) + Z Z exp (—c(m A s) logp)
m=0TC[p]:|T|=m

< exp (—¢(|S* NS+ [5* N S|) logp) + exp (—'slogp) .

Then we take a union bound of S.

1 1 2
P a a XIp > 16¢2 log?
<SC[p]I:I|1$|}§<2CosTC[p}:THﬂl(SXUS*)(D |S* N Se|+ |S*NS||T|Vs H T S’le = e e b
2Chs

< Z Z (exp (—cm' logp) + exp (—c’slogp))

m/=0 SC|[p]:|S*NSe|+|S*NS|=m'

< exp (—c" logp) .

A similar result holds for the term related to Pg2. Putting them together, we complete the
proof.
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-1
Equation (G.15): Define By = | X;| ' XF X (XL (I-P) X)) X5 X;11%,) 7"
—J —J
for all j € §*. Note that [ X;]| ™ X7 Xg- (Xg* (I-P) Xsij)i XT. (I - P;)w is identi-
—J —J
cally distributed by /B;&; with & ~ N(0,1) and &; L Bj. Here we have the subscript for
both ¢; and B; to make their dependence on j explicit. Then,

_ -1 2slog?p
P 1X17 X X (Xgij (I - Pj)XSij) Xgo (I = Pj)w > [ —==

<P (5 Velog ) P (Bj > CSlogP> |

n

and thus

-1 25 loo?
-1 T T D, . T D, cslog'p
P | max |17 X[ X (X5 (1-P)Xs:)) XE (I-P)w> R

1
<P (maxgj \/clogp> +P (maXB > s ng) .
€s

jES* n

The first term can be easily bounded by sexp (—2*1010g p) < exp (—c'logp). For the second
term, we have

T -t T -1?
B, < (XSij(I—Pj)XSiJ HXsinjHXjH ’ ,

-1
for all j € S*. By asimilar analysis as in (G.11), we can show max;cg- <X§* (I —-Pj) ij) <
*; 7

2
c1/n with probability at least 1 — exp (—can). Note that HX;CL-XJ HXjH_lH ~ x2_,. Eas-

2
XSTYinj ||XjH71H < 4ezslogp with probability at least 1 —

ily we can show max;ecg-

exp (—cyslogp). As a result,

1
P <max B; > e ng> < exp (—can) + exp (—cyslogp) ,
JES* n

which completes the proof. O

Lemma G.2. Define

B, 0,6,C) =5 (€ > (1= 9)CI(A )ch —n| < Cv/nlogp)
(= 9P (> (1= 0)ICIHC) & |ICI” = n| < CV/nlogp) . (G.16)

where e ~ N(0,1), ¢ ~ N(0,1,), and they are independent of each other. Assume slogp < n,
limsup s/p < 1/2, and SNR — oco. For any 6 < 1/logp and any constant C > 0, we have

(1+ 0(1))SNR?
;).

{[;(nap>svk7 57 C) = Sexp <_
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Proof. Throughout the proof, we use g(z) and G(z) for the density and survival functions of
N(0,1). A standard Gaussian tail analysis gives

<G G.17
S-9(@) £ Gla) < ~g(a), (G17)
for all z > 2. With a slight abuse of notation, we also use the notation
A log 22

t(u) = 5T T2 (G.18)

for all u > 0. We first focus on deriving an upper bound for J(n,p, s, A\, 0,C). For any u > 0,

log 75> log 75
m(u)-u()\— 2 )-)\u— S

Recall the definition of t(u) in (G.18). Define umi, = v/n — Cv/nlogp and umax = /1 + Cv/nlogp,

and U = [Umin, Umax]. Since u (A — t(u)) is an increasing function of u > 0. We have

m(umin) < u (A = t(w)) < m(tmax),

we define

for all w € U. This gives

sn»( > ¢l (A= #(&) & Il =l s0m>
< sP <165 > M(umm)>

= V21 (1 — 8) m(umin

where the last inequality is by (G.17). In addition, we have the identity (ut(u))? = 2log 2=5 +
m?(u). This leads to

e <—; (1-6)> m2(umm)> ,

2 log

—l—m 2 (Upmin) < (ut(u )) < 210g

+ m (Umax)a

forallu e U. As a result, using (G.17), we have

=97 (155 2 1610 & ¢l ~n] < ©v/Tog )

=(p—5)Epoy [IP ( > Jult(u )‘ ) L2 —ni<cvnTosp)

< ]%Eu2~x% [ut}u) exp (—; (1-06)° (ut(U))2> 1{u2n|§0m}:|
< IiFg u?oxd [mmuellfut() exp <—; (1- 5)2 <2 log + m (umm))> 1{|u2—n\§0m}
< e~ (- log S oy m2<umm>)
= \/ﬂminiey ) exp <(25 —6%) log ? — % (1-10)° mQ(Umin)> .
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Combining the above results together, we have

S

~ Ver(1-9) <umm>exp< F0-6m “m>
exp((25 5%) log =2 %

b(n,p,s,),8,C) <

* V21 mingers ut(u) (- 6) (umaX)> .

Now we derivative a lower bound for ¢(n, p, s, A, 8, C). Note that P (Il = n| < Cv/nlogp) >
1/2. We therefore have

sPP

> [[Sl (A= #0)) & ¢l = nl < C+/nlogp)

P (e > m(tumax))

S s < 1 2 )>
—————exp | —=m" (Umax) | »
T 4V2mm(Umax) PA2 e

>

/~/
N » -

and

(b= 5) B (€= [ICl|#(<) & (]l = n| < Cv/nlogp)

s p—s 1 92 9

> 26 —6%)log—— — = (1 -4 max) | -

T 4V27 maxyep ut(u) P <( ) log s 2( )om(u )>
Consequently,
D, py 5,0, 5,C) > s o (12( )>

9y Y, &X —=m umax
P 427 m (Umax) P\

s p—s 1
+ ex 26 — 6%) log —— — =
4/ 27 maxy ey ut(u) P <( ) log s 2

(1= 0 ) )

Since 6 < 1/logp and SNR — oo, with the same arguments used in the proof of Lemma

p—s p—s
G.3, we can show for all u € U, we have ’\—“ - log)\us = (1+0(1)) SNR and )‘“ OTS —

oo. This leads to @Z(n,p, $,A,0,C) = sexp (—W) as desired, which completes the
proof. O

Lemma G.3. Consider some 8* € RP that satisfies either |B;| > X or B; =0 for all j € [p].
Assume limsup s/p < % and SNR — oo. Then, for i.i.d. Xy,--- , X, ~N(0, 1), we have

min Va3~ H(X,) > 1.
JE(p]
max—m‘ < log p,

aele] [187] — t(X;5)]

with probability at least 1 — e P.
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Proof. We first show that under the assumption that lim sup s/p < 1/2, the condition SNR —
oo is equivalent to
nA? — 2log 2=2
A 208 s — 00. (G.19)

p—s
S

log

A direct calculation gives

2 2
()\\/ﬁ logpss> _ (nA%? —2log p—;s)Q nA? —2log 22 | log B2

2 WD An\2 B s Anr2

s

log

If SNR — oo holds, we have nA2 > 2log P=2 which leads to (G.19). For the other direction,
if (G.19) holds, there exists some A — oo such that nA? = 2log 2-° + A, /log £-°. By the

above identity, we have

(w 1ogp;5>2 : log 25
AL = A < — 0.

2 A _ —
v 210gpss—|—A\/logpss>

Thus we have shown that SNR — oo and (G.19) are equivalent.

Now we are going to prove the proposition under the high-probability event (G.1). Note
that for any j € [p] such that 87 = 0, we have /n|B;| — t(X;)| = Vnt(X;) > VnA/2 —
oo by (G.19) and |B|/||B}| — t(X;)| = 0. Thus, we only need to consider the remaining
Jj € [p] such that B; # 0. It is sufficient to prove M el 0 vVn(A—t(X;)) > 1 and
WA e p]:2* £0 X=3(X5) t 5 < Vlogp. Consider any j € [p] such that z7 # 0. We have

Vool logE N log 222
— X)) = 5] > Y — e e

where the last inequality is by (G.1). By (G.19), there exists an A — oo, such that

—i—A\/logD.
s

nA? —210g

Then, we have

1 — — 21log =5
V(A= t(X;) > (2logp S A logP=f 28

2\/ﬁ)\ S S - C logp
SR /Y [P e e logplogp_s
~ 2y/n\ s n s
C"Ay/log =2
>—7
- VA
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for some constants C’, C” > 0. Starting from here, first we have

A?log % _ o A?log p—;s

2
nA 2log 22 + Ay /log =2
as A — 0o. Second, we have

A VA oV n2

Vi (A= t(X;)) = C"

— 00,

A=) O X)) T cnaflosi g, flog 2

N
2log 22 + A4 /log =2 D—s
= <o log .
C"Ay/log 2 5
Hence, the proof is complete. O

Now we are ready to prove Theorem 5.1, Theorem 5.2, and Corollary 5.1.

Proof of Theorem 5.1. By [12], we have

~ 1
Hlf sup sup EH(S)(Zv Z*) > *@b(nm’ 8, A, O) - 46_8/87
Z zr€Z, BreB.s 2s

where ¥(n,p, s, A, 0) is defined in (50). By Lemma G.2,

1 1~ (1 + 0(1))SNR?
—_ > — —
28¢(n7p78))\70) — st(n7p7 S7A7O7C) eXp( 2 )

and we obtain the desired conclusion. O

Proof of Theorem 5.2. The condition of Theorem 5.2 allows us to apply Lemma G.3 to the
conclusion of Lemma 5.1. This implies that the right hand sides of (47) and (48) can be
bounded by o((log p)~!), which then implies Conditions A-C hold with some § = o((logp)~1).
Then, the desired conclusion is a special case of Theorem 3.1. 0

Proof of Corollary 5.1. By (45) and (G.1), we have

0z, %) < 20(z, z*)

H ") <
=) < TR = e

2 min -
SA® mincp,

with high probability. Then, the conclusion is a direct consequence of Theorem 5.2. 0
Finally, we present the proofs of Lemma 5.1, Lemma 5.2, and Proposition 5.1.

Proof of Lemma 5.1. The proof will be established under the high-probability events (G.1)-
(G.15). First we present a few important quantities closely related to £(z, z*). By h(z,2z*) <

0(z,2*
W and (G.1), we have

20(z, z*%)

h(z,2") < — =5

(G.20)
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By the definition of ¢(z, z*), it is obvious

p
0z, 2%) 20(z, 2*)

§ *2 < ’ < ’ .

P = i P S e

where we have used (G.1) again. For any z € {0,1,—1}? such that £(z,2*) < 7 < Cpsn)?,
(G.20) implies

h(z,z*) < 2Cps. (G.22)

We will first prove the easier conclusion (48) and then prove (47).

Proof of (48). According to the definition, we have

- ) xTx, ’ XTxp o XTX X\ (Bi(z*) — 8%
el ZE%{}(@ 8) KT = | g KT X8 = XX 10 (Bie) - )

= (33 = x67) <10 (B - )|

By the fact that Bs-(z*) = Bg- + (Xg*XS*)_l XI.w and Bgse(2*) = 0, we have

1 xT T -1 71 . *
: > (»@(z*) - 5*> xTx;| = { %l Xy o =1 [(XS*XS*) Xs*w} ooty 1 SF
, J ) N
1550 vy o) Peew j¢ s
(G.23)

e We first consider j ¢ S*. By (G.1), (G.8) and (G.23), we have

1 ~ 2Cslogp
. N - pe) XTx| <y 208D,
met g, 2 (AGD =87) T <=

lelp\{s}

e Next, we consider j € S*. Writing Xg+ into a block matrix form Xg« = (Xj,XSij) ,
we have a block matrix inverse formula

—1
-1 X & XTXS* Bi1 By
XL Xg. = G.24
(X5 Xs2) <XS* X; XS* Xs* Boi Bay )’ (G24)
with
-1
By = 1%, + 1% X Xse | (XE (1= P) X)) XE X5 015072,

Biy = = 1%, 7 X X (XE (I-P) Xs2 )
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and the explicit expressions of Bs;, Bos not displayed since they are irrelevant to our
proof. We have [(Xg*Xg*)f1 XEw)sg. ) = BllXJTw—FBngg’i w. From (G.23), some
algebra leads to ’

1
max |———
jes ||| Xl

> (B -8)xTx,
lelp\{s}

= max XTw — ||| [(Xg*XS*)_l Xg*w}

jES*

1
11 95+ (j)

= max
JES*

2
<y Colep, (G.25)
n

where the last inequality is by (G.15).

1
X K K, (XE (1= P) X)) XE (- P

Combining the two cases, we have

1 Dk * 2l :
max | ) (Bz(z)—ﬁ)XjTXl S\/ﬁ'
el | 1]l 1€lp\{5} :

Using (46), we get ‘Aj(z;-‘,b)z‘ > 4t(X;) ‘ B;

- t(Xj)’ 1] for all j € [p]. Then,

Hy(23.b) A 15617 Saepn g (A=) - 67) XT )
max | =g | S max 2
jell | 8(25,0)2| ~ el 4t(Xj)‘ 8 —t(Xj))HXjH
‘HX]'W1 > i\ ) (BI(Z*) - ﬁ*) XJTXZ‘
< max
selp 81 = e 151

< 2Cslog? p 1
S iy 8] - 05| 11
< [4Cslog? p 1
- " mingep) \/ﬁ‘ g | — (x|

where in the last inequality we use (G.1).
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Proof of (47). By (44) and (46), we have

Gj(z, b 2)% [l (B*, b) — i (B*, 25)|”

Aj(z5,0)4(z, z%)

(1510 (161" Sregngn (3~ 3 X7x0))° (435 160 1y + 221 P 1y )
<

<( ((5( HX )HX H) ﬂ}+(4t< D2 X; H) 1{2;:0}>€(z,z*)

(17 ey (@( ) XIxi) A
- Uz, 2" ‘5]‘ '(X 1{ s=+1} +< 10X;) ) Lo}
S (HXjH_lZlE[p]\{j} Bilz) XTXl o

Define

Bi(z) = |1 X;]| 72X T (Y - Xsz(Z)) :
le[p\{s}
We then have

G 2 (B - A=) X7 X,
lelp\{s}

= — 1l (Xj2XjT (Y > Xzﬁz(Z)) = 1172 x5 (Y > Xle(Z*)))
le j

[P\ () lep]\{}
== I, (Bi (=) = By (=)
Hence, we have

s Gj(25,b; 2)2 | (B*,b) — pi(B*, 25)|1?
be{~1.0.1}\{z}} Aj(z7,0)4(z, 2*)

2 ~ ~ 2
5 A 2| 1P (B - i)
—1x;) ) <t<Xj>> 0z, 2%)

BN el B -aen)
- 87| = #(X;) ’(t(Xj)> Uz, 2%) ’
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where the last inequality is by (G.1). Therefore,

e S Gj(z5,b;2)% || (B*,b) — i (B*, 25) |2
Tclp] s + |T| S PE-LOING) Aj(z5,0)4(z, 2*)
2
B; A\ 2 1 - ~ N2
<maxmax{ 4| —— | , max Bi(2) — B;(2%))
J€lp] 5; —t(X;) (t(Xj)) U(z,z*) Tclp] s + |T| jez; ( i (2) i ( ))

which is all about studying maxyc ) ﬁ ZjeT(Ej(z) — 5](2*))2

In the following, we will focus on understanding Ej(z) — Bj(2*) for different j € [p]. Define
S*:{je [p] 22;750}, and S(z)={j€[p|:z #0}.

For simplicity of notation, we just write S instead of S(z) from now on. Recall that B (z) is
the least square estimator on the support S. That is,

~ T ~
Bs(2) = (X§Xs)” X&y, and PBse(z) =0.
Thus, the explicit expression of Ej(z) is given by

* -1 *
. B + [(XEXs) ™! XE X185,

T -1 7 :
3() = —i—[(XSXS) XSwL)(.) jeSs

#s(5) 53

X (= Po)Xs, 85, + (I = Ps)u] i¢s.

Similarly, we also have

4 [(XT Xg )t XL i c S
Bi(z") = i+ [ xs) Sw]qss*(j) ’

- (= Psw J ¢S

The analysis of 3;(z*) — B;(z) will be studied in four different regimes. We divide [p] into
four disjoint sets,

S1=5"NSe, Sy=8"NS, S3=5NS, and Sy=S5"NS".
Note that by (G.22), we have
|S1| + |S3| = h(z, 2") < 2CHs. (G.27)

We denote X; = Xg,,l = 1,2,3,4 for simplicity. We also denote P; = X (XZTXl)f1 XlT to be
the projection matrix onto the subspace span(X;), for | = 1,2, 3, 4.

(1) Regime j € Si. In this case, we have Bj(z*) =p; + [(Xéﬁ)(s*)f1 Xéﬂw](ﬁ 0 We can
5+ (J
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also write

~ 1 .
Bi(z) = WX]T (I — Ps)Xs, B, + (I — Ps)w]
J
1 i} 1
= —XT-P)X;8+ > XJT(I — P9)XiBf + —— XTI (I — Ps)w
HXJH 1€81,1#£j X H HXJH
* 1 T * 1 T * 1 T
J leSt,l#£] J J
This leads to the decomposition
- - 1
Bi(2) = Bi(z") = ——— X PsX;B; + > XjT(I — Ps)Xiff — —— X[ Psw
HX ” 151,147 | X H ”XJH
1 -1
| X w - |(XEXse) T XEw] .
(IIXj|!2 T G Pt
We will bound each term on the right hand side of the above equation.
(1.1). First, we have
L xTpex; < #max‘XTPSX 155
i =~
111" ’ mlng 15117 4
where the last inequality is by (G.1) and (G.5). Then
1 SPTocrl
* S Og p
> (-apms) < SO e
Il
(1.2). For the second term, we have a matrix representation,
2
1 *
Z Z ?Xf(l - PS)XZBZ
jesy \IeSy I#] 1G]]
1 . . 12
< ———— |[(X&,(I = Ps)Xs, — diag { X (I — Ps)Xs, }) 55, ||
min; || X]]
1

< ———— || XL (I - Ps)Xs, — diag {XE, (1 - Ps)Xs, ||| 85,
min; || X ||
2

< 5 Cslogpl|,|*-

where the last inequality is by (G.1) and (G.6).
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(1.3). For the third term, we have

2
1
- XTpw| <
Z( 155112 ) miny HX H"LZ

JESL

< EC’S log? p (|S1] + |S3))
2 *
= ﬁCsh(z,z )10g2p7

where the second to the last inequality is by (G.1) and (G.7).
(1.4). For the last term, using (G.1) and (G.25), we have

1 .
— xTw— [(XE*XS*) ' xEw]
X5

1
]ES HX I ]ES*

S\/E C'slog? 2

2
1 -1
= XTy— [ X7 X XT*w}
Z(nxm“ (Kor o) " X80

JES1

2
1 -1
Sy max | ——XTw — [ X7 Xg. XT*w]
< ’363*<\le|2 ’ (Ko Xse) X 65+ ()

< 2C's|S1|log? p
< 2Csh(z, 2*)log? p

max .
JjeS* ¢s*(5)

— x5 [(Xg*xs*)*lxg*w}

HX i $s+(5)

Hence,

2
n
where the last inequality is due to (G.27).
(1.5). Combining the above results, we have

> () - Bit=)

JES2
4C=s*log“ p 2Csh(z, =) 1o 2p
§4(ngHﬁslH + Cslogp!\551H +- Csh(zz)log P+ (n2) g
16C%s2log? p 16310gp 0(z,2%)
<
o (MO 1)t

where the last inequality is by (G.20) and (G.21).

(2) Regime j € Sy. In this case, Ej(z) - Ej(z*) can be written as

—1 * -1 -1
{(XEXS) Xnglﬁslhs(j)jL[(Xng) nghs(j)—[(XsTqu*) Xg*stS*(j).
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We will bound the first term, and then the second and the third term will be analyzed
together.
(2.1). For the first term, we have

T -1 o1 12 . o B
1;52 [(XsXS) XSX51ﬁSI:|¢S(j) < ]26;9 [(XSXS) XSXSIB&LS

= H (Xng)i1 X{ Xs, BE,

()
2

— 2
< ||(x¥xs) " XEXs | 1851

slogp |\ .
< P8 g0 |2

where the last inequality is due to (G.3) in Lemma G.1.
(2.2). Note that

> ([xixs) " xtu]

2
-1
‘—[(Xg*XS*) Xg*wh .)>
A 5(J 5% (J

2

[(XSTXS)‘1 ng] - [(Xg* Xg) Xg*w}

¢5(S2) Pgx(S2)

Since S is close to S*, the two length-|Ss| vectors on the right hand side of the above equation
should also be close to each other. Applying block matrix inverse formula, we have

—1
~1 XITXy XX a [A11 A
XeX)y7 =72 2 = , G.28
( ) (ng2 XX Ag1 Ag ( )
where

1

Y

A= (X5X2) " + (XIXe) " XTXg (XF (1= P2)Xa)  X{Xe (X Xa) ™
A = — (ng2)71 ngi% (X'_gr (I —Ps) X3)71 ’

Agy = — (XT(I = Py)Xs) ™ XEXq (XEX) ™",

Agy = (XE(I - P2)X3)71'

With these notation, we have

[(Xg:Xs)_l Xg:w} ) = A11X2Tw + Alzxgw

bs(S2
= (XEXs) T XFw — (XEXa) T XEXg (XE (I — Po)Xs) X (I — Po)w,
and

|(XEXs) ! XEw] — (XEX2) ™ XEw — (XEXa) T XEX (XTI = P2)X) T XT(T = Po)uw.

Psx(S2)
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Thus

2
2 <[(X§XS)1 Xl os) (X5 xs) " K] (j))

JES2
(XTX) ™" XIXy (XT(I = Po)Xy) ™ XTI = Po)w — (XEX3) ™ XEXs (XL(I = Py)Xs) ™ XE (I — PQ)wH

_ 2 _ 2
< [ 0xExe) ™ XExa || XE (T = Papxa) T XE (T - Py
T Lyr
+H (XEXa) ™ XEXs || 0<E (1 — Pyxs) ' XE (1 — Payu|
oSlogp |S1!10gp |53|10gp
n
")
2

n
_ o238z 2%)log"p sh(z, z*)log? p
n
where the second to the last inequality is due to (G.3) and (G.4).
(2.3). Combining the above results, we have

5 (B - Bi) <2 (02D g |+ 0

JES2

2sh(z,2*) log® p
n2

2 2 X
< <4Cslogp n 4C*slog p) Uz, z )7
n

n A2n?2
where the last inequality is by (G.20) and (G.21).
(8) Regime j € S3. Since
~ -1 —1
(2) =B+ | (XEXs) ™ XEXg, B + |(XEXs)T XTw ,
Bi(z) = B; [( 5 Xs) S 51/851]¢S(j) {( 5 Xs) 5 ]¢s(j)

~ 1
(%) = ——XI(I - Pg-)w,
53( ) HXJ||2 ]( S)

and 37 = 0, we can write Ej(z) - Ej(z*) as

_ _ 1
XTx) ' xTxq B2 +(xTx) !t xT _—~ _xT(1- P
[( s Xs)  Xg 51651:|¢S(j) [( 5 Xs) swhs(.) TAE 5 ( 5 Jw
- _ 1
— [(xTx) ' xTxg Bt —  XTPsw+ |(XEXs) ™ XE - xT
(XExs) " XEXsBy], HX X Pyt [(XEXs) " XF| = g X

1 -1 1
— [(xTxq) " xT X, B } — X7 Pgow + [ xTxg XTw} = xTw
(X8 X555 HX I (s 8) o]~ TP ™
We are going to bound each term separately. The last two terms will be analyzed together.
(3.1). Note that the first term here is identical to the first term in the regime j € So. By

the same argument, we have

— 2
> [(xExs) T xExs ;| <c
¢s(4)

1
5P|,

JES3
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(3.2). For the second term, we have
1 ? 1 4 4
2
E ——X'Pgw| < ——— HXTPS»«wH < —Cs|Ssllogp < —Csh(z,z%)logp
2 = 143 = = ’ ’
et (HXJ'H ’ ) min; || .X| n? n?

where the second to last inequality is due to (G.1) and (G.8).

(3.3). For the last two terms, we can again apply block matrix inverse formula to simplify
them. Using (G.28), we have

Ay A XT
2 a2 3 65(5)

= [Aglxgw + A22ng:|

(X xs)™" xiw]

#s(5) -

¢S3 (J)

— [0 = Poxs)  XEPow| 4 (XTI = Po)Xs) " X w]

6s(7) és(i)

Then

(xExs) " Xw X = = [ = Pa)Xs) " X o

L>s(j) xR

#s(5)

_ 1
+ [ [(XT(r = Py)xs) ' XT = XTw].
<[( s (I Pa)Xs) 3w}¢s(j) G

Consequently,

3 ([(XEXS)IXS%] - HXlg'IIQXJTw>2

e, #s(5)

1 -1 _ 2
— (XE (L = Po)Xs) X Pow + (XF (T = Po)Xg) ' Xfw — DX

< 2H (XTI - Pg)xg)‘lngng2 +2H(X3T (I — Py)Xs) ™ 1x3Tw—D—1x§wH2

<2||(XF (1 = Pa)Xs)~ X3P2wH +2|[(XF (1 = Pa)x )1—D_1H2}|X§wH2

<2H (I — Py)Xs) ' X1 Psz +4H( (1= P)Xs) " — (n— 1Sa) iy || [IXE ]|
+ 4| = 1S2) " gy = D7 | XE ]|

where D € RISsIXI53l is a diagonal matrix with diagonal entries {1/ | X;||*}jes; and off-
diagonal entries being 0. By (G.9), we have

-1 2 _
H(xg(f — Py)Xs) xgpng < Cn~2s|S5] log p.
By (G.10), we have

X5 (2 = P2)Xs — (n— |Sa]) Ijsy || < Cmslogp.
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Together with (G.11), we have

| (KE T = Pa)xs) ! = (n = 18]y~

2
Ury

XT (I = Py)Xs|?

< H(ng(I— Pg)xg)_luz‘ n— | Sy

< 2035 logp7
n3

Iisy) =

where we have used the assumption |S3| < 2Cys. By (G.1), we have

2

1 1
(n—[Sa|) " |5y — D~
_ 1 1 2 1
maxy |— — ,
- n n—Cynlogp n — 2Cps
QClogp 8s2
n3 + nt’

y (G.12), we have

||X3TwH2 < Cn|S3|logp.
As a consequence, we have

2
B 1
) xTxq) ' xT _ - _xT
j653<[( 3%s) SwLﬁs(]‘) 1X; 2 ﬂw)

4C3s1 8s
< 20n"25|S3|logp + <830gp + ) Cn|Ss|logp
n nt

1
< 8038 ng |S3]log p

l
< 8C3 5 ngh(z, z*) logp.
n?

(3.4). Combining the above results, we have

2
> (Bit) - Bi(=")
JES3
<3 (Cslogp HﬁslH —|— C’sh(z z )logp+8C3Slngph(z z )logp)

<3 <2Cslogp N 3203310g p> B(z,z*)7
n

- n A2n2

where the last inequality is by (G.20) and (G.21).

(4) Regime j € Sy. In this case, we have

- L1
Bi(z) — Bj(z%) = WXJT(I — Ps) X5, 85, WXJT(PS* — Ps)w.
J J
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Then,

o e 3 (By(2) = A=)

JET

1 1 1 2
L — - XTI - Ps)X s, B — XTI (Ps. — P
i, 1 (W v 2 U= PO+ g |T|vs§( (e

L 2
ming 15 (st s 120K = Py, s i IKE P — o)

4 *
< = (Cntogp]|85, ||* + C (1511 +1Ss]) log? p)
4 . 112 .
== (C’nlogp HBSlH + Ch(z,z )log2p> .
where the last inequality is by (G.1), (G.13) and (G.14). Then by (G.20) and (G.21), we
have
1 ~ ~ . 0\2 8Clogp = 8Clog?p\ £(z,2*)
- . — . < .
TES TV s > (i) = i) < < * n

, n A2n2
JeET

(5) Combining the bounds. Now we are ready to combine the bounds obtained in the four
regimes. Let T C [p] be any set. We have

> (i) - B=)

|

JeET
- 2
<Y (B -5) + X (30 -56) + X (BE-5) + X (56 -5E)
JESa JEST JES3 JES4NT
4Cslogp  4C%slog?p 16C%s%log?p  16slogp 20slogp  32C3slog?p\\ 4(z,2*)
< 4
- <( n + A2n? + n? + A2n? 3 n A2n? n
8Clogp 8C'log?p 0(z,2%)
T e )
+ (PR BT (v 1
128C%logp  256C31log?p 0(z, 2%)
< .
S - Sy
Thus
2 128C%logp  256C31og?p\ £(z,z*)
< .
TC[p ] s+ |T] Z( BJ( )> - ( n L O ) n

Together with (G.26), we have

max Z max Gj(Z;, b; Z)QHMJ'(B*, b) — ,uj(B*, Z;)H2
Tclp] s + |T| e S S RUNE Aj(zb)M(z, %)
2
128C21 256C3 log? B3 2
§2< 8C?logp . 56§2 : p) mas ma 4 4 (”A( >
" " jelp] Br| - t(X;) (X;)
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Recall that A2, = A2 minje, [|X;]|> > nA2/2. For any T C [p], we have /(7 +4A2, |T|) <
/(1 4+ 2nX\2|T|) < Co/(Cos + |T)), since 7 < CosnA2. This gives us
T S max Gj(25,b; 2)2 | (B*,b) — pi(B*, 25) |12
Tl T+ 4A% T o bE-LLON =} Aj(25,0)4(z, )
2
log?p  log? B 2
SC”S(ng—i-Ozgf)maxmax 4 ’ ,< A ) ,
n A2n? J jelp] (X,) t(X;)
for some constant C’. The proof is complete. O

Proof of Lemma 5.2. Recall for any j € [p], T; the local test to recover 2 is defined in (13).
We have the decomposition T = u;(B*, 2}) + €;, where ¢; = \|Xj||_1Xij ~ N(0,1). Since
vi(B(2*),25) — vj(B(2*),b) = 2(2 — b) | X;]| (X;), by (46), for any 0 < § < 1, we have

1{<€j7Vj(E(Z*)az;)fyj(§(Z*)’b)>gflTi6Aj(z;(7b)2}

< I Yzas-a-anxis)- zj 7 0and b7 z;

(X))}
Lo pe;<—(1-8))1X;1t(X;)} 2§ =0and b# 0.

Together with (44), for b # z7, we have

RN

* * k(|2
3 (B7,0) = 115 (B 2P (Ba) o)y (B 0) <1528, (25 )2
2
* 12 *
4185 I 17 e < o 1(J8s |-ex0)} 5

AN (| X512 1 e, <— (101X, 10X, ) zj =

2
0
0

As a consequence

iaea(®) <8 D 18517 1517 e e sy (s —ece} T4 2o A 1K1 L iz a-ayx, e -
jesx j¢s*

Define F to be the event that (G.1) holds. Then by Lemma G.1, we know that P (F) >
1 —p~¢". Under the event F and the condition that SNR — oo, we have

deal@Lem <8 ST B IX P L e, Tyipe 2
Giaeat () 107y <8 |B7]7 11X {115]2||Xj||(‘5;|*t(Xj))} (1%, 12 —n|<CvTogp)

JES*

2
+4 ) A 1{ 112 —n| <CvATogp}

‘GJ‘
1—

j¢s* 3 21 X5116(X; )} {

which implies

155 = #5) & 117 = o] < /o)
+16nZA2P< > |1X;] (X ‘HX 2 —n‘<C\/nlog )

JESs*

Egldeal( )1{]—'} < 16n Z ‘B ‘ ]P’(

jeES*
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We are going to upper bound the above quantity by @Z(n D, s, A, 6,C), defined in (G.16). To
this end, we will first show the function f(y) = y*P ( > I<]l (y — (<)), ’HCHQ — n’ < CW)
is a decreasing function of y when y > X and A > 0. Since the function #({) only depends
on ||¢||l, we can also write ¢({) as ¢(]|||) with a slight abuse of notation in (G.18). Define

Umin = V1 — Cyv/nlogp and umax = V1 + Cyv/nlogp. Then, we have
1) =P (155 2 1601 = #0). I =] < € vnTogp )
= [ b6 (-8 uly ~ t(w))du.

where p(-) is the density of ||¢||. According to the same argument used in the proof of Lemma
G.3, it can be shown that min,epy, ;. wo.] WA — t(w)) — oo. Thus, u(y — t(u)) > u(A —
t(u)) > 0 for y > X and © € [Umin, Umax). Moreover, we also have (1 — 8)? u2y (y — t(u)) >
(1 —8)% A (A —t(u)) > 2 for y > X and © € [Umin, Umax]. Therefore,

2 (1 gy = 2 (=0 Py (y — H(u)
G0ty —tw) T T S u(y — w)
_2-(- 82U\ — t(u))
ST aly - W)

< 0.

This gives

D= [ b (206 (= 8)uly — tu) 5 (1= 8 ug (1 = 0)u(y — ¢(w)) du

Umax

2
p(u)y ( e i~ ) g (L B ) du

IN

Umin

IN
o

where we have used (G.17). As a result, f(y) is a decreasing function for all y > A, which

implies
Eéiaea(6)1(7y < 160 AP ( > |1 (0= HX,)) & [IX]P = n]| < c\/nlogp)
JES*
+16nZ)\2IP’< ’HX 2 —n’ < C\/nlog >
j¢s*

= 16nA21Z(n,p, s, A, 0,C).
By applying Markov inequality, we have with probability at least 1 — w™!,
Gideal 0) 17y < 16wnA*(n, p,5,,6,C),
where w is any sequence that goes to infinity. A union bound implies

fideal(& S 16’[1)77,)\2'[/;(”,]), S, Aa 67 C) (G29)
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holds with probability at least 1 — w™! — p=¢. Taking § = 5p = o((logp)™1) and w =

exp(SNR), the desired conclusion follows an application of Lemma G.2. Thus, the proof is
complete. O

Proof of Proposition 5.1. By Proposition 5.1 of [12], we have
with probability at least 1 — 27¢2% for some constants C;,Cy > 0, as long as A is chosen to

be sufficiently large. In the rest part of the proof, we assume (G.1) holds. We divide the
calculation of ¢(Z, z*) into three parts. First we have

ep
<12 < C’lslog?’

n

V4 V4
SR £0.5 =0) < 3 WX ||2H{w> A g —o}
=1 7=1
J ) ) )\
< A IGIG - s> 3.5 = o)
7=1

p
< Z 2H{|Bﬂ> ,6*—0}

Similarly, we have

p p
) e o~ \ ) ~ A
> 1B PIXGIPT{z] # 0,7 =0} < E’ \Bj|2HXjH2H{!/3jI >\ 1Bi] < 2}

=1
J ) >\
< )G AR (CIEPYETESSY

where in the last inequality, since | ﬂj| > X and | le < %, we have

|BJ| )\_@
187 — Bl > 1851 — 18] > 5_5_ il
Finally,
4Z|ﬂ 211 121{Z; 2 = —1}
*12 2 * =~ by p - , ) B \
< 42%\ [1X1] H{ﬁj <=\ Bj > 2}+4Z|Bj 11 X]] H{/Bj >\ < 2}
=1 —
J ) A ) A ‘
< ) f‘ﬁf)Qﬂ{ﬁfé—A,ﬁj>2}
—
J , ) ) :
+8n ) (8 - ﬁ;‘)Qﬂ{ﬁ;‘ >\ < _2}7
j=1

57



because when B;-‘ < —Xand Ej > %, we have

185 = Bil = =85 + B; = 183,
and when ﬂ;‘ > X and Ej < —%, we have

185 = Bil = 8} = B = 1]
Combining all of the above results together, we have

- 2
0z, 2%) < Sn’ — [*|| <8Cislog &,
s

Under the assumption limsup s/p < 1/2 and SNR — oo, we have nA? > 2log £-° > C3log 2.
Thus, there exists some constant Cp > 0 such that £(Z, z*) < CpsnA2. A union bound with
the probability that the event (G.1) holds leads to the desired result. t

H Proofs in Section 6

In this section, we present the proofs of Theorem 6.1, Lemma 6.1, Lemma 6.2 and Proposition
6.1. The conclusions of Theorem 6.2 and Corollary 6.1 are direct consequences of Theorem
3.1, and thus their proofs are omitted.

Proof of Theorem 6.1. Recall the definition Ay, = mingee, ||(Ig—U)0*||. There must exists
some U € Cy4 such that Ay, = ||(Ig — U)0*||. We define the parameter space

Z:{Z:Zj:Idforalllgjgp/ZandeG{Id,U}forallp/2<j§p}.

Then, we have

f E 1 "
ggpggpﬁing

1 *
> ity 2 MG A L)
> lnf* Zavez* < Z* I Z* (/Z\#Id)—FlP [T 7% (/Z\#U)>
= ds J o (Z;=U,22 )\ “i
J>p/2
> - Z avez: 1nf< (Zi=10.2" )(2-7&1d)+11@ 7 g (2-7&(7)) (H.1)
- i dr4_j J 9 (Zj—U,Zij) i P

J>p/2

where the operator avez: is with respect to the uniform measure of Z*; in the space Z. We
use the notation Z*; for Z * with Z7 excluded. Note that the quantlty

. 1 1 ~
inf (QP(Z;:Id,Z* (Z # 1q) + IP’(Z* U,z )( ; # U))
Zj
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is the optimal testing error for the hypothesis testing problem Hy : Y; ~ N (0*,1;) vs H; :
Y; ~ N(U6*,1;). By Neyman-Pearson lemma, this quantity equals P(N(0,1) > Ampin/2).
Therefore,

A2

1+O(1) . min
lng;PEglEICI’Zle{Z vz} 2 T]P’(N(O,l) >Amm/2)—exp< (14+o0(1))—22 8 ),

under the condition that Api, — 0o. Moreover, inf 7 sup,« Eminpec, %Z?Zl 1{2_¢Uz*} >0
7V Z;
for some constant ¢ > 0 when Ay, = O(1). O

Proof of Lemma 6.1. Let us write 6(Z) = 0(Z) + €(Z), where 6(Z) = Il) - ZJTZ;‘H* and

€ 2) :Il) 1 Z]ej. We have

10(2) - 0(z")]| = EZZij—fd 0
< fZII (2] Z; — 1)6"||
1 p
< Zrzr — 1)0%)?
< i A% 10
- L vz (H.2)
- pAmin ’ . '
For [|e(Z) — &(27)| = || L 520_.(2; — 77T

1 p

EZ(ZJ-—Z;)TQ ,QZZ Z"(2; - Z7)

j=1

Therefore, by Lemma E.1, we have for each fixed Z € CY,

p
P |&2)—ez%)|* > ZZ ZOVNZ; = Z7)| (d+2Vde 4+ 2z) | < e

B‘,_.

With a union bound argument, we have
1/2

p
ZZ - Z0"Z; - 7)) Vplogd,

1
l€(Z) — e(Z™)| —
p?
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uniformly over all Z € Cg with probability at least 1 — e~ ¢'P1og4  Since

1 ¢ * * 1 - *
o N (Zj—z)"(zZ; - Z7)|| < o > o1z -z
=1 '

j=1
12
S XYz
7=1
1 *
we have
logd
16(2) — &z < Og 02, 27). (H.3)
Combine (H.2) and (H.3), and we obtain
~ ~ 1 N logd ”
10(Z) —0(Z")|| < S AL UZ,Z") 0Z,Z) (H.4)

With (H.4), we are prepared to derive the bounds (53)-(55). For (53), we have
i - F}(Z;,U,Z)QH,LLJ(B*,U)—,LL](B*,Z]*)H2
U

ma
= U#Z; Aj(Z3,U)(Z,Z%)
~ ~ 2
5~ (e,(2; = 0)(B(27) - B(2)))]
= max
UFZ; (Z5 = U)o*[126(Z, Z*)

min jzl g
1 - N P ~ ~
—————— _  max 0(z*) —6(Z)" 7 —UNTe: el (2* — U Z5 - 0(Z
A?nlng( zZ* ) UECPU;&Z* Vj( ( ) ( )) ]:ZI( J ]) J J( J ]) ( ( ) ( ))
16(2") — 0(2)]” : .
< max 6 Nz - U
a AI2mn£(Z7 Z*) UECg:ﬁj#Z;,VJ jz_: J ]( J J)

Note that

2
p

_ max > (2 = U el (Z - Uy)
Oech:0,2; .5 || 12

* rr \T * T 2
=  max H<(Z1 =U)er,...,(Z, = Up) ep>H
UeCh:U,#2; V]

9 - . 2
olefa st v (@ 07)

- - 2
< 4 max <U1Tel,...,Ug’ep)H .

Uech
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Note that for any fixed U € CE, (fflT 61,...,UpT €p) each entries independently distributed
from a standard normal distribution. By Lemma B.1 of [9], we have P(||(U{e, ..., ﬁgep)H >

VP+Vd+1t) <exp (—t?/2). By a union bound, we have
2
p ~ ~
 max > (Z; - Uj)Tejel (27 —Ty)|| <64(d+ plogd)
Uech:0,#2; 5 || 52

with probability at least 1 — exp (—plogd). Hence,

L (25U 2|y (B U) — (BT, Z)|P 10(2%) — 0(2)]”
VA R J ) 9 ]
max . . < 64 (d+ plogd) ”
jz::lU;éZ; Aj(Z:,U)(Z, Z¥) A2 U(Z,Z*)
- (logd +d/p)logd n UZ,Z*)(logd +d/p)
~ Alz'l[lln pAillH ’

where the last inequality is by Lemma E.1 using the fact that 27_, lle;]1? ~ X?)d and (H.4).
For (54), we have

Z* U Z) HMJ(B*aU)_:uJ(B*?Z]*)HZ

4Ailm]T| Z U;éZ* Nj(Z5,U)4 (2, Z)
Y N 7% T r7x * 2
. )<9(Z) —0(2%), (UTZ; — 1,)0 >

= max

4A?nm!T| 2 U#Z] 1(Z; = U)6*|17U(Z, Z*)
_ T ||0< >—5<Z*>H2
= 4N U(Z,2Y)
~ Tlogd TE(Z Z*)

where the last inequality is by (H.4). Finally, for (55), since §(Z*) -0 = ; L ZTe] ~
N(0,p~t1,), we have ||0(Z*) — 6*||> < g with probability at least 1 — e~ ¢'¢ by Lemma E.1.
Then,

~

iz _ [0 0.0 - 108)| azy - e

d
Aj(Z3,U)2 1(Zr = U)6*|? - Amin ~ AfinP’
for any j € [p] and any U # Z7. The proof is complete. O
Proof of Lemma 6.2. For any U € C4\{Z7}, we have
* Yt 1-9¢ * *
P ({an (2 - 0z < =150z - 0P
* * 1—0— S * * (|12
< Plle (27 -U)0) < ————|(Z1 - U)&° (H.5)
* N/ 7% * 5 * %12
+P ({1, (27 —0)(0(27) = 07)) < =ZII(Z5 = 0)°|? ). (H.6)
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where the sequence § = J, is to be chosen later. For (H.5), a standard Gaussian tail bound

gives
_ _ S _ %2
p (02 - 00) < L2302 - 0 ) < e (-8 o).
Since )
(21 ~0)0Z) - 07)) =3 Y-l (2 - V)25,
j=1

we can bound (H.6) by

1 * 5 * *
P (S - vzta < {1z - 0P (17)
1< )
+P ISZ el (27 —U)ZTe; < —4 (21 - me|1? | . (H.8)
j=2

We first bound (H.7) by

1 * S * *
P (St vzita < -{Iz - e )

IN

0P )
P (2lal? > iz - ) )?)
exp (~Copl(2i — V)6 [)

A

where we use ||I; — UZ;T|| < 2, under the condition that pA2. /d — oo and § tends to
zero at a sufficiently slow rate. Note that conditional on ey, %EFQ ef(Zy — U)ZJ’-kTej ~
N(0,p~2(p — 1)||(Z; — U)Te1||?), where the variance is upper bounded by 4p~! ||, ||*>. We
then bound (H.8) by

min

) ,
5

Sz -v)zTe; < SNz - U)9*||2‘H61H2 <d+2vVzd + 2

7j=2

(H61H2 >d+2\ﬁ+2x>

%M—‘

N (7* 9* 2
< IP’(/\/(O,I)> \/ﬁ4||(2ie H | ’H ? <d+2Va —|—2x> +e "
<2 Tx _ * |14
N (14 U L O

128 (d+ 0ad + 2x)
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Choosing = = 6||(Z} — U)0*||>/p, we have

1
p
exp (_C 0%|I(zy — U)o*||'p
d+9[[(Z7 = U)6*(1*\/p
(1—0—106)2
8

) + exp (—C8)(Z} — U)6*|[2/p)

< 2exp (— ||<Zf—U>9*||2),

under the condition that \/ﬁAQ /d — oo and § tends to zero at a sufficiently slow rate.

min
Combining the above bounds, we have
2
|

P ({02 - 02 < =1 3202 -0 IP) < dexp (- EL

oz - 0.

A similar bound holds for P <<6j, (Z; — U)g(Z*)> < —1775H(Z; — U)9*|]2) for each j € [p].
Now we are ready to bound &jgea1(9). We first bound its expectation. We have
¢ 2 Yy 1-96 2
Baea® = Y 31z - 00 PE ({62 - 02 < 15007 - )

Jj=1UeC\{z;}

IA

p _ S _%\2
1Y - v e (<SS - o)

j=1UeCi\{Z}}

< pesp (—(1-+o() 2 )

2

where the last inequality uses the condition that A; . /logd — oo. The desired conclusion

is implied by Markov inequality. O
Proof of Proposition 6.1. We adopt the notation Zj = Z](O) in the proof. For any j > 2,

Y1 = Z7 Y| < Vi - 27 277 ;12
After rearrangement, we get

(27 = ZF7)67|)* < 2 ’<Z].Tej e (2 - ZjTZj)e*>

+2 (2] - 2127 ) ¢

<ZjTej — e, (25 - ZjTZj)e*>
(27 = Z] Z3)6||

<2|(Z; - Zfzj)e*u +2

6{ <2f — ZTZ;T) €] -

This implies

‘<2].Tej e, (2 - ZJ.TZ;)H*>
I(zy — Z] Z;)0~|

(27 — Z7 2;)0"| < 2

+ \/5\/‘6{ (27 - 2127 ) ¢y,
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and consequently,

-~ ~ 2
(ZFe; - 1, (21 - 2T 25)07 )
(1 = Z] ;)67

(27 - ZF Z;)0°))* < 8 +8| (2] - 2177 o)

2
‘<UT€]_617(ZT_UTZ;)0*> T T T
<1 — 2177 ) €
B R [P 1 L R

We are going to calculate its expectation. By a standard union bound argument, we have

2

‘<UT6]- e (ZF — UTz;)9*> .

P <2 —2).
B oz —urane | SO ( 2)

Integrating up the tail bound, we obtain

2
]<UTej e (2 - UTz;)e*>
E
Uey 2(Z; — UTZ)0" 2

<4logd

Note that |e] UT¢;| = [e1|

ller]|, we have

ler]| " €U e;| where ||e1|| ™t €F'UTej ~ N(0,1) is independent of

TiT, .
Elr}éaxlel (U ZIZ*T e]‘ < ZEmax ’61 UTe]‘ < ]E||el||EmaCX‘61H[€]”€J‘ S Vdlogd,
Ca d 1

where in the last inequality we integrate up the tail bound of P(maxyec, |} UT¢;| / [ler] >

t) < 2dexp (—t?/2). Hence,

2
E|(Z* ZTZ* 0% < E ’ Uley — e, (21 - UTZ;)9*> E Tyt - zx 7T < \/dlogd

Then,
P
> EZzi - Z)07|° = ZEII (21 = 2] Z3)0%|1” S pv/dlogd,
j=1

The desired conclusion is implied by Markov inequality. O

I Proofs in Section 7, Appendix B and Appendix C

1.1 Proofs of Z, Synchronization

In this section, we present the proofs of Lemma 7.1, Lemma 7.2 and Proposition 7.1. The
conclusions of Theorem 7.2 and Corollary 7.1 are direct consequences of Theorem 3.1, and
their proofs are omitted. We first need a technical lemma that bound the operator nomr of
a Gaussian random matrix. The following lemma is a standard result that can be found in

[16].
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Lemma I.1. Consider a matrix W = (w;;) € RP*P with W;; = Wj; ~ N (0, 1) independently
for alli < j and W;; =0 for all i. There exists some constant C > 0, such that

P (W] >Cvp+a) <e™™,
for any x > 0.
Proof of Lemma 7.1. We can write

B(z) = zT()\*z*(z’;)T + W)zz _ )\*\zj;z*\zz N zTVQsz,
p

where W is a symmetric matrix with W;; ~ N(0,1) on the off-diagonal and W;; = 0 on the
diagonal. Then, we have

*T * *T" *
~ W w
By =+ T = g
p p
Using triangle inequality, we have
- ~ )\*]sz*P . 2TW 2 2TW 2+ y
13 - Bl < [ MR - |2 - 0 (L)

We will bound the two terms on the right hand side of (I.1) separately. The first term can
be bounded as

A* ZTZ* 2 ZTZ* 2
H|p2|z—ﬁ* < A | e | — 1| ||z]| + X*||z = 2"
Iz — 2*]1?
< N/ Nz =27 (1.2)
VP
< 3Nz = 2T,
where the inequality (1.2) is by
p* = 1272 P = (0 — [T ) (o + [272%]) < 2p(p — |2727)) < pllz — 2" (I.3)
For the second term of (I.1), we have
2TW 2 TWz
2 ¢ 2~
p p
(W, 22" — 2" (z")") | | TW 2| N
< < 5 ) 12l + ——=— ]z = &7l
p
*T *
w
< \/§HWHszT—z*z*THF|L;”+ ‘szz‘]z—z*H (L4)
3 "
< —— == (L5)
p

< llz = ="l (L6)

VP
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The inequality (1.4) is by applying SVD to the rank-2 matrix zz? — z*2*7 = 212:1 diwuf so
that [ (W, zzT — 2*(2*)T) | is bounded by

2
D ldillui W < [W[(Idi] + |d2l) < V2IW [ /di + d3 = V2[W]lllz2" — 2 (z") .
=1

To obtain (L.5), we have used ||z2T — 2*(2*)T||2 = 2|p? — |21 2*|?| < p|lz — z*||? according to
(I.3) and |2*TWz2*| < p||W||. Finally, (1.6) is by Lemma I.1. Combining the two bounds for
the two terms on the right hand side of (I.1), we have

18(z) = BN S (3 + 572 ||z = 2. (L7)

Now we are ready to bound (65)-(67). For (65), we have

2
Fy(25, 5327 s (B7,6) = s (87, 29)

p
']
;be{ e A (=, b)(z, =)

.

2
Fj(z},—25; 2) HMJ ,—25) — wi(B*, 2])

- Z Aj(z%, =254z, z*)

j=1 % TF

v |(e.B) - B

S 2
2 F PG )

_ IBG) = BeI? || &
S i) |

1 L 1
~ p)\*2 p2)\*4’

where the last inequality is by (64), (I.7) and (E.3). For (66), for any T C [p], we have

2
Gy, b5.2)? s (B, b) — s (B, =)
4AimlT|Zbe{ TR Aj(25,b)(z, 2%)
2
=232 |s (B, =) — s (B, 23)|
4A12nm Z Aj (Zj,_Z )46(2’ z )
~ ~ 2
(8. B(:) - B))
4A?man| Z 1B*1P€(z, =)
_ 7lIBE) - ( ol
S B e, )

< T T
~ )\*2p2 + )\*4p3’
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where the last inequality is by (L.7). Finally, for (67), since ||3(z*) — 8*|| = ‘Z*Z#*‘Hz*ﬂ <1

by Lemma I.1, we have

ma‘H’ 0| |me ] (B -m)  ae sl
by Nj(25,0)7  Ajlef,—25)? 2[|8*(|? T2 s T e

for any j € [p]. The proof is complete.

O]

Proof of Lemma 7.2. Without loss of generality, assume 2] = 1, and then for b # 2], we have

IN

for some sequence ¢’ = 4,

~

P (W15 - o) < 5 0 R

P((W1.8(=") < (1 - 0)pA*?)

P (W1, B*) < ( — 6 —8)pA*?) (1.8)
4P <<W1, > )\*2) : (1.9)

to be determined later. For (1.8), a standard Gaussian tail bound

gives
P((Wy,B8) <—(1-6— y)v%
< P(N(0,pA” ) (1—0—38)pr?)
( ) )\*2
< — .
o (-0505
For (I1.9), note that we have
~ . Z*TWZ* .
z25) — = —F 2",
B(z") — B o
and thus
P ((W,B(") — 8") < —opx”?)
*T
= P( e (W, 2%) < —517)\*2)
< mewyWL )| > dp°A*?)
< P (W] (W1, 2%) | > 0p* A2, W] < CVp+ ) + P(|W] > CVp + )
< P(Cyp+a| (Wi, z*)| > 6p*A2) +e "
2. 34
< 2exp <—C/(S pA > +e ",
p+x

Take z = 6p®/2\*2, and we have

IN

IN

P (W, B(z") - 8*) < —opA*?)

1—6—58)2pa2
5exp<_( 2)10 )
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where the last inequality uses the condition that pA*?> — oo and the fact that § tends to zero
at a sufficiently slow rate. Combining the above bounds, we obtain

g <<W1’B(z*)(zf -) < _1;54”6*||2> < Gexp <‘(1 = _25)2?”*2> .

A similar bound holds for P (<W],B\(z*)(z;k — b)> < —1?_‘54”6*\]2) for each j € [p]. This

implies

P ~ -9
Ban(0) = X230 (2(3.56)5) < 153 4 P)
j=1

(1-6— 5)2p)\*2)
2

< 24p*\Zexp <—

< pewn (~(1+o)- ).

where the last inequality uses pA\*?> — oo. The desired conclusion is implied by Markov
inequality. O

Proof of Proposition 7.1. We can write 2(0) = argmin cr_q g0 [[2 — /Pu|?. This implies
12 = 27| < 2llvpu — 27| + 20| — v/pal < 4] vpu — 2.
Similarly, we also have ||z(*) + 2*||2 < 4||\/pu + 2*||?. Thus,
12 = 2* |2 A2 + 272 < 4 (/B — 2* |2 A llvpa + 2°1%) - (L.10)

Since u is the leading eigenvector of Y and 2*/,/p is the leading eigenvector of Nz 2T by
Davis-Kahan theorem, we have

* *
-z 2 w1

u_ /\u+ ~Y ~Y )
VP H VP PN /par2

where the last inequality above is by Lemma I.1. Finally, by (I1.10), we have

00,2 (2, =) S,
with high probability. O

1.2 Proofs of Z/kZ Synchronization

In this section, we present the proofs of Theorem B.1, Lemma B.1, Lemma B.2 and Propo-
sition B.1. The conclusion of Theorem B.2 and Corollary B.1 are direct consequences of
Theorem 3.1, and thus their proofs are omitted. We first present a technical lemma.
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Lemma 1.2. Consider i.i.d. random variables w;j ~ N(0,1) for 1 < i # j < p and some
z* € (Z/KZ)P. For any constant C' > 0, there exists some constant C > 0 only depending on
C’' such that

Siziwij [(zioz ) = (zF o2t h
&1%% 7 { ’ ’ 1 < C+/plogk, (L.11)
z€ P _ % *—
\/Zz’;éj [(Zz ©Zz; - (27 © % 1)}

—C'plogk

with probability at least 1 — e

Proof. The result is implied by a standard Gaussian tail bound and a union bound argument.
O]

Proof of Theorem B.1. Given the similarity between Z/27 and Z, the proof for k = 2 is
very similar to the proof of Theorem 7.1 and thus is omitted here. We only need to consider
the case k > 3. Let p = o(1) tends to zero at a sufficiently slow rate. Consider the parameter
space

Z={z:z;=2forall 1 <j<(1-p)pandz; €{0,1} for all (1—p)p < j <p}.

Then, by the same argument that leads to (H.1), we have

. : 1 p
s E i |5 2 Horse)
1 - 1 R 1 ~
> ;) Z ave,: 1% i]P)(z;*zl,Zij)(Zj #1)+ ip(z;:O,zij)(Zj #0) .
3>(1—=p)p

Note that the quantity

. 1 - 1 ~
inf <2P(z;_1,z*j)(2j #1)+ §P(z;:0,zjj)(zj # 0))

Zj
is the optimal error for the hypothesis testing problem,

Ho: Y ~ N [(% —1) mod £],1) and Yj; ~ N(X*[(1 — 2;) mod k], 1) for ¢ € [p]\{;j},
Hi: Y ~ N\ [(z —0) mod £],1) and Yj; ~ N(A*[(0 — z7) mod k], 1) for i € [p]\{j}.

Note that

=1, ifi < (1-p)p

11z = 1) mo —[(2f —0) mo
A[(2 — 1) mod k] — [(z; — 0) dk”{gk—l, -

and same result holds for |[(1 — z}) mod k] — [(0 — 2}) mod k]|. We have

> (EwyYij — Em Yig| + [Ea, Vi — Ea Yial) < 23 (1= p)p + (k — 1)pp) < 2X\*(1+ pk)p.
i
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By Neyman-Pearson lemma, the testing error can be lower bounded by P(N(0,1) > A*(1 +

pk)p/+/2(p — 1). Therefore, we have

P

inf supE min EZ 1{2j¢z;oa*1} > pP(N(0,1) > X (14 pk)p/\/2(p — 1))

2w acz/kz \ p o
)\*2
= o (~ o)),

under the condition that pA*? — oo and p tends to zero at a sufficiently slow rate. When
pA*? = O(1), we can take p = 1/2 instead and obtain a constant lower bound. O

Now we are ready to state the proofs of Lemma B.1 and Lemma B.2. Note that under
the setting of Z/kZ synchronization, the error terms are

Fj(a,b,z) = <6j,X(z*) (z*oa ™t —z"ob ) - A=) (zoa™' —zo0 b_1)> ,
Giabz) = 5 (INGEoa™) = RE)oa )P~ X" 0a™) = A=) 0a )P
1

—5 (I oa™) =Xz 0 b 2 — V(" 007 = A" 0 b7Y))
i) = LIN("oa™) = M) (" oa )P
5 (I oa™) =R o b P — N oa™) ~ X (0 b)),

where we have used the notation €; = W; for the jth column of the error matrix, and z o a=!

stands for the vector {z; o a™'};epy-

Proof of Lemma B.1. Throughout the proof, we define h(z,z*) = Zje[p} 1{2],#2*},%2. Then
J

we have

Z |:(ZZ* o z;_l) —(zi 0 zj_l)}2 < k? Z (1{4#%} + 1{z;#zj}) < 2pk*h(z, 2%). (I.12)

i#] Y]

In addition, (B.11) is equivalent to h(z, z*) < #E(z, 2*).
Under the assumption that max,ez,/x7 Z?:l l{zﬁf:a} < (1—a)p where @ > 0 is a constant,
J

PR gy 2 ap?. (1.13)
i#] i)

Similarly, since for any z such that h(z,z*) < ap/2 we have max,ez/ iz Z§:1 1-a) <
(1 — «a/2)p, we also obtain

we have

Z(zi o zj_l)2 > Z | PP ap?/2. (I.14)
i i#]
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D iy Yij(zi0z) h

Now we will derive a bound for \X(z) - X(z*)|, where /):(z) =5 1)2
i#£] Z’O’ZJ

Mz) as A(2) = A(z) + w(z), where

We can write

iz oz N (zioz )

M e e
and
w(z) = i i1 © zj_l).
Zi;éj<zi © 2;1)2
Then,
A(2) = A=) < IAMz) = A=)+ [o(2) — (")), (L15)

and we will bound the two terms on the right hand side of the above inequality separately.
For the first term of (I.15), we have

i [(z 02t - (zioz]fl)] (zioz]fl)‘
Zi;éj(zi © Zj_l)2

Z o Z. —1 ?
|)\*|\/Zi#[ L )}

A(z) = AED) = A

<
¥ 2
< ‘ Z zfozy (ziozj_l)}
i#]
|>\*|k
S Vph(z, z%), (I.16)

where we have used (1.12) and (I.14). For the second term of (1.15), we have
i wig (20 2) = (57 0 27
B Zz’;éj(zi ° Zj_l)2

1
Yipi(zioz ) Z#J(Z oz

|w(2) — w(z7)|

(L17)

+

wa zj oz .(1.18)

i#j

We can bound (I.17) by

VEs (o5 = G o 5] S [(er0570) - (o570
2izj(zio zj_1)2 \/Zi;ﬁj |:(Zz o zj_l) —(2fo z]’f—l)r

Vk2(log k)h(z, 2*)
p Y

174N

71



where we have used (1.12), (I.14) and Lemma I.2. For (I.18), we have

1 B 1
Zi#j(ziozfl)2 2izi (7 07 )2
i (205 )2 = (5027
(Tipstaioz12) (Sgglet 027'72)
k2h(z, 2*)
pS

and thus

1
Y2102 )? Z#j(z 0z

Z -1y k?’\/logph(z,z*)
wij (2] 0 2} 7 ,

i#J

with probability at least 1 — p~¢ by > ” ](z;k ) z;'f_l)2 < k?p? and a standard Gaussian tail

bound. Therefore, we can bound (I.17) by ~ kQ(log;)h(Z’z*) + Ky 1°gp%h(z’z*) up to a constant.
Together with (I.16), we have

B(2) = A9 < ’)\;k\/ph(z, ) + \/kQ(logg)h(Z’z*) | BVlogph(z2) g,

p2

Moreover, we also have A(z*) — A* = w(z*) ~ N(0,1/ >izi(zl 0 z;'f_l)?) where the variance
is smaller than 1/ap? according to (I.14). Thus,

~ 1
Az*) = M| < —, 1.20
[A(2") = A" 7 (L.20)
with probability 1 — e~¢"?. This implies ’/):(z*) SN+ % and
[A*2* oa! — A(2")2" o0t < K2 (1.21)
Using (1.19) and (1.20), we have
HX( )z ° a—l —AMz")2"oa !
< ) = AE)zoa™ | + A2 )\Hzoa‘lffoa‘lll
< (WrvEVaG ) + Y logkh 52 | VR ) | (!A*\ + 1) kh(z, 2*)
~ p\/]») \/]») ’
< INEVEV(z, 2%), (1.22)

under the condition that p —> 00.
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Now we are ready to bound (B.6)-(B.8). For (B.6), we have

2
Fj(25,b; 2) H,uj(B*,b) — pi(B*, z¥)

P
17
Z beZﬁ:lEZli({z Aj(z5,0)4(z, 2*)

F; (z;-‘, b; z)?
— bEZ/kZ\{z’f} Aj(z7,0)2(z, 2*)

IN

(a,b; 2)?
Z Z Zl{z 7=a} (pA*2)2h(z, 2*) p)\*2 )2h(z, z*)

a€Z/KZVEZ/KZ\{a} =1

max,ez/iz |[A(2)z 0 a™l = Nz*)2* 0 a2 L .
< . €l
= (pPA*2)2h(z, z%) Z Zl{zj:a}ejej

a€Z/KZ || j=1
4
< &
~ p)\*Z

by (1.22) and (E.3). For (B.7), we have

2
Gy (25,6522 |y (B*, ) = 11 (B*, 2)

4A?manl 2 beZ/kZ\{z } Aj(25,6)2(z, %)
Gj(z},b; z)?
N 4Afman! Zbe%/m{z 3 Aj (25, b)2(z, 2%)
T -
< — )\ —1 _ A * * —1114
o (pA2)3h(z, 2* )aggﬁczu (2)z0a (2")2" ca™"|
+(P>\*2);—W (ale%%(z HX(z)z oa" ! — /)\\(z*)z* o a1H2> ( ggﬁ(z IN*2* oa - X(z*)z* o a1H2>
T -
- )\ -1 —\(z*)z2* 172
+(p)\*2)2h(z,z )an/kZ” (2)z0a (z7)z" o0
6
< Tk
~ p2)\*2’

by (I.22) and (I.21). Finally, for (B.8), we have

|Hj(25,0) _ maxeezpz [N2" o0t — Mz)z" 0|
Aj(za? ™ A7

]7
N \/maxan/kZ X2+ 0 at = X(z*)2* 0 a2

p)\*Z
k2 k2
S ) + N2
pA* PA*

by (I.21). The proof is complete. O
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Proof of Lemma B.2. For any 2] and b # 2], we have
P
Y wis o2 - 2 0 b AR < — 15 0A Z oz =z ob 1)
=1

d * *—1 * —1\y* 1_5_5 *2p * *—1 * —1\2
ijl(zjozl —2Z;ob )X S—T/\ Z:(zjoz1 —2fob™)

P 3 P
* *— * —1N\ /N * d * * *— * —
+P E w1 (2] © 2] 1—zj ob 1)()\(z)—)\)§—§/\25 (2j 0 2y - Tob H2,
=1 i=1

where the sequence § = 5p is to be determined later. For the first term, by a standard
Gaussian tail bound, we have

§—6

2 1 —1\2
Zwﬂz 02t~ 25 ob” ))\*<—T)\* le ozt —ziob™h)
]:

For the second term, as we have established in the proof of Lemma B.1, X(z*) —A* ~
N(0,1/ > oizi(#f 0 z;_1)2) where the variance is smaller than 1/ap?. Then by a standard
Gaussian tail bound, we have

<.
Il
-

AN
=
Q
8
g
<
=
N
o
N
i
—
|
N
e}
o>
SN—
vV
|
>
*
no
()=
~—~
N
*
o
IS
[l 3
—
|
N
*
o
<i
—
S~—
no

p
P <|X(z*) — 2

52])2)\*4 b o2 1 _ 2* o0 b~ 1)2
2]71( 1 7 ) + ——

)

< 2exp (—C’

Take = = 6p|\*|? \/Z Yozt - z7 0b~1)2, and we obtain the bound

P
3exp | —C"op|\*|? Z zioz  —zjob l)?
7=1
1-— (5 5)?
< 3exp ! )\*22 z;oz] —z;'-‘ob_l)2 ,
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where the above inequality uses the condition that p/k? — oo and the fact that § tends to
zero at a sufficiently slow rate. Combining the above bounds, we obtain

a P
ijl(zj’foszl_z;ob_ Az )<_7)\* Z 2ozt —z;ob_l)Q
— =

< 4dexp _(1=0-9)7 )\*222 021" —z ob!

A similar bound holds for

P
ijl(z; ozl - z; o b HA() < —7>\*2Z zjoz T —zo b1)?
j=1

for each [ € [p]. Since max; maxp.» Z] (2] 02 ! — 2o b=1)2 > \*2p, this implies

14+0(1) .
E&ideal (9) < pexp <_8())\ 2p> ’
under the condition that pA*?> — co. The conclusion is implied by Markov inequality. O]

Proof of Proposition B.1. Let P = EY € RP*P. Then, P;; = X\*(%] o z;‘.‘_l) and thus P has

k different columns. We denote the k different columns by 6g,--- ,60;_1 € RP. Namely, 0; is
the vector A*(z* ol~1). The same analysis in the proof of Proposition 4.1 leads to the bound

Z 10x(z,) = 02117 S (M + 1)kp, (1.23)

for some permutation 7 acting on the set {0,1,-- - , k—1} under the condition that min,cz /.7 25:1 1{2*:(1} >
J

P for some constant o > 0. Since mingyy ||0a — 65[|? 2 pA*2, we have

P
(M + 1)k
M1 (r2} S (1.24)
j=1
Therefore, when (]\;[)J;,}Q)kQ = o(1), we must have
aé%i/%zil{z]—a} > o (125

For any a,b € Z/kZ, recall the notation Z, = {(i,J) : z = a,z; = b}. We will bound the
difference between Y; = \Z%d Y oGi)ez, Yig and A*(w(l) o w(0)~ D). By triangle inequality, we
have

=N (r(1)om(0) )] < ‘le S B - N ) or0) )|+ o 3wyl (126)

] Z0l 2
(1,5)€Zi10 ‘ (4,9)€Z10
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For the second term of (1.26), we have

1 k 1
— g wi;j| $ —max E Wij
Z N~ p ze |/ &
120l ez P 2o V120l jez,

where the above inequality is by (I.25), and the maximization is over all kP possible cluster-

ing configurations. A simple union bound argument implies maxz,, R Z(i7 ez Wij <

v/plog k with probability at least 1 — e~C'plogk, Therefore,

max \;5'11 e lfogk’
OV i ez b

with high probability. For the first term of (I1.26), we have

1
— EY;; — XN (m(l) o w(1)~*
ERED I (r(1) o m(1)71))
(17.7)621
Nz X (M) epe))
< Z0l ] {zr#n(1)} {zr#r(1)}
(4.9)EZ10
P D
- P Lz— i lz=y
K2 (M + Dk
~ p )\*2 ’

where the last inequality is by (I.24) and (1.25). Combining the two bounds, we can then
bound (I1.26) by

3 (0]
M) | klosk _ e,

max |Y; — N (7(1) o w(0)71)] < +
under the condition that (Ag;lz)k?) = o(1). We thus have

max || Vi] = [\*[(w (1) o w(0)7)| = o(|A"]),

with high probability. Since the difference among |A\*|(7(I) o 7(0)~!) with different I's is
at least |\*|, the order of {|Y;|} perfectly recovers the order of {|\*|(7(l) o 7(0)~1)}. Since
Yi| = [Y(z@)), we have

p
(27 om(0)7) = 3 10,0 = Ozor) ]
j=1

P
_ 2
= D N0z — 0
j=1
S (M +1)kp,
where the last inequality is by (1.23). The proof is complete. O
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1.3 Proofs of Permutation Synchronization

In this section, we present the proofs of Theorem C.1, Lemma C.1, Lemma C.2 and Propo-
sition C.1. The conclusions of Theorem C.2 and Corollary C.1 are direct consequences of
Theorem 3.1, and thus their proofs are omitted. We first state a technical lemma.

Lemma 1.3. Consider the error matric W =Y —EY € RPP4 i the problem of permutation
synchronization. There exists some constant C > 0, such that

P (HWH > Cy/pd + x) <e”
for any x > 0.

Proof. This lemma is an extension of Lemma I.1, and can be proved using the same technique
n [16]. We omit the details. O

Proof of Theorem C.1. Let U to be a matrix obtained by switching the first and the second
rows of I;. In other words, we have ||U — I,]|% = 4. Consider the parameter space

Z={Z:Zj=1Iyforall1<j<p/2and Zj € {I;,U} for all p/2 < j < p}.

Then, by the same argument that leads to (H.1), we have

inf supE mm Z 1

yfe {Zrvz;)

. 1 o
Z avez: inf ( Piz:—1,,22 )(Zi # 1a) + i]P’(z;:U,Zij)(Zj # U)) ;
]>p/2

Note that the quantity
. 1 = ~
I/I\lf <2]P)(Z;=Id,z* (Z # Id) + ]P(Z* U,z* )(Z # U)>
Z;

is the optimal testing error for a hypothesis testing problem where under Hy we have EY;; =
N*Zr for all i € [p]\{j} and under H; we have EY;; = X\*Z;U7 for all i € [p]\{j}. The
distributions are both Gaussian under the two hypotheses. By Neyman-Pearson lemma, the
optimal testing error is P(N(0,1) > A*y/p — 1). Therefore,

mfsupIEmln Zl{z #UZ*} > 1 + (1) PN(0,1) > A*\/p—1) = exp <_1+O(1)p)\*2> 7

Z z* 2

under the condition that pA*?> — co. When pA*2 = O(1), we obtain a constant lower bound.
O

Proof of Lemma C.1. We can write

. *Z*Z*T ZZT
Bz = (A + W, )

Sz 2T zZz"y (W, zZT)
D2d2 Z=A D242 Z+ D2d2 Z,
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where W = Y — X\*2*2*T ¢ RPP*Pd js o Gaussian error matrix. Then, we have B(Z*) =

W,z Z2*T
ey W2

Z*. By triangle inequality, we have

<Z*Z*T,ZZT> <VV, ZZT> <VV7 Z*Z*T>
p2d2 p2d? o p2d2

We will bound the two terms on the right hand side of (I1.27) separately. The first term can

be bounded as

1B(Z)=B(Z")|lr < [[X° Z=B[lr+] Z||e. (L.27)

. <Z>kz>kT7 ZZT> . <Z>s<Z>kT7 ZZT>
Nz - Bl < N2l [P -1 X2 - 2
Az Nz - 2 (1.28)
= pl2gB2 F F :
< NN Z - ZF||F,
where the inequality (1.28) is due to
* * ]' * *
pd* =272, 227)| = 22" - 227"

< Nz Z -2k + 12 - 2927 |}
< 1212+ 127 1°)1Z - Z*%
< 2p||Z - Z*|3.

For the second term of (1.27), we have

(W, zzT) B (W, z*7z*T')

H p2d2 P22 Z*HF
< e |2l +112 = 2" e ==
VoAV 22"~ 2 2 e o WINVAZZ e
< i Iz - 2 (1.29)
L
1Z =2l
< 22 F 1.30
Vid .

The inequality (1.29) is by applying SVD to the rank-(2d) matrix ZZ7 —Z*Z*T = leil dyugul
so that [ (W, ZZT — Z*Z*T) | is bounded by

2d 2d 2d
DNl Wl < WD |dil < V2d| WL | D dE = V2d|W||227 = 22277 .
=1 =1 =1

Similarly, we also have | (W, Z*Z*T)| < Vd|W|[||Z*Z*T ||p. The last inequality (1.30) is by
Lemma 1.3. Combining the above bounds, we have

1B(2) — B(z")r < (A* n Zﬂ) 12 - 2°]s. (1.31)

78



Now we are ready to bound (C.3)-(C.5). For (C.3), we have

2
P Fy(Z5,U; Z)2 H“J B*,U) — u(B*, Z%)
max
= U2 Aj(Z3,U)(Z, Z¥)
2
5 (e, (B(z) - B@2)(z; - U)")|
= max
=TT )
2
75 —U,T(B(2%) — >‘
S max K ’ ’
;Uﬂ; A2 Z5 —U II%€<Z, z*)
_& 17 - URIE (B - B
SO I T oz — Uz, 2
j=1 J 7 F ’

P ||€F(B(2*) - B(2))|1}
PN2U(Z, Z7)

i
eo)t

(2%) = B2)(B(2*) - BZ)". S0, 5¢])
pN2U(Z, Z*)

sz vk | ||(Bz) - Ban@Bz) - B |
pN2U(Z, Z*) ’
where ||-||, is the matrix nuclear norm. Note that >"_, €;e ] = WWT and ||(B(Z*) —

B(2))(B(2*) - B(Z))" ||« = |B(Z") - B(Z)||}. We have

2
* . 2 * * 7% ~
S g D) s 0) - 82|13z~ Bz w?
= U7 Aj(Z:,U)H(Z, Z¥) ~ pN2U(Z, Z*)
d 1
S T o
p pA

where we have used Lemma 1.3 and (1.31). For (C.4), we have

2
Gj(Z;,U;2) Hu; (B*,U) — pj(B*, Z7)
Aj(Z3,U)(Z, Z%)

‘<§(Z*) ~ B(2),B*(I, - Z]’-‘TU)>‘2
1B*(Z; = U)T|%4(Z, Z*)

T _|B(Z) ~ BZ) 7B
p)\*Q p)\*2€(Z, Z*)

T ()\2—1-]%)

<p)\*2)2

N
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Finally, for (C.5), we have

(W,zZT)
p2d?

\@HWHHZ*Z*THF
p2d2

HB(Z*)—B*HF=‘ 12l (S

by Lemma 1.3, and thus for all j € [p] and U # Z

#2.0)| (B - B2 B - )| 1B(2%) - By | —5 S 4/~
* = * * ~ - F *2 N *2 "
A;(Z;,U)? 1B*(Z; = U)T | pA*? pA*?

The proof is complete.

~ T
Proof of Lemma C.2. We use the notation A\(Z) = (Y],deQ > Then, for U # Z7, we have

p
N * * * 1-0 * *
P (N2 Y (Wi, 25(27 = U)T) < ——=X2p|| 21 — U}
j=1

p
. o 1-6-45,
< PAY (Wi Z (27 - U)F) < ———\2p|1 2 - Ul
j=1
p T 5
+P E gl:Z* zZi = U) > < —5)\*2])”21‘ - UHI%“

J=1

The first term can be bounded by a standard Gaussian tail bound,

, )
. o 1=6-8 .y (.
PN (Wi, 25 (25 - U)") < =2l Zf — Ul
s
1-6-6)2%, .
< exp ((8))\ *pll Z - U|%> :

For the second term, note that we have /):(Z ") =X = (p*d*) "1 (W, Z*Z*T") which is normally
distribution. We have

p

* S * *
P M) D (Wi, Z5 (27 = U)T) < =5 Apll 2 = Ul
7=1
C\ﬁpd+ - . LI
< P Z Wi, Z5(Z7 — )T> Z§>\ ol Z; - U3
P (!X(Z*) — N\ > CW)
pd
2252\ |l 7, — U |12
< sex (_C,p N p|| 2y UHF>+€_Z‘
pd+
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Take z = pdéA*?/p||Z1 — U||r, and we obtain the bound
2 exp (—Cpodgz)\*4\|Zl — UH%) + exp (—pdg)\’d\/ﬁ”Zl — U||F)

1-6-6)2, .
< sew (-0 RNz - v,

under the condition that pA*?> — oo and & tends to zero at a sufficiently slow rate. Combining

the above bounds, we have
~ P T 1 - 6
P AMZ) D (Wi, Z; (27 = U)") < ———N"*pl|Z] - Ul
j=1

(1—6—26)?

< 4dexp <— 3

X2p| 2] — UH%) .

A similar bound bolds for P (X(27) X20_, (Wi, Z; (77 = U)T) < =150X2p| 27 — U|2) for

each [ € [p].
Now we are ready to bound &qea(§). We have

p p
* * * * 1-96 * *
Egaea(§) = D > Nl 27 —UIRP (X2 Y (Wi Z}(Z7 —U)") < ===\ Z} ~
I=1 UePy =1
p $\2
* * 1-6—9¢ * *
< 1Y ¥ a2z - vl (- U5l - 1)
1=1U€ePy
1 1
= pexp (— +20( )p)\*Q) )

under the condition that dp%*;d — o0. The desired conclusion is implied by Markov inequality.
O

Ul

Proof of Proposition C.1. It is direct to check that the matrix U* such that U*T = (Z5,--- | Z;)/\/;B

satisfies U* € O(pd, d) and collects the eigenvectors of EY. By Davis-Kahan theorem, there

exists some O(d,d), such that

5 W d
- U* < 1<

(0)

where the last inequality is by Lemma 1.3. According to the definition of Z G, we have
12 — zzolly < 112\ — vaUillr + lvBU; — v/pU; Ol
< 2|lypU; — VpU; O|p.
Therefore,
p p 2
Y 12 = Z;0lk < 43" IVBT; - VBU; Ol = 4]0 — U°Olft £ pdl T~ U*OI* S 5.
j=1 j=1
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Then,

SN2 - 2z 203

p P p p 0) (0T
> 2 2727 -z zy R

=1 j=1 i=1 j=1

Hz(O)Z(O)T _ Z*Z*TH%

< 2029z® - 22 0)7|2 + 2|(2© - Z*0)0T Z*T ||
< 4p||z© — z7 0|}
P
0 *
= 4> |2 - Z;O|}
j=1
pd?

Let j = argmin e, Y7 HZi(O) — Z;‘Z;TZ](O)\|%. Then, we have

=0 02 _ LS 0 (0) d?
Z 12 — ZijkTZ; g <= ZZ 12" = Z; 27777 |1% S L
i—1 i=1 j—1

The proof is complete. O
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