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We propose a general modeling and algorithmic framework for discrete
structure recovery that can be applied to a wide range of problems. Under
this framework, we are able to study the recovery of clustering labels, ranks
of players, signs of regression coefficients, cyclic shifts and even group ele-
ments from a unified perspective. A simple iterative algorithm is proposed for
discrete structure recovery, which generalizes methods including Lloyd’s al-
gorithm and the power method. A linear convergence result for the proposed
algorithm is established in this paper under appropriate abstract conditions on
stochastic errors and initialization. We illustrate our general theory by apply-
ing it on several representative problems: (1) clustering in Gaussian mixture
model, (2) approximate ranking, (3) sign recovery in compressed sensing,
(4) multireference alignment and (5) group synchronization, and show that
minimax rate is achieved in each case.

1. Introduction. Discrete structure is commonly seen in modern statistics and machine
learning, and various problems can be formulated into tasks of recovering the underlying
discrete structure. A leading example is clustering analysis [51], where the discrete struc-
ture of the data is parametrized by a vector of clustering labels. Theoretical and algorithmic
understandings of clustering analysis have received much attention in the recent literature
especially due to the interest in community detection of network data [48, 57, 70, 91]. Other
important examples of discrete structure recovery include ranking [20, 65], variable selec-
tion [22, 52], crowdsourcing [29, 41], estimation of unknown permutation [25, 74], graph
matching [26, 32], and recovery of hidden Hamiltonian cycle [10, 21].

Despite the the progress of understanding discrete structures in various specific problems,
a general theoretical investigation has been lacking in the literature. This is partly due to the
fact that theory of discrete structure recovery can be quite different from traditional statisti-
cal estimation of continuous parameters. In fact, it has been argued that the nature of discrete
structure recovery is closely related to hypothesis testing theory [42]. In addition, the existing
literature on the statistical guarantees of discrete structure recovery mostly focuses on char-
acterizing the condition of exact recovery [1, 10, 61, 66, 69, 84, 93]. Let z∗ = (z∗

1, z
∗
2, . . . , z

∗
p)

represent a discrete structure of interest, where each z∗
j parametrizes a discrete status of either

the j th sample or the j th variable of the data set. The exact recovery is achieved by some
estimator ẑ if ẑj = z∗

j for all j ∈ [p]. However, exact recovery of discrete structure usually
requires a strong signal to noise ratio condition. A more interesting, more realistic, but harder
problem is when only partial recovery [22, 40, 41, 44, 72, 90, 91] of z∗ is possible. Under this
regime, a statistical guarantee can be established on the proportion of errors, and the result
will naturally lead to the condition of exact recovery as a special case.

Discrete structure recovery is also challenging from a computational point of view. In spite
of being optimal in many cases, maximum likelihood estimation of z∗ is often combinatorial,
and thus computationally infeasible. Though convex relaxations such as linear programming
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or semidefinite programming can be derived for many specific problems [10, 13, 47, 49, 50,
58, 67], they may not be scalable to very large data sets and the analysis of partial recovery
of convex relaxation is usually quite involved [34, 35, 47]. Moreover, in many examples such
as clustering and variable selection, the data generating process is parametrized both by a
discrete structure and a continuous model parameter. The presence of the nuisance continuous
parameter further complicates the design of efficient algorithms.

The goal of this paper is to develop a general modeling and algorithmic framework for
partial recovery of discrete structures. We first propose a general structured linear model
parametrized by a discrete structure z∗ and a global continuous parameter B∗, which unifies
various problems of discrete structure recovery into the same framework. A simple iterative
algorithm is then proposed for recovering z∗, which can be informally written in the following
form:

(1) z(t) = argmin
z

p∑
j=1

∥∥Tj − νj

(
B̂

(
z(t−1)), zj

)∥∥2 for all t ≥ 1.

Here, Tj is some local statistic whose distribution depends both on the j th label z∗
j and the

global continuous parameter B∗ of the model. Because of the separability of the objective
function across j ∈ [p], each z

(t)
j takes the value of zj such that νj (B̂(z(t−1)), zj ) is the

closest to Tj and, therefore, computation of (1) is straightforward. The general iterative pro-
cedure (1) recovers some interesting algorithms, among which perhaps the most important
one is Lloyd’s algorithm [60] for k-means clustering. In the clustering context, Tj is the j th
data point, and νj (B̂(z(t−1)), zj ) is the zj th estimated clustering center computed based on
the clustering labels z(t−1) from the previous step. In addition, (1) also leads to algorithms in
approximate ranking, sign recovery and many other problems that will be studied in details
in this paper.

The main result of our paper characterizes conditions under which (1) converges with
respect to some loss function �(·, ·) to be defined later. An informal statement of the result is
given:

(2) �
(
z(t), z∗) ≤ 2ξideal(δ) + 1

2
�
(
z(t−1), z∗)

for all t ≥ 1,

with high probability. That is, the value of �(z(t), z∗) converges at a linear rate to 4ξideal(δ).
Here, we use ξideal(δ) to characterize the error of an ideal procedure,

(3) ẑideal = argmin
z

p∑
j=1

∥∥Tj − νj

(
B̂

(
z∗)

, zj

)∥∥2
,

and the definition of ξideal(δ) with a general δ > 0 will be given in Section 3. The conver-
gence result (2) is established with some δ > 0 arbitrarily close to 0. We note that the ideal
procedure (3) is not realizable because of its dependence on the true z∗, but (2) shows that the
iterative algorithm (1) achieves almost the same statistical performance of (3). The general
abstract result is then applied to several concrete examples: clustering for Gaussian mixture
model, approximate ranking, sign recovery in compressed sensing, multireference alignment
and group synchronization, which represent different types of discrete structure recovery
problems. Moreover, in each of the examples, we can relate ξideal(δ) to the minimax rate
of the problem and, therefore, claim that the simple algorithm (1) is both computationally
efficient and minimax optimal.

Another popular method that is suitable for discrete structure recovery is the EM algo-
rithm [30]. The global convergence of EM algorithm has been established under the setting
of unimodal likelihood [85] and the setting of two-component Gaussian mixtures [28, 86–88].
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Local convergence results for general settings are obtained by [11]. However, the most im-
portant difference between [11] and our work, besides the obvious difference of algorithms,
is that our convergence guarantee (2) is established for the estimation error of the discrete
structure z∗, while the convergence result in [11] for the EM algorithm is established for the
estimation error of the continuous model parameter B∗. Results like (2) may be possibly es-
tablished for the EM algorithm in the context of clustering using the techniques suggested
by the paper [92],1 but whether (2) can be proved for the EM algorithm in general settings is
unknown.

The most related work to us in the literature is the analysis of Lloyd’s algorithm in Gaus-
sian mixture models by [62]. Since Lloyd’s algorithm is a special case of (1), our convergence
result (2) recovers the result in [62] as a special case with even a slightly weaker condition on
the number of clusters. We also mention the recent paper [71] that studies a variant of Lloyd’s
algorithm and improves the signal to noise ratio condition in [62] for the two-component
Gaussian mixtures.

Organization. Our general modeling and algorithmic framework will be introduced in
Section 2. In Section 3, we formulate abstract conditions under which we can establish the
convergence of the algorithm. Applications to specific examples will be discussed afterwards,
including clustering in Gaussian mixture model (Section 4), sign recovery in compressed
sensing (Section 5), multireference alignment (Section 6) and group synchronization (Sec-
tion 7). Section 8 discusses the potential limitations of our framework and possible open
problems. The application to approximate ranking and all the technical proofs will be given
in the Supplementary Material [46].

Notation. For d ∈ N, we write [d] = {1, . . . , d}. Given a, b ∈ R, we write a ∨ b =
max(a, b) and a ∧ b = min(a, b). For two positive sequences an and bn, we write an � bn

to mean that there exists a constant C > 0 independent of n such that an ≤ Cbn for all n;
moreover, an � bn means an � bn and bn � an. For a set S, we use I{S} and |S| to denote its
indicator function and cardinality, respectively. For a vector v = (v1, . . . , vd)T ∈ R

d , we de-
fine ‖v‖2 = ∑d

�=1 v2
� . The trace inner product between two matrices A,B ∈ R

d1×d2 is defined

as 〈A,B〉 = ∑d1
�=1

∑d2
�′=1 A��′B��′ , while the Frobenius and operator norms of A are given by

‖A‖F = √〈A,A〉 and ‖A‖op = smax(A), respectively, where smax(·) denotes the largest sin-
gular value. The notation P and E are generic probability and expectation operators whose
distribution is determined from the context.

2. A general framework of models and algorithms. We start with the introduction of
structured linear model. Consider a pair of random vectors Y ∈R

N and X ∈ R
D . We impose

the relation that

(4) E(Y |X) = Xz∗
(
B∗)

.

On the right-hand side of (4), z∗ = (z∗
1, . . . , z

∗
p) is a vector of discrete labels, and each z∗

j

is allowed to take its value from a label set of size k. For simplicity, we assume the label
set to be [k] without loss of generality. The vector B∗ is the model parameter that lives in a
subspace indexed by z∗. We use the notation Bz∗ for this subspace. Finally, Xz∗ is a linear
operator jointly determined by X and z∗. It maps from Bz∗ to R

N .

1The paper [92] established the convergence of mean-field coordinate ascent and Gibbs sampling in the sense
of (2) for community detection in stochastic block models. Due to the connection and similarity between the EM
algorithm and variational Bayes, we believe the techniques used in (2) can also be applied to the analysis of EM
algorithms for clustering problems.
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The general structured linear model (4) can be viewed as a slight variation of the one
introduced by [45]. It is particularly suitable for the research of label recovery and includes
some important examples that will be studied in this paper.

To estimate the labels z∗
1, . . . , z

∗
p , one strategy is to first compute a local statistic Tj =

Tj (X,Y ) ∈ R
d and then infer z∗

j from Tj for each j ∈ [p]. We require that

(5) E(Tj |X) = μj

(
B∗, z∗

j

)
.

Then suppose the model parameter B∗ was known, a natural procedure to estimate z∗
j would

find an a ∈ [k] such that ‖Tj − μj(B
∗, a)‖2 is the smallest. However, for some applications,

the form of μj(B
∗, z∗

j ) may not be available, and thus we need to associate each μj(B
∗, z∗

j )

with a surrogate νj (B
∗, z∗

j ). An oracle procedure that uses the knowledge of B∗ is given by

(6) ẑoracle
j = argmin

a∈[k]
∥∥Tj − νj

(
B∗, a

)∥∥2
.

On the other hand, since B∗ is unknown in practice, we need to replace the B∗ in (6) by an
estimator. A natural procedure is the least-squares estimator B̂(z∗), where for a given z, B̂(z)

is defined by

(7) B̂(z) = argmin
B∈Bz

∥∥Y − Xz(B)
∥∥2

.

This time we need to know z in (7) to compute B̂(z). Therefore, we shall combine (6) and
(7) and obtain the following iterative algorithm.

Algorithm 1: Iterative discrete structure recovery
Input : The data Y , X and the number of iterations tmax.
Output: The estimator ẑ = z(tmax).

1 Compute the initializer z(0).
2 For t in 1 : tmax, compute

B(t) = argmin
B∈B

z(t−1)

∥∥Y − Xz(t−1) (B)
∥∥2 and(8)

z
(t)
j = argmin

a∈[k]
∥∥Tj (X,Y ) − νj

(
B(t), a

)∥∥2 ∀j ∈ [p].(9)

Let us now discuss a few important examples. Though we regard X and Y to be vectors in
our general framework, in some specific examples, it is often more convenient to arrange the
data into matrices instead of vectors. Of course, the two representations are equivalent and
the relation can be precisely described with the operations of vectorization and Kronecker
product.

2.1. Clustering in Gaussian mixture model. Consider Y ∈ R
d×p with Y1, . . . , Yp stand-

ing for its columns. We assume that Yj ∼ N (θ∗
z∗
j
, Id) independently for j ∈ [p]. Here,

z∗
1, . . . , z

∗
p ∈ [k] are p clustering labels and θ∗

1 , . . . , θ∗
k ∈ R

d are k clustering centers. In our
general framework, we have N = dp, B∗ is the concatenation of the k clustering centers,
and Bz∗ = R

d×k . The linear operator Xz∗ maps the matrix {θ∗
a }a∈[k] ∈ R

d×k to the matrix
{θ∗

z∗
j
}j∈[p] ∈ R

d×p . For the algorithm to recover the clustering labels, the obvious local statis-

tic is Tj = Yj for j ∈ [p]. Moreover, we set νj (B
∗, a) = μj(B

∗, a) = θ∗
a . Then Algorithm 1
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is specialized into the following iterative procedures:

θ(t)
a =

∑p
j=1 I{z(t−1)

j = a}Yj∑p
j=1 I{z(t−1)

j = a} , a ∈ [k],

z
(t)
j = argmin

a∈[k]
∥∥Yj − θ(t)

a

∥∥2
, j ∈ [p].

This is recognized as Lloyd’s algorithm [60], the most popular way to solve k-means cluster-
ing.

2.2. Approximate ranking. In the task of ranking, we consider the observation of pair-
wise interaction data Yij for (i, j) ∈ [p]2 and i �= j . The rank or the position of the j th player
is specified by an integer z∗

j ∈ [p]. What is known as the pairwise comparison model as-
sumes that Yij ∼ N (β∗(z∗

i − z∗
j ),1) for some signal strength parameter β∗ ∈ R. Our goal is

to estimate the discrete position z∗
j for each player j ∈ [p]. This is known as the approxi-

mate ranking problem [40], which is different from exact ranking where z∗ corresponds to
a permutation. It is easy to see that this approximate ranking model is a special case of our
general structured linear model. To be specific, we have N = p(p − 1), B∗ is identified with
β∗, and Bz∗ = R. The linear operator Xz∗ maps β∗ to {β∗(z∗

i − z∗
j )}1≤i �=j≤p . To recover z∗

j ,
it is natural to define

(10) Tj = 1√
2(p − 1)

∑
i∈[p]\{j}

(Yji − Yij ).

Thus, we have

μj

(
B∗, a

) = 2p√
2(p − 1)

β∗
(
a − 1

p

p∑
i=1

z∗
i

)
.(11)

Because of the dependence of μj(B
∗, a) on the unknown 1

p

∑p
i=1 z∗

i , we also introduce

νj (B
∗, a) that replaces 1

p

∑p
i=1 z∗

i with a fixed value p+1
2 ,

νj

(
B∗, a

) = 2p√
2(p − 1)

β∗
(
a − p + 1

2

)
.

The choice of p+1
2 is due to the parameter space of z∗ that will be made specific in the

Supplementary Material [46]. This leads to the following iterative algorithm:

(12)

β(t) =
∑

1≤i �=j≤p(z
(t−1)
i − z

(t−1)
j )Yij∑

1≤i �=j≤p(z
(t−1)
i − z

(t−1)
j )2

,

z
(t)
j = argmin

a∈[p]

∣∣∣∣ ∑
i∈[p]\{j}

(Yji − Yij ) − 2pβ(t)

(
a − p + 1

2

)∣∣∣∣2, j ∈ [p].

Since (12) is recognized as feature matching [25], this is the iterative feature matching al-
gorithm suggested by [40] for approximate ranking. The statistical property of the above
algorithm will be analyzed in the Supplementary Material [46] due to page limit.

2.3. Sign recovery in compressed sensing. In a standard regression problem, we as-

sume Y |X ∼ N (Xβ∗, In). Consider a random design setting, where Xij
i.i.d.∼ N (0,1) for

(i, j) ∈ [n] × [p]. We study the sign recovery problem, which is equivalent to estimating
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z∗
j ∈ {−1,0,1}, where the three possible values of z∗

j standing for β∗
j being negative, zero

and positive. We also define the sparsity level s = ∑p
j=1 |z∗

j |. In order that sign recovery
is information-theoretically possible, we assume that either β∗

j = 0 or |β∗
j | ≥ λ. The same

setting has been considered by [72]. The sparse linear regression model is clearly a special
case of our general framework with the choices N = n, B∗ = β∗ and Bz∗ = {β ∈ R

p : βj =
βj |z∗

j |}. The linear operator Xz∗ maps β∗ to Xβ∗. Following [72], we use the local statistic

Tj = ‖Xj‖−1XT
j Y(13)

to recover z∗
j . Here, Xj ∈ R

n stands for the j th column of X. Computing its conditional
expectation, we obtain

μj

(
B∗, a

) = a‖Xj‖max
{∣∣β∗

j

∣∣, λ} + ‖Xj‖−1
∑

l∈[p]\{j}
β∗

l XT
j Xl,(14)

for a ∈ {−1,0,1}, because of the assumption that β∗
j is either 0 or larger than λ in magnitude.

Replacing max{|β∗
j |, λ} in the above formula by some threshold level 2t (Xj ), we get

νj

(
B∗, a

) = 2a‖Xj‖t (Xj ) + ‖Xj‖−1
∑

l∈[p]\{j}
β∗

l XT
j Xl,(15)

for a ∈ {−1,0,1}. The threshold level is specified by

(16) t (Xj ) = λ

2
+ log p−s

s

λ‖Xj‖2 ,

which can be derived from a minimax analysis [22, 72]. Specializing Algorithm 1 to the
current context gives

β(t) = argmin
{β∈Rp :βj=βj |z(t−1)

j |}
‖y − Xβ‖2,(17)

z
(t)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
XT

j Y − ∑
l∈[p]\{j} β

(t)
l XT

j Xl

‖Xj‖2 > t(Xj ),

0, −t (Xj ) ≤ XT
j Y − ∑

l∈[p]\{j} β
(t)
l XT

j Xl

‖Xj‖2 ≤ t (Xj ),

−1,
XT

j Y − ∑
l∈[p]\{j} β

(t)
l XT

j Xl

‖Xj‖2 < −t (Xj ).

(18)

We note that (18) is a slight modification of the variable selection procedure in [72]. The
main difference is that [72] uses an estimator of β∗ computed with an independent data set,
while we compute a least-squares procedure (17) restricted on the support of z(t−1) obtained
from the previous step using the same data set.

2.4. Multireference alignment. Consider independent data points Yj ∼ N (Z∗
j θ∗, Id) for

j ∈ [p]. A common parameter θ∗ ∈ R
d is shared by the p observations. The matrix Z∗

j is
a cyclic shift such that (Zjθ

∗)i = θ∗
i+tj (modd) for some integer tj . In other words, for each

j ∈ [p], a noisy shifted version is observed. To put the problem into our general framework,
we have N = dp, B∗ = θ∗, z∗

j = Z∗
j , and Bz∗

j
= R

d . The linear operator Xz∗ maps θ∗ to
(Z∗

1θ∗, . . . ,Z∗
pθ∗). We are interested in the recovery of the cyclic shifts Z∗

1 , . . . ,Z∗
p. For this

purpose, consider the local statistic Tj = Yj for all j ∈ [p]. This results in νj (B
∗,U) =
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μj(B
∗,U) = Uθ∗ for any U ∈ Cd where Cd is the class of cyclic shifts. Then Algorithm 1 is

specialized into the following iterative procedures:

θ(t) = 1

p

p∑
j=1

(
Z

(t−1)
j

)T
Yj ,

Z
(t)
j = argmin

U∈Cd

∥∥Yj − Uθ(t)
∥∥2

, j ∈ [p].

It is clear that |Cd | = d , and thus the update for Z
(t)
j has a linear complexity.

2.5. Group synchronization. Consider a group (G,◦) and group elements g1, . . . ,

gp ∈ G. The group synchronization problem is the recovery of g1, . . . , gp from noisy ver-
sions of gi ◦ g−1

j . It turns out a number of important instances of group synchronization can
be regarded as special cases of our general framework, and thus can be provably solved by
the iterative algorithm. Let us illustrate by the simplest example of Z2 synchronization. In
this model, one observes Yij ∼ N (λ∗z∗

i z
∗
j ,1) for all 1 ≤ i < j ≤ p with z∗

1, . . . , z
∗
p ∈ {−1,1}.

The parameter λ∗ ∈ R plays the role of signal-to-noise ratio.
Though it is most natural to identify λ∗ with β∗ in the general framework, this treatment

would result in an iterative algorithm with a computationally infeasible update of z(t) because
of the quadratic dependence. A smart and much better way is to regard the vector λ∗z∗ ∈
R

p as β∗ by taking advantage of the flexibility of Bz∗ . To be specific, we can organize the
observations into a matrix Y = z∗(β∗)T + W ∈ R

p×p with β∗ ∈ Bz∗ = {β = λz∗ : λ ∈ R}. In
this way, we have N = p(p−1)

2 , B∗ = β∗, and Bz∗ = {β = λz∗ : λ ∈ R}. Thus, given β∗, the
mean of Y is linear with respect to z∗. To derive an iterative algorithm, we let Tj = Yj be the
j th column of Y . We then have νj (B

∗, a) = μj(B
∗, a) = aβ∗ for a ∈ {−1,1}. The iterative

algorithm is

(19)

β(t) = argmin
β=λz(t−1):λ∈R

∥∥Y − z(t−1)βT
∥∥2

F,

z
(t)
j = argmin

a∈{−1,1}
∥∥Yj − aβ(t)

∥∥2
.

It is easy to see that (19) has a closed form β(t) = (z(t−1))T Y z(t−1)

p2 z(t−1). This leads to the
following equivalent form of the algorithm:

(20) z
(t)
j =

{
sign

(
YT

j z(t−1)), (
z(t−1))T Yz(t−1) ≥ 0,

− sign
(
YT

j z(t−1)), (
z(t−1))T Yz(t−1) < 0,

which is a variation of the power method.
In addition to Z2 synchronization, the above idea can also be applied to other group syn-

chronization problems. Examples of Z/kZ synchronization and permutation synchronization
will be analyzed in the Supplementary Material [46].

3. Convergence analysis. In this section, we formulate abstract conditions under which
we can derive the statistical and computational guarantees of Algorithm 1.

3.1. A general loss function. Our goal is to establish a bound for every t ≥ 1 with respect
to the loss �(z(t), z∗). The loss function is defined by

(21) �
(
z, z∗) =

p∑
j=1

∥∥μj

(
B∗, zj

) − μj

(
B∗, z∗

j

)∥∥2
.
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It has a close relation to the Hamming loss h(z, z∗) = ∑p
j=1 I{zj �= z∗

j }. Define

	2
min = min

j∈[p] min
1≤a �=b≤k

∥∥μj

(
B∗, a

) − μj

(
B∗, b

)∥∥2
,

and then we immediately have

(22) �
(
z, z∗) ≥ 	2

minh
(
z, z∗)

.

3.2. Error decomposition. By (5), we can decompose each local statistic as

(23) Tj = μj

(
B∗, z∗

j

) + εj .

We usually have εj ∼ N (0, Id), but this is not required, and we shall also note that the εj ’s
may not even be independent across j ∈ [p]. By (9), if we start the algorithm from any z, then
z∗
j will be incorrectly estimated after one iteration if z∗

j �= argmina∈[k] ‖Tj − νj (B̂(z), a)‖2.
Consequently, assume z∗

j = a, and it is important to analyze the event

(24)
∥∥Tj − νj

(
B̂(z), b

)∥∥2 ≤ ∥∥Tj − νj

(
B̂(z), a

)∥∥2
,

for any b ∈ [k]\{a}. Recall the definition of B̂(z) in (7). We plug (23) into (24), and then after
some rearrangement, we can see that the event (24) is equivalent to

(25)

〈
εj , νj

(
B̂

(
z∗)

, a
) − νj

(
B̂

(
z∗)

, b
)〉

≤ −1

2
	j(a, b)2 + Fj (a, b; z) + Gj(a, b; z) + Hj(a, b).

On the right-hand side of (25), 	j(a, b)2 is the main term that characterizes the difference
between the two labels a and b. It is defined as

	j(a, b)2 = ∥∥μj

(
B∗, a

) − νj

(
B∗, b

)∥∥2 − ∥∥μj

(
B∗, a

) − νj

(
B∗, a

)∥∥2
.

Note that with the notation 	j(a, b)2, we have implicitly assume that 	j(a, b)2 ≥ 0 through-
out the paper. This assumption is easily satisfied in all of the examples considered in the paper.
The other three terms in (25) are the error terms that we need to control. Their definitions are
given by

Fj (a, b; z) = 〈
εj ,

(
νj

(
B̂

(
z∗)

, a
) − νj

(
B̂(z), a

)) − (
νj

(
B̂

(
z∗)

, b
) − νj

(
B̂(z), b

))〉
,

Gj (a, b; z) = 1

2

(∥∥μj

(
B∗, a

) − νj

(
B̂(z), a

)∥∥2 − ∥∥μj

(
B∗, a

) − νj

(
B̂

(
z∗)

, a
)∥∥2)

− 1

2

(∥∥μj

(
B∗, a

) − νj

(
B̂(z), b

)∥∥2 − ∥∥μj

(
B∗, a

) − νj

(
B̂

(
z∗)

, b
)∥∥2)

,

Hj (a, b) = 1

2

(∥∥μj

(
B∗, a

) − νj

(
B̂

(
z∗)

, a
)∥∥2 − ∥∥μj

(
B∗, a

) − νj

(
B∗, a

)∥∥2)
− 1

2

(∥∥μj

(
B∗, a

) − νj

(
B̂

(
z∗)

, b
)∥∥2 − ∥∥μj

(
B∗, a

) − νj

(
B∗, b

)∥∥2)
.

With these quantities defined as above, we can check that (25) is indeed equivalent to (24).
To help readers understand the meaning of these error terms, we work out the formulas in
the context of Z2 synchronization. By specializing the definitions of the error terms in Z2
synchronization, we have for any a �= b,

Fj (a, b; z) = (a − b)
〈
εj , β̂

(
z∗) − β̂(z)

〉
,(26)

Gj(a, b; z) = 2
〈
β∗, β̂

(
z∗) − β̂(z)

〉
,(27)

Hj(a, b) = 2
〈
β∗, β∗ − β̂

(
z∗)〉

.(28)

The reason to have such decomposition (25) is as follows:
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• By igoring the three error terms, the event 〈εj , νj (B̂(z∗), a) − νj (B̂(z∗), b)〉 ≤ −1
2	j(a,

b)2 contributes to the ideal recovery error rate. That is, even if we were given the true z∗,
applying one iteration in Algorithm 1, that is, (9) would still result in some error.

• The error terms Fj (a, b; z) and Gj(a, b; z) can be controlled by the difference be-
tween B̂(z) and B̂(z∗), which further depends on �(z, z∗). We will treat Fj (a, b; z) and
Gj(a, b; z) differently because the former involves the additional randomness of εj .

• The error term Hj(a, b) can be controlled by the difference between B̂(z∗) and B∗. In
fact, unlike Fj (a, b; z) or Gj(a, b; z), Hj(a, b) does not depend on z, and thus its value
remains unchanged throughout the iterations.

3.3. Conditions for algorithmic convergence. Now we need to discuss how to analyze
the error terms Fj (a, b; z), Gj(a, b; z) and Hj(a, b). There are three types of conditions that
we will impose.

CONDITION A (�2-type error control). Assume that

max{z:�(z,z∗)≤τ }

p∑
j=1

max
b∈[k]\{z∗

j }
Fj (z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ 1

256
δ2

holds with probability at least 1 − η1, for some τ, δ, η1 > 0.

CONDITION B (Restricted �2-type error control). Assume that

max{z:�(z,z∗)≤τ } max
T ⊂[p]

τ

4	2
min|T | + τ

∑
j∈T

max
b∈[k]\{z∗

j }
Gj(z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ 1

256
δ2

holds with probability at least 1 − η2, for some τ, δ, η2 > 0.

CONDITION C (�∞-type error control). Assume that

max
j∈[p] max

b∈[k]\{z∗
j }

|Hj(z
∗
j , b)|

	j(z
∗
j , b)2 ≤ 1

4
δ

holds with probability at least 1 − η3, for some τ, δ, η3 > 0.

Conditions A, B and C are for the error terms Fj (a, b; z), Gj(a, b; z) and Hj(a, b), re-
spectively. Because of the difference of the three terms that we have mentioned earlier, they
are controlled in different ways. Both Conditions A and B impose �2-type controls and re-
late Fj (a, b; z) and Gj(a, b; z) to the loss function �(z, z∗). On the other hand, Hj(a, b) is
controlled by an �∞-type bound in Condition C.

Next, we define a quantity referred to as the ideal error,

(29)

ξideal(δ) =
p∑

j=1

∑
b∈[k]\{z∗

j }

∥∥μj

(
B∗, b

) − μj

(
B∗, z∗

j

)∥∥2

× I

{〈
εj , νj

(
B̂

(
z∗)

, z∗
j

) − νj

(
B̂

(
z∗)

, b
)〉 ≤ −1 − δ

2
	j

(
z∗
j , b

)2
}
.

We note that ξideal(δ) is a quantity that does not change with t . In fact, with some δ > 0,
ξideal(δ) can be shown to be an error bound for the ideal procedure ẑideal

j defined in (3). We
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therefore choose ξideal(δ) with a small δ > 0 as the target error that z(t) converges to. In
specific examples studied later in Sections 4–5, we will show ξideal(δ) can be bounded by the
minimax rate of each problem.

CONDITION D (Ideal error). Assume that

(30) ξideal(δ) ≤ 1

4
τ,

with probability at least 1 − η4, for some τ, δ, η4 > 0.

Finally, we need a condition on z(0), the initialization of Algorithm 1.

CONDITION E (Initialization). Assume that

�
(
z(0), z∗) ≤ τ,

with probability at least 1 − η5, for some τ, η5 > 0.

3.4. Convergence guarantee. With all the conditions specified, we establish the conver-
gence guarantee for Algorithm 1.

THEOREM 3.1. Assume Conditions A, B, C, D and E hold for some τ, δ, η1, η2, η3, η4,

η5 > 0. We then have

�
(
z(t), z∗) ≤ 2ξideal(δ) + 1

2
�
(
z(t−1), z∗)

for all t ≥ 1,

with probability at least 1 − η, where η = ∑5
i=1 ηi .

The theorem shows that the error of z(t) converges to 4ξideal(δ) at a linear rate. Among
all the conditions, Conditions A, B and C are the most important ones. The largest τ that
makes Conditions A, B and C hold simultaneously will be the required error bound for the
initialization in Condition E. With (22), Theorem 3.1 also implies that the iterative algorithm
achieves an error of 4ξideal(δ)/	

2
min in terms of Hamming distance.

In Sections 4–7, we will apply Theorem 3.1 to the examples mentioned in Section 2, cover-
ing different categories of discrete structures: clustering label, rank, variable sign, cyclic shift
and group element. The clustering labels are discrete objects without order or any topological
structure. This is in contrast to the ranks that are ordered objects in the space of natural num-
bers. The variable signs are similar to the clustering labels except two differences. The first
difference is the prior knowledge that most variables are zero in the context of sparse linear
regression. The second difference is that a nonzero sign only implies a range of a variable
instead of its specific value. Group elements have their own unique properties that depend on
the specific settings. Despite all the differences between these discrete structures, we are able
to analyze them in a unified framework with the same algorithm.

4. Clustering in Gaussian mixture model. We assume the data matrix Y ∈ R
d×p is

generated from a Gaussian mixture model. This means we have Yj = θz∗
j
+ εj ∼ N (θz∗

j
, Id)

independently for j ∈ [p], where z∗ ∈ [k]p is the vector of clustering labels that we aim
to recover. Specializing Algorithm 1 to the clustering problem, we obtain the well-known
Lloyd’s algorithm, which can be summarized as

z
(t)
j = argmin

a∈[k]
∥∥Yj − θ̂a

(
z(t−1))∥∥2

, j ∈ [p],
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where for each z ∈ [k]p , we use the notation

θ̂a(z) =
∑p

j=1 I{zj = a}Yj∑p
j=1 I{zj = a} , a ∈ [k].

Even though general k-means clustering is known to be NP-hard [7, 27, 64], local conver-
gence of the Lloyd’s iteration can be established under certain data-generating mechanism
[9, 54]. In particular, the recent work [62] shows that under the Gaussian mixture model, the
misclustering error of z(t) in the Lloyd’s iteration linearly converges to the minimax optimal
rate. In this section, we show that our theoretical framework developed in Section 3 leads to
a result that is comparable to the one in [62].

4.1. Conditions. To analyze the algorithmic convergence, we note that μj(B
∗, a) =

νj (B
∗, a) = θ∗

a , 	j(a, b)2 = ‖θ∗
a − θ∗

b ‖2, �(z, z∗) = ∑p
j=1 ‖θ∗

zj
− θ∗

z∗
j
‖2, and 	min =

min1≤a �=b≤k ‖θ∗
a − θ∗

b ‖ in the current setting. The error terms that we need to control are

Fj (a, b; z) = 〈
εj , θ̂a

(
z∗) − θ̂a(z) − θ̂b

(
z∗) + θ̂b(z)

〉
,

Gj (a, b; z) = 1

2

(∥∥θ∗
a − θ̂a(z)

∥∥2 − ∥∥θ∗
a − θ̂a

(
z∗)∥∥2 − ∥∥θ∗

a − θ̂b(z)
∥∥2 + ∥∥θ∗

a − θ̂b

(
z∗)∥∥2)

,

Hj (a, b) = 1

2

(∥∥θ∗
a − θ̂a

(
z∗)∥∥2 − ∥∥θ∗

a − θ̂b

(
z∗)∥∥2 + ∥∥θ∗

a − θ∗
b

∥∥2)
.

The following lemma controls the error terms Fj (a, b; z), Gj(a, b; z) and Hj(a, b).

LEMMA 4.1. Assume that mina∈[k]
∑p

j=1 I{z∗
j = a} ≥ αp

k
and τ ≤ 	2

minαp

2k
for some con-

stant α > 0. Then, for any C′ > 0, there exists a constant C > 0 only depending on α and C′
such that

max{z:�(z,z∗)≤τ }

p∑
j=1

max
b∈[k]\{z∗

j }
Fj (z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ C
k2(kd/p + 1)

	2
min

(
1 + k(d/p + 1)

	2
min

)
,

(31)

max{z:�(z,z∗)≤τ } max
T ⊂[p]

τ

4	2
min|T | + τ

∑
j∈T

max
b∈[k]\{z∗

j }
Gj(z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ C

(
kτ

p	2
min

+ k(d + p)

p	2
min

+ k2(d + p)2

p2	4
min

)
,

(32)

and

(33) max
j∈[p] max

b∈[k]\{z∗
j }

|Hj(z
∗
j , b)|

	j(z
∗
j , b)2 ≤ C

(
k(d + logp)

p	2
min

+
√

k(d + logp)

p	2
min

)
,

with probability at least 1 − p−C′
.

From the bounds (31)–(33), we can see that a sufficient condition that Conditions A, B and
C hold is τ

p	2
min/k

→ 0 and

(34)
	2

min

k2(kd/p + 1)
→ ∞.
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In fact, under this sufficient condition, we can set δ = δp to be some sequence δp converging
to 0 in Conditions A, B and C.

Next, we need to control ξideal(δ) in Condition D. This is given by the following lemma.

LEMMA 4.2. Assume
	2

min
log k+kd/p

→ ∞, p/k → ∞, and mina∈[k]
∑p

j=1 I{z∗
j = a} ≥ αp

k

for some constant α > 0. Then, for any sequence δp = o(1), we have

ξideal(δp) ≤ p exp
(
−(

1 + o(1)
)	2

min

8

)
,

with probability at least 1 − exp(−	min).

We note that the signal condition
	2

min
log k+kd/p

→ ∞ required by Lemma 4.2 is implied by
the stronger condition (34). Therefore, we need to require (34) for the Conditions A, B, C
and D to hold simultaneously.

4.2. Convergence. With the help of Lemma 4.1 and Lemma 4.2, we can specialize The-
orem 3.1 into the following result.

THEOREM 4.1. Assume (34) holds, p/k → ∞, and mina∈[k]
∑p

j=1 I{z∗
j = a} ≥ αp

k
for

some constant α > 0. Suppose z(0) satisfies

(35) �
(
z(0), z∗) = o

(
p	2

min

k

)
,

with probability at least 1 − η. Then we have

�
(
z(t), z∗) ≤ p exp

(
−(

1 + o(1)
)	2

min

8

)
+ 1

2
�
(
z(t−1), z∗)

for all t ≥ 1,

with probability at least 1 − η − exp(−	min) − p−1.

REMARK 4.1. Our result is comparable to the main result of [62]. The main difference
is that the convergence analysis in [62] is for the misclustering error, defined by

(36) Misclust
(
z, z∗) = 1

p

p∑
j=1

I
{
zj �= z∗

j

}
,

while Theorem 4.1 is established for an �2 type loss function, which is more natural in our
general framework. The main condition of Theorem 4.1 is the signal requirement (34). Inter-
estingly, this is exactly the same condition used in [62]. On the other hand, we only require
k = o(p) for the number of clusters allowed, whereas [62] assumes a slightly stronger condi-
tion k = o(p/(logp)1/3).

In the context of clustering, the loss function (36) may be more natural than �(z, z∗). Given
the relation that

Misclust
(
z, z∗) ≤ �(z, z∗)

p	2
min

,

we immediately obtain the following corollary on the misclustering error.
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COROLLARY 4.1. Assume (34) holds, p/k → ∞, and mina∈[k]
∑p

j=1 I{z∗
j = a} ≥ αp

k

for some constant α > 0. Suppose z(0) satisfies (35) with probability at least 1 − η. Then we
have

(37) Misclust
(
z(t), z∗) ≤ exp

(
−(

1 + o(1)
)	2

min

8

)
+ 2−t for all t ≥ 1,

with probability at least 1 − η − exp(−	min) − p−1.

According to a lower bound result in [62], the quantity exp(−(1 + o(1))
	2

min
8 ) is the mini-

max rate of recovering z∗ with respect to the loss function Misclust(z, z∗) under the Gaussian
mixture model. Since Misclust(z, z∗) takes value in the set {j/p : j ∈ [p] ∪ {0}}, the term 2−t

in (37) is negligible as long as 2−t = o(p−1). We therefore can claim

Misclust
(
z(t), z∗) ≤ exp

(
−(

1 + o(1)
)	2

min

8

)
for all t ≥ 3 logp.

In other words, the minimax rate is achieved after at most �3 logp� iterations.

4.3. Initialization. To close this section, we discuss how to initialize Lloyd’s algorithm.
In the literature, this is usually done by spectral methods [9, 54, 62]. We consider the fol-
lowing variation that is particularly suitable for Gaussian mixture models. Our initialization
procedure has two steps:

1. Perform a singular value decomposition on Y , and obtain Y = ∑p∧n
l=1 d̂l ûl v̂

T
l with d̂1 ≥

· · · ≥ d̂p∧n ≥ 0, {ûl}l∈[p∧n] ∈ R
d and {v̂l}l∈[p∧n] ∈ R

p . With Û = (û1, . . . , ûk) ∈ R
d×k , we

define

(38) μ̂ = ÛT Y ∈ R
k×p.

2. Find some β
(0)
1 , . . . , β

(0)
k ∈ R

k and z(0) ∈ [k]p that satisfy

(39)
p∑

j=1

∥∥μ̂j − β
(0)

z
(0)
j

∥∥2 ≤ M min
β1,...,βk∈Rk

z∈[k]p

p∑
j=1

‖μ̂j − βzj
‖2,

where μ̂j is the j th column of μ̂.

The first step (38) serves as a dimensionality reduction procedure, which reduces the di-
mension of data from d to k. Then the columns of μ̂ are collected to compute the M-
approximation of the k-means objective in (39). We note that approximation of the k-means
objective can be computed efficiently in polynomial time [8, 53, 55]. For example, the k-
means++ algorithm [8] can efficiently solve (39) with M = O(logk). However, we shall treat
M flexible here, and its value will be reflected in the error bound of z(0). The second step (39)
can also be replaced by a greedy clustering algorithm used in [43]. The theoretical guarantee
of z(0) is given in the following proposition.

PROPOSITION 4.1. Assume mina∈[k]
∑p

j=1 I{z∗
j = a} ≥ αp

k
for some constant α > 0 and

	2
min/((M + 1)k2(1 + d/p)) → ∞. For any C′ > 0, there exists a constant C > 0 only

depending on α and C′ such that

(40) min
π∈�k

�
(
π ◦ z(0), z∗) ≤ C(M + 1)k(p + d),

with probability at least 1 − e−C′(p+d), where �k denotes the set of permutations on [k].
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We remark that a signal to noise ratio condition that is sufficient for both the conclusions
of Proposition 4.1 and Theorem 4.1 is given by

(41)
	2

min

(M + 1)k2(kd/p + 1)
→ ∞,

which is almost identical to (34). Note that the clustering structure is only identifiable up
to a label permutation, and this explains the necessity of the minimum over �k in (40).
In other words, (40) implies that there exists some π ∈ �k , such that �(z(0), π−1 ◦ z∗) ≤
C(M + 1)k2(p + d). Then, under the condition (41), (35) is satisfied with z∗ replaced by
π−1 ◦ z∗. Therefore, Theorem 4.1 implies that �(z(t), π−1 ◦ z∗) converges to the minimax
error with a linear rate.

5. Sign recovery in compressed sensing. We consider a regression model Y = Xβ∗ +
w ∈ R

n, where X ∈ R
n×p is a random design matrix with i.i.d. entries Xij ∼ N (0,1), and

w is an independent noise vector with i.i.d. entries wi ∼ N (0,1). Our goal is to recover the
signs of the regression coefficients β∗

j ’s. Formally speaking, we assume

z∗ ∈Zs =
{
z ∈ {−1,0,1}p :

p∑
j=1

|zj | = s

}
,

and β∗ ∈ Bz∗,λ, where for some z ∈ {−1,0,1}p and some λ > 0, the space Bz,λ is defined by

Bz,λ =
{
β ∈ R

p : βj = zj |βj |, min{j∈[p]:zj �=0} |βj | ≥ λ
}
.

The problem is to estimate the sign vector z∗. A closely related problem is support recovery,
which is equivalent to estimating the vector {|z∗

j |}j∈[p]. This problem has received much
attention in the literature of compressed sensing, where one usually has control over the
distribution of the design matrix. Necessary and sufficient conditions on (n,p, s, λ) for exact
support recovery have been derived in [5, 36, 77, 78, 82, 83] and references therein. Recently,
the minimax rate of partial support recovery with respect to the Hamming loss has been
derived in [72]. Their results can be easily modified to the estimation of the sign vector z∗ as
well. We will state the lower bound result in [72] as our benchmark. To do that, we need to
introduce the normalized Hamming loss

H(s)

(
z, z∗) = 1

s
h
(
z, z∗) = 1

s

p∑
j=1

I
{
zj �= z∗

j

}
.

We also define the signal-to-noise ratio of the problem by

SNR = λ
√

n

2
− log p−s

s

λ
√

n
.(42)

THEOREM 5.1 (Ndaoud and Tsybakov [72]). Assume lim sup s/p < 1
2 and s logp ≤ n.

If SNR → ∞, we have

inf
ẑ

sup
z∗∈Zs

sup
β∗∈Bz∗,λ

EH(s)

(̂
z, z∗) ≥ exp

(
−(1 + o(1))SNR2

2

)
− 4e−s/8.

Otherwise, if SNR = O(1), we then have

inf
ẑ

sup
z∗∈Zs

sup
β∗∈Bz∗,λ

EH(s)

(̂
z, z∗) ≥ c,

for some constant c > 0.
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We remark that the lower bound result in [72] is stated in a more general nonasymptotic
form. Here, we choose to work out its asymptotic formula (by Lemma G.2) so that we can
better compare the lower bound with the upper bound rate achieved by our algorithm. In
[72], the minimax rate is achieved by a thresholding procedure that requires sample splitting.
Though theoretically sound, the requirement of splitting the data into two halves may not
be appealing in practice. This is where our general Algorithm 1 comes. We will show that
Algorithm 1 can achieve the minimax rate without sample splitting.

Our analysis is focused in the regime where SNR → ∞, which is necessary for consistency
under the loss H(s)(̂z, z

∗) according to Theorem 5.1. Specializing Algorithm 1 to the current
setting, we obtain the following iterative procedure:

(43) z
(t)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
XT

j Y − ∑
l∈[p]\{j} β̂l(z

(t−1))XT
j Xl

‖Xj‖2 > t(Xj ),

0, −t (Xj ) ≤ XT
j Y − ∑

l∈[p]\{j} β̂l(z
(t−1))XT

j Xl

‖Xj‖2 ≤ t (Xj ),

−1,
XT

j Y − ∑
l∈[p]\{j} β̂l(z

(t−1))XT
j Xl

‖Xj‖2 < −t (Xj )

j ∈ [p],

where t (Xj ) is defined by (16). Here, for some z ∈ {−1,0,1}p , we use the notation

β̂(z) = argmin
{β∈Rp :βj=βj |zj |}

‖y − Xβ‖2.

In other words, β̂(z) is the least-squares solution on the support of z. The formula (43) re-
sembles the thresholding procedure proposed in [72]. In [72], β̂l(z

(t−1)) is replaced by some
estimator β̂l computed from an independent data set. In comparison, we use β̂l(z

(t−1)), and
thus avoid sample splitting. The iteration (43) is also different from existing algorithms in
the literature for support/sign recovery in compressed sensing. For example, the popular it-
erative hard thresholding algorithm [17] updates the regression coefficients with a gradient
step instead of a full least-squares step. The hard thresholding pursuit algorithm [37] has a
full least-squares steps, but updates the support by choosing the s variables with the largest
absolute values.

5.1. Conditions. For any j ∈ [p], Tj is the local statistic defined in (13) and it can be
decomposed as Tj = μj(B

∗, z∗
j ) + εj , with εj = ‖Xj‖−1XT

j w ∼ N (0,1). To analyze the al-

gorithmic convergence, we need to specialize the abstract objects ‖μj(B
∗, z∗

j )−μj(B
∗, b)‖2,

	j(z
∗
j , b)2, and �(z, z∗) into the current setting. With the formulas (14) and (15), we have

∥∥μj

(
B∗, z∗

j

) − μj

(
B∗, b

)∥∥2 =

⎧⎪⎪⎨⎪⎪⎩
λ2‖Xj‖2m z∗

j = 0 and b �= 0m∣∣β∗
j

∣∣2‖Xj‖2, z∗
j �= 0 and b = 0,

4
∣∣β∗

j

∣∣2‖Xj‖2, z∗
j b = −1,

(44)

which leads to the formula of the loss function

�
(
z, z∗) =

p∑
j=1

(
λ2‖Xj‖2

I
{
z∗
j = 0, zj �= 0

} + ∣∣β∗
j

∣∣2‖Xj‖2
I
{
z∗
j �= 0, zj = 0

}
+ 4

∣∣β∗
j

∣∣2‖Xj‖2
I
{
zj z

∗
j = −1

})
.

By (22), we have the relation

(45) H(s)

(
z, z∗) ≤ �(z, z∗)

s	2
min

,
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where 	2
min = λ2 minj∈[p] ‖Xj‖2 in the current setting. Lastly, the formula of 	j(z

∗
j , b)2 is

given by

	j

(
z∗
j , b

)2 =

⎧⎪⎪⎨⎪⎪⎩
4t (Xj )

2‖Xj‖2, z∗
j = 0 and b �= 0,

4t (Xj )
(∣∣β∗

j

∣∣ − t (Xj )
)‖Xj‖2, z∗

j �= 0 and b = 0,

8t (Xj )
∣∣β∗

j

∣∣‖Xj‖2, z∗
j b = −1.

(46)

One may question whether we always have 	j(z
∗
j , b)2 > 0 for all b �= z∗

j and j ∈ [p]. We
note that this property is guaranteed by Lemma G.3 with high probability.

Next, we analyze the error terms. In the current setting, they are

Fj (a, b; z) = 0,

Gj (a, b; z) = 2(a − b)t (Xj )
∑

l∈[p]\{j}

(
β̂l(z) − β̂l

(
z∗))

XT
j Xl,

Hj (a, b) = 2(a − b)t (Xj )
∑

l∈[p]\{j}

(
β̂l

(
z∗) − β∗)

XT
j Xl.

LEMMA 5.1. Assume s logp ≤ n and τ ≤ C0snλ2 for some constant C0 > 0. Then, for
any C′ > 0, there exists a constant C > 0 only depending on C0 and C′ such that

(47)

max{z:�(z,z∗)≤τ } max
T ⊂[p]

τ

4	2
min|T | + τ

× ∑
j∈T

max
b∈{−1,0,1}\{z∗

j }
Gj(z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ C
s(logp)2

n

(
1 + 1

nλ2

)
max
j∈[p]

[ |β∗
j |2

(|β∗
j | − t (Xj ))2 ∨ λ2

t (Xj )2

]
,

and

(48) max
j∈[p] max

b∈{−1,0,1}\{z∗
j }

|Hj(z
∗
j , b)|

	j(z
∗
j , b)2 ≤ C

√
s(logp)2

n

1

minj∈[p]
√

n||β∗
j | − t (Xj )| ,

with probability at least 1 − p−C′
.

The two error bounds (47) and (48) are complicated. However, by Lemma G.3, if we
additionally assume lim sup s/p < 1

2 , SNR → ∞, and s(logp)4 = o(n), the right-hand sides
of (47) and (48) can be shown to be of order o((logp)−1). Therefore, Conditions A, B and C
hold with some δ = δp = o((logp)−1).

The following lemma controls ξideal(δ) in Condition D.

LEMMA 5.2. Assume lim sup s/p < 1
2 , s logp ≤ n, and SNR → ∞. Then for any se-

quence δp = o((logp)−1), we have

ξideal(δp) ≤ snλ2 exp
(
−(1 + o(1))SNR2

2

)
,

with probability at least 1 − exp(−SNR) − p−1.
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5.2. Convergence. With Lemma 5.1 and Lemma 5.2, we then can specialize Theorem 3.1
into the following result.

THEOREM 5.2. Assume lim sup s/p < 1
2 , s(logp)4 = o(n), and SNR → ∞. Suppose

�(z(0), z∗) ≤ C0snλ2 with probability at least 1 − η for some constant C0 > 0. Then we have

�
(
z(t), z∗) ≤ snλ2 exp

(
−(1 + o(1))SNR2

2

)
+ 1

2
�
(
z(t−1), z∗)

for all t ≥ 1,

with probability at least 1 − η − exp(−SNR) − 2p−1.

The relation (45) and a simple concentration result for minj∈[p] ‖Xj‖2 immediately im-
plies a convergence result for the loss H(s)(z, z

∗).

COROLLARY 5.1. Assume lim sup s/p < 1
2 , s(logp)4 = o(n), and SNR → ∞. Suppose

�(z(0), z∗) ≤ C0snλ2 with probability at least 1 − η for some constant C0 > 0. Then we have

(49) H(s)

(
z(t), z∗) ≤ exp

(
−(1 + o(1))SNR2

2

)
+ 2−t for all t ≥ 1,

with probability at least 1 − η − exp(−SNR) − 2p−1.

Since the loss function H(s)(z, z
∗) takes value in the set {j/s : j ∈ [p] ∩ {0}}, the term 2−t

in (49) is negligible as long as 2−t = o(s−1). We therefore can claim

H(s)

(
z(t), z∗) ≤ exp

(
−(1 + o(1))SNR2

2

)
for all t ≥ 3 log s,

when s → ∞. If instead we have s = O(1), then any t → ∞ will do. This implies after at
most �3 logp� iterations, Algorithm 1 achieves the minimax rate.

REMARK 5.1. The leading term of the nonasymptotic minimax lower bound in [72] with
respect to the loss H(s)(z, z

∗) takes the form of ψ(n,p, s, λ,0)/s, where

(50) ψ(n,p, s, λ, δ) = sP
(
ε > (1 − δ)‖ζ‖(

λ − t (ζ )
)) + (p − s)P

(
ε > (1 − δ)‖ζ‖t (ζ )

)
with ε ∼ N (0,1) and ζ ∼ N (0, In) independent of each other. By scrutinizing the proof of
Lemma 5.2, we can also write (49) as

H(s)

(
z(t), z∗)

� ψ(n,p, s, λ, δp)/s + 2−t for all t ≥ 1,

with high probability with some δp = o((logp)−1).

5.3. Initialization. Our final task in this section is to provide an initialization procedure
that satisfies the bound �(z(0), z∗) ≤ C0snλ2 with high probability. We consider a simple
procedure that thresholds the solution of the square-root SLOPE [15, 18, 31, 81]. It has the
following two steps:

1. Compute

(51) β̃ = argmin
β∈Rp

(‖Y − Xβ‖ + A‖β‖SLOPE
)
,

where the penalty takes the form ‖β‖SLOPE = ∑p
j=1

√
log(2p/j)|β|(j). Here |β|(1) ≥ |β|(2) ≥

· · · ≥ |β|(p) is a nonincreasing ordering of |β1|, |β2|, . . . , |βp|.
2. For any j ∈ [p], compute z

(0)
j = sign(β̃j )I{|β̃j | ≥ λ/2}.

The theoretical guarantee of z(0) is given by the following proposition.
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PROPOSITION 5.1. Assume lim sup s/p < 1
2 , s logp ≤ n, and SNR → ∞. For some suf-

ficiently large constant A > 0 in (51) and any constant C′ > 0, there exist some C0 and C1
only depending on A and C′, such that

�
(
z(0), z∗) ≤ C0snλ2,

with probability at least 1 − e−C1s log(ep/s) − p−C′
.

6. Multireference alignment. Multireference alignment [6, 13] is an important prob-
lem in mathematical chemistry and captures fundamental aspects of applications such as
cryogenic electron microscopy (cryo-EM) [38, 79]. In this problem, we have observations
Yj ∼ N (Z∗

j θ∗, Id) for j ∈ [p] with θ∗ ∈ R
d and Z∗

j ∈ Cd . Here, Cd ⊂ {0,1}d×d is the set of
index cyclic shifts. For any U ∈ Cd , there exists some integer t such that (Uv)i = vi+t (modd)

for any vector v ∈ R
d . The literature for this problem has been focused on the recovery of

the common signal parameter θ∗ ∈ R
d shared by the p observations [2, 13, 14, 16, 68, 75].

To the best of our knowledge, optimal estimation of the cyclic shifts Z∗
1 , . . . ,Z∗

p still remains
an open problem, and this is the focus of the current section. As is already discussed in Sec-
tion 2, the cyclic shifts can be recovered by the general iterative algorithm. Before giving the
statistical guarantee of the algorithm, we first present a minimax lower bound of the problem.
We define

	2
min = min

U∈Cd

∥∥(Id − U)θ∗∥∥2
.

This quantity plays the role of the minimal signal strength of the problem, and is very different
from the signal strength required for estimating θ∗ in [75]. Note that 	2

min is a function of
θ∗, and thus captures the difficulty of the problem for each instance of θ∗ ∈ R

d . For example,
if each coordinate of θ∗ takes the same value, the corresponding 	2

min = 0, and thus it is
impossible to recover the shifts. The quantity 	2

min is thus a characterization of the diversity
of the sequence {θ∗

i }.
THEOREM 6.1. If 	2

min → ∞, we have

inf
Ẑ

sup
Z∗

E min
U∈Cd

1

p

p∑
j=1

I
{
ẐjU �= Z∗

j

} ≥ exp
(
−(1 + o(1))	2

min

8

)
.

Otherwise, if 	2
min = O(1), we then have

inf
Ẑ

sup
Z∗

E min
U∈Cd

1

p

p∑
j=1

I
{
ẐjU �= Z∗

j

} ≥ c,

for some constant c > 0.

Our main result in this section shows that the minimax lower bound in Theorem 6.1 can be
achieved by an efficient algorithm adaptively over all θ∗ ∈ R

d under the signal-to-noise ratio

condition
	2

min
d/p+√

d logd
→ ∞. Specializing Algorithm 1 to the current problem, the iterative

procedure is given by the following formula:

(52) Z
(t)
j = argmin

U∈Cd

∥∥Yj − Uθ̂
(
Z(t−1))∥∥2

,

where

θ̂ (Z) = 1

p

p∑
j=1

ZT
j Yj .

The computation of (52) is straightforward given that |Cd | = d and one can simply evaluate
‖Yj − Uθ̂(Z(t−1))‖2 for each U ∈ Cd .
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6.1. Conditions. To analyze the algorithmic convergence, we note that μj(B
∗,U) =

νj (B
∗,U) = Uθ∗, 	j(U,V )2 = ‖(U − V )θ∗‖2 and �(Z,Z∗) = ∑p

j=1 ‖(Zj − Z∗
j )θ∗‖2 un-

der the current setting. The error terms that we need to control are

Fj (U,V ;Z) = 〈
εj , (U − V )

(
θ̂
(
Z∗) − θ̂ (Z)

)〉
,

Gj (U,V ;Z) = 〈
θ̂ (Z) − θ̂

(
Z∗)

,
(
V T U − Id

)
θ∗〉

,

Hj (U,V ) = 〈
θ̂
(
Z∗) − θ∗,

(
V T U − Id

)
θ∗〉

.

Here, the noise vector is given by εj = Yj −Z∗
j θ∗ ∼N (0, Id). The error terms are controlled

by the following lemma.

LEMMA 6.1. For any C′ > 0, there exists a constant C > 0 only depending on C′ such
that

max{Z:�(Z,Z∗)≤τ }

p∑
j=1

max
U∈Cd\{Z∗

j }
Fj (Z

∗
j ,U ;Z)2‖μj(B

∗,U) − μj(B
∗,Z∗

j )‖2

	j(Z
∗
j ,U)4�(Z,Z∗)

≤ C

(
(logd + d/p) logd

	4
min

+ τ(logd + d/p)

p	4
min

)
,

(53)

max{Z:�(Z,Z∗)≤τ } max
T ⊂[p]

τ

4	2
min|T | + τ

× ∑
j∈T

max
U∈Cd\{Z∗

j }
Gj(Z

∗
j ,U ;Z)2‖μj(B

∗,U) − μj(B
∗,Z∗

j )‖2

	j(Z
∗
j ,U)4�(Z,Z∗)

≤ C

(
τ logd

p	4
min

+ τ 2

p2	4
min

)
,

(54)

and

(55) max
j∈[p] max

U∈Cd\{Z∗
j }

|Hj(Z
∗
j ,U)|

	j(Z
∗
j ,U)2 ≤ C

√
d

p	2
min

,

with probability at least 1 − e−C′d .

From the bounds (53)–(55), we can see that a sufficient condition that Conditions A, B and
C hold is τ = o(p	2

min) and

(56)
	2

min

logd + d/p
→ ∞.

In fact, when d = O(1), the above condition is reduced to 	2
min → ∞, which is the necessary

condition for consistency by Theorem 6.1.
Next, we need to bound ξideal(δ) in Condition D. This is given by the following lemma.

LEMMA 6.2. Assume
	2

min
logd+d/p

→ ∞. Then, for any sequence δp = o(1), we have

ξideal(ξp) ≤ p exp
(
−(

1 + o(1)
)	2

min

8

)
,

with probability at least 1 − exp(−	min).

To summarize, under the signal-to-noise ratio condition (56) and the initialization condi-
tion τ = o(p	2

min), Conditions A, B, C and D hold simultaneously.
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6.2. Convergence. With the help of Lemma 6.1 and Lemma 6.2, we can specialize The-
orem 3.1 into the following result.

THEOREM 6.2. Assume (56) holds. Suppose Z(0) satisfies

(57) �
(
Z(0),Z∗) = o

(
p	2

min
)
,

with probability at least 1 − η. Then we have

�
(
Z(t),Z∗) ≤ p exp

(
−(

1 + o(1)
)	2

min

8

)
+ 1

2
�
(
Z(t−1),Z∗)

for all t ≥ 1,

with probability at least 1 − η − exp(−	min) − e−d .

By the inequality 1
p

∑p
j=1 I{Zj �= Z∗

j } ≤ �(Z,Z∗)
p	2

min
, we immediately obtain the following

corollary for the Hamming loss.

COROLLARY 6.1. Assume (56) holds. Suppose Z(0) satisfies (57) with probability at
least 1 − η. Then we have

(58)
1

p

p∑
j=1

I
{
Z

(t)
j �= Z∗

j

} ≤ exp
(
−(

1 + o(1)
)	2

min

8

)
+ 2−t for all t ≥ 1,

with probability at least 1 − η − exp(−	min) − e−d .

According to our lower bound result given by Theorem 6.1, the quantity exp(−(1 +
o(1))

	2
min
8 ) is the minimax rate. Moreover, since the loss function 1

p

∑p
j=1 I{Zj �= Z∗

j } takes

value in the set {j/p : j ∈ [p] ∪ {0}}, the term 2−t in (58) is negligible as long as 2−t =
o(p−1). We therefore can claim

1

p

p∑
j=1

I
{
Z

(t)
j �= Z∗

j

} ≤ exp
(
−(

1 + o(1)
)	2

min

8

)
for all t ≥ 3 logp.

In other words, the minimax rate is achieved after at most �3 logp� iterations.

6.3. Initialization. To close this section, we discuss a simple initialization procedure that
achieves the condition (57). The idea is to find the cyclic shifts for all j ≥ 2 by using that of
j = 1 as a reference. To be specific, we define Z

(0)
1 = Id . For each j ≥ 2, compute

(59) Z
(0)
j = argmin

U∈Cd

∥∥Y1 − ZT
j Yj

∥∥2
.

The estimator (59) has also been discussed by [13]. It is known that (59) does not have optimal
statistical error. However, the performance of (59) is sufficient for the purpose of initializing
the iterative algorithm (52).

PROPOSITION 6.1. There exists some C > 0, such that for any η > 0, we have

min
U∈Cd

p∑
j=1

∥∥(
Z

(0)
j U − Z∗

j

)
θ∗∥∥2 ≤ C

p
√

d logd

η
,

with probability at least 1 − η.
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Proposition 6.1 shows that Z(0) achieves the rate O(p
√

d logd) for estimating Z∗ up to a
global cyclic shift U ∈ Cd . Since Yj = Z∗

j θ∗ + εj = Z∗
j UT Uθ∗ + εj , the ambiguity of this

global cyclic shift cannot be avoided.
In order that the initialization condition (57) is satisfied, we shall consider the signal-to-

noise ratio condition

(60)
	2

min√
d logd + d/p

→ ∞.

Note that (60) implies (56) and thus the algorithmic convergence holds. Given the condition

(60), we can take η =
√

d logd

	2
min

in Proposition 6.1. Then, under (60), we have

min
U∈Cd

p∑
j=1

∥∥(
Z

(0)
j U − Z∗

j

)
θ∗∥∥2 = o

(
p	2

min
)
,

with probability at least 1−
√

d logd

	2
min

. This means there exists some U ∈ Cd , such that the initial

estimator {Z(0)
j U} recovers {Z∗

j } after a global shift with an error that satisfies the condition

(57). Therefore, Corollary 6.1 implies that minU∈Cd

1
p

∑p
j=1 I{Z(t)

j U �= Z∗
j } converges to the

minimax error with a linear rate under the signal-to-noise ratio condition (60).

7. Group synchronization. In this section, we study a general class of problems called
group synchronization. Given a group (G,◦) and group elements g1, . . . , gp ∈ G, we observe
noisy versions of gi ◦ g−1

j , and the goal is to recover the group elements g1, . . . , gp. It turns
out our general framework is particularly suitable to solve group synchronization, at least for
discrete groups. We will consider the following three representative examples:

1. Z2 synchronization. This is the simplest example of group synchronization, and it is
closely related to the more general phase/angular synchronization problem [12]. The group
only consists of two elements {−1,1}, and the group operation is the ordinary product.

2. Z/kZ synchronization. Also known as joint alignment from pairwise differences, Z/kZ

synchronization was first considered by [23]. The group consists of elements {0,1,2, . . . , k −
1} with group operation g ◦ h = g + h(mod k).

3. Permutation synchronization. As one of the most popular methods for multiple im-
age alignment, permutation synchronization was first proposed by [73]. In this example, the
group contains all permutations of [d], and the group operation is the composition of two
permutations.

Given its importance in applied mathematics and engineering, group synchronization has
been extensively studied in the literature [3, 4, 12, 24, 35, 56, 58, 59, 76, 89, 95]. Most
approaches in the literature are based on semidefinite programming (SDP) and other forms
of convex relaxations. In terms of statistical guarantees, the literature is mainly focused on
conditions of exact recovery. In fact, for the three examples that we list above, the minimax
rates are unknown with Z2 synchronization being the only exception. In this section, we
will show Algorithm 1 can be specialized to the three models and can achieve the minimax
rate of each one. Even for Z2 synchronization, our result offers some new insight of the
problem. The minimax rate of Z2 synchronization is achieved by an SDP procedure [35] in
the literature. In comparison, Algorithm 1 leads to a much simpler power method, which is
easier to implement in practice.

There are several different options of noise models in the literature. The most standard and
popular choice is Yij = gi ◦ g−1

j + σWij with Wij being a Gaussian element. However, it is
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also natural to restrict the noisy observation of gi ◦ g−1
j to be an element of the group G. One

way to achieve this is the noise model [80],

(61) Yij =
{
gi ◦ g−1

j with probability q,

Uniform(G) with probability 1 − q.

Another way is through projection [4]. Namely, Yij = PG(gi ◦ g−1
j + σWij ), where PG is

a projection onto G with respect to the �2 norm. In addition, one can also consider partial
observations on a random graph [24]. As argued in [4], these noise models are all equivalent
to

(62) Yij = λgi ◦ g−1
j + Wij ,

with some λ ∈ R depending on σ or q and some additive noise Wij that is sub-Gaussian.2

For simplicity, we thus consider the noise model (62) with Wij being a standard Gaussian
element. The results we obtain in this section can all be extended with a sub-Gaussian Wij to
include more general noise settings.

In the rest of this section, we focus on the setting of Z2 synchronization. The results of
Z/kZ synchronization and permutation synchronization will be given in the Supplementary
Material [46] due to page limit. Consider the observations Yij ∼ N (λ∗z∗

i z
∗
j ,1) independently

for all 1 ≤ i < j ≤ p with z∗
i ∈ {−1,1} and λ∗ ∈ R. Using matrix notation, we can write

Y = λ∗z∗z∗T +W , where W is a symmetric matrix such that Wij = Wji ∼ N (0,1) for all 1 ≤
i < j ≤ p and Wii = 0 for all i ∈ [p]. This is the simplest group synchronization problem,
and is closely related to the problem of angular synchronization [12]. The minimax lower
bound of this problem has been recently obtained by [35].

THEOREM 7.1 (Fei and Chen [35]). If pλ∗2 → ∞, we have

inf
ẑ

sup
z∗

E

(
1

p

p∑
j=1

I
{̂
zj �= z∗

j

} ∧ 1

p

p∑
j=1

I
{̂
zj �= −z∗

j

}) ≥ exp
(
−(1 + o(1))pλ∗2

2

)
.

Otherwise, if pλ∗2 = O(1), we then have

inf
ẑ

sup
z∗

E

(
1

p

p∑
j=1

I
{̂
zj �= z∗

j

} ∧ 1

p

p∑
j=1

I
{̂
zj �= −z∗

j

}) ≥ c,

for some constant c > 0.

The result is coherent with the necessary condition of weak recovery (i.e., to find a ẑ that is
correlated with z∗) pλ∗2 → ∞ and strong/exact recover (i.e., to find a ẑ that equals z∗ up to a
sign) pλ∗2 > 2 logp in the literature [12, 76]. It was proved by [35] that the minimax rate can
be achieved by a semidefinite programming (SDP). In this section, we show that a simpler
power iteration method, a special case of our general iterative algorithm, also achieves this
minimax rate.

As is discussed in Section 2, the Z2 synchronization model can be equivalently represented
as Y = z∗(β∗)T + W with β∗ = λ∗z∗ ∈ Bz∗ = {β = λz∗ : λ ∈ R}. The resulting iterative
algorithm can be summarized as

(63) z
(t)
j = argmin

a∈{−1,1}
∥∥Yj − aβ̂

(
z(t−1))∥∥2

,

2The equivalence between the projection noise and (62) is only true for some special groups
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where for any z ∈ {−1,1}p , we use the notation

β̂(z) = zT Yz

p2 z.

The iterative procedure (63) is equivalent to the power method (20). The power method enjoys
good theoretical properties in the setting of angular synchronization [94], but whether it can
achieve the minimax rate of Z2 synchronization is unknown in the literature.

7.1. Conditions. To analyze the algorithmic convergence of (63), we note that ‖β∗‖2 =
|λ∗|2p. Then μj(B

∗, a) = νj (B
∗, a) = aβ∗, 	j(a, b)2 = (a − b)2‖β∗‖2, 	2

min =
mina �=b 	j (a, b)2 = 4‖β∗‖2, and

�
(
z, z∗) =

p∑
j=1

(
zj − z∗

j

)2∥∥β∗∥∥2 = p
∣∣λ∗∣∣2 p∑

j=1

(
zj − z∗

j

)2
,(64)

under the current setting. The error terms that we need to control are given by the formulas
(26)–(28). Here, the noise vector is given by εj = Wj , the j th column of the error matrix W .
The error terms are controlled by the following lemma.

LEMMA 7.1. For any C′ > 0, there exists a constant C > 0 only depending on C′ such
that

max{z:�(z,z∗)≤τ }

p∑
j=1

max
b∈{−1,1}\{z∗

j }
Fj (z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ C

(
1

pλ∗2 + 1

p2λ∗4

)
,

(65)

max{z:�(z,z∗)≤τ } max
T ⊂[p]

τ

4	2
min|T | + τ

× ∑
j∈T

max
b∈{−1,1}\{z∗

j }
Gj(z

∗
j , b; z)2‖μj(B

∗, b) − μj(B
∗, z∗

j )‖2

	j(z
∗
j , b)4�(z, z∗)

≤ C

(
τ

λ∗2p2 + τ

λ∗4p3

)
,

(66)

and

(67) max
j∈[p] max

b �=z∗
j

|Hj(z
∗
j , b)|

	j(z
∗
j , b)2 ≤ C

1√
pλ∗2

,

with probability at least 1 − e−C′p .

From the bounds (65)–(67), we can see that a sufficient condition that Conditions A, B and
C hold is pλ∗2 → ∞ and τ = o(p2λ∗2). Note that pλ∗2 → ∞ is also the necessary condition
for consistency according to Theorem 7.1.

Next, we need to bound ξideal(δ) in Condition D. This is given by the following lemma.

LEMMA 7.2. Assume pλ∗2 → ∞. Then, for any sequence δp = o(1), we have

ξideal(δp) ≤ p exp
(
−(

1 + o(1)
)pλ∗2

2

)
,

with probability at least 1 − exp(−
√

pλ∗2).
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Again, the same condition pλ∗2 → ∞ is required for Lemma 7.2. Thus, under the condi-
tion pλ∗2 → ∞, Conditions A, B, C and D hold simultaneously.

7.2. Convergence. With the help of Lemma 7.1 and Lemma 7.2, we can specialize The-
orem 3.1 into the following result.

THEOREM 7.2. Assume pλ∗2 → ∞. Suppose z(0) satsifies

(68) �
(
z(0), z∗) = o

(
p2λ∗2)

,

with probability at least 1 − η. Then we have

�
(
z(t), z∗) ≤ p exp

(
−(

1 + o(1)
)pλ∗2

2

)
+ 1

2
�
(
z(t−1), z∗)

for all t ≥ 1,

with probability at least 1 − η − exp(−
√

pλ∗2) − e−p .

By the inequality, 1
p

∑p
j=1 I{zj �= z∗

j } ≤ �(z,z∗)
p2λ∗2 , we immediately obtain the following corol-

lary for the Hamming loss.

COROLLARY 7.1. Assume pλ∗2 → ∞. Suppose z(0) satisfies (68) with probability at
least 1 − η. Then

(69)
1

p

p∑
j=1

I
{
z
(t)
j �= z∗

j

} ≤ exp
(
−(

1 + o(1)
)pλ∗2

2

)
+ 2−t for all t ≥ 1,

with probability at least 1 − η − exp(−
√

pλ∗2) − e−p .

By the property of the Hamming loss, the algorithmic error 2−t is negligible after �3 logp�
iterations, and we have

1

p

p∑
j=1

I
{
z
(t)
j �= z∗

j

} ≤ exp
(
−(

1 + o(1)
)pλ∗2

2

)
for all t ≥ 3 logp.

Thus, the minimax rate is achieved given that the initialization condition (68) is satisfied.

7.3. Initialization. Observe that the expectation of Y has a rank one structure. Thus, a
natural initialization procedure is to extract the information of z∗ by computing the leading
eigenvector of Y . Let û = argmax‖u‖=1 uT Yu, and we define z

(0)
j = sign(ûj ) for all j ∈ [p].

The behavior of ẑ(0) has been analyzed by [3] when pλ∗2 > 2 logp. Without this condition,
we show ẑ(0) can be used as a good initialization for the iterative algorithm.

PROPOSITION 7.1. For any C′ > 0, there exists a constant C > 0 only depending on C′
such that

�
(
z(0), z∗) ∧ �

(
z(0),−z∗) ≤ Cp,

with probability at least 1 − e−C′p .

Proposition 7.1 shows that z(0) achieves the rate O(p) for estimating z∗ up to a change
of sign. Interestingly, the initialization condition (68) is satisfied as long as pλ∗2 → ∞, the
same condition that we use for both the lower bound (Theorem 7.1) and the algorithmic
convergence (7.2). Therefore, by Corollary 7.1, 1

p

∑p
j=1 I{z(t)

j �= z∗
j } ∧ 1

p

∑p
j=1 I{z(t)

j �= −z∗
j }

converges to the minimax rate with a linear rate under the condition pλ∗2 → ∞.
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8. Discussion. In this paper, we show that a number of different discrete structure re-
covery problems can be unified into a single framework, and a general iterative algorithm
is proved to achieve the optimal statistical error rate for each problem. In addition to all the
examples covered by the paper, we expect our framework will lead to applications in many
other statistical models, thanks to the flexibility of the general structured linear models (4).
However, it is also worthwhile to note some important limitations of our proposed framework
in the end of the paper. We compile four major points, listed below:

1. Parameter estimation. While our iterative algorithm is designed for estimating the dis-
crete structure z∗, it also outputs an estimator for the continuous model parameter. A natural
question is whether this estimator enjoys any statistical optimality for estimating B∗. The
answer to this question is a very clear no. As a concrete example, it is known that the k-
means algorithm leads to suboptimal parameter estimation due to the bias resulted from the
clustering error [62]. Instead, for parameter estimation, one should use the EM algorithm
for the Gaussian mixture model [33, 86]. This phenomenon is also known as the Neyman–
Scott paradox in linear mixed models. Basically, for optimal global parameter estimation,
one should integrate out the local latent variables instead of optimizing over them. In general,
the iterative algorithm proposed in the paper is only statistically optimal for recovering the
discrete structure z∗.

2. Models with extremely weak SNR. The examples that we analyze in the paper all ex-
hibit reasonable signal-to-noise ratio behaviors. There are other examples that fit perfectly
in the framework of structured linear models, but do not lead to convergent iterative algo-
rithms. Consider a shuffled regression problem with independent observations xi ∼N (0, Id)

and yi |xz∗
i
∼ N (xT

z∗
i
β∗,1) for i = 1, . . . , n. In this model, the vector z∗ is a label permuta-

tion that links the covariates to the response. To recover z∗, the quantity ‖β∗‖2 serves as the
signal strength of the problem. It was proved by [74] that the recovery of z∗ is only possi-
ble under the signal-to-noise ratio condition ‖β∗‖2 ≥ eO(n). The problem has such a weak
signal strength, and our analysis of the error terms Fj (a, b; z), Gj(a, b; z) and Hj(a, b) sim-
ply breaks down. In fact, statistical recovery of z∗ in polynomial time under the condition
‖β∗‖2 ≥ eO(n) still remains an open problem in the literature.

3. Models with nonlocal discrete structure. Consider a change-point problem Y ∼
N (θ∗, In) with θ∗ having a piecewise constant structure. In other words, there exists
z∗

2, . . . , z
∗
n ∈ {0,1} such that θ∗

i = θ∗
i−1 for all z∗

i = 1. This model can be easily written as
a structured linear model, but there is no suitable iterative algorithm to recover the change-
point structure encoded in z∗

2, . . . , z
∗
n. The reason is the lack of local statistic Ti that is suf-

ficient for z∗
i . The change-point structure is a discrete but nonlocal structure. The amount of

information for z∗
i is dependent on the locations of the previous and the next change points,

which are further determined by other zi ’s. Our iterative algorithm is not suitable for recover-
ing such nonlocal discrete structures. An appropriate algorithm for this problem is dynamic
programming [39].

4. Link function. Though the Gaussianity assumption in the paper can all be relaxed to
sub-Gaussian errors, we still require both the structured linear model (4) and the local statistic
(5) to have additive error structures. This requirement is coherent with the iterative algorithm,
since both iteration steps (8) and (9) are least-squares optimization. Problems such as variable
selection in generalized linear models and ranking in Bradley–Terry–Luce model [19, 63]
involve link functions that are not identity. This poses new challenges in the error analysis in
addition to the modification of the iterative algorithm.

While some of the listed points may be addressed by appropriate extensions of our frame-
work, others may require a fundamentally different approach to the problem. We hope the
above discussion not only highlights the critical features of our proposed framework, but also
leads to potential future research projects in discrete structure recovery.
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SUPPLEMENTARY MATERIAL

Supplement to “Iterative algorithm for discrete structure recovery” (DOI: 10.1214/
21-AOS2140SUPP; .pdf). The supplement [46] includes a few more examples and all the
technical proofs. We first analyze approximate ranking in Appendix A. Z/kZ synchroniza-
tion and permutation synchronization are studied in Appendix B and Appendix C, respec-
tively. We then prove Theorem 3.1 in Appendix D. The rest of the proofs are organized from
Appendix E to Appendix I.
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