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By Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou

University of Chicago, University of Pennsylvania, Yale University and Yale University

In this supplement, we first present additional graphical comparisons of numeric studies.
Then we present proofs of the main results, including the proofs of Theorem 1 for the case
of k = 2, of Theorem 2, and of all main results in Section 3. Moreover, we provide a careful
investigation of key properties of the quantity Jt(p, q) defined in (13), followed by proofs of
auxiliary results.

APPENDIX A: ADDITIONAL GRAPHICS OF NUMERIC RESULTS

A.1. Comparison of Running Times. We compare running times of all six algorithms
mentioned in Section 4 under both Scenarios 1 and 2. The comparison was conducted in
Matlab on a laptop computer with 1.3 GHz Intel Core i5 CPU and 8GB 1600 MHz DDR3
RAM. The implementation of CMM was kindly provided by the original authors.

From both Figure 4 and Figure 5, we can clearly see that CMM is much slower than all
the other methods. Among all the remaining five methods, SCORE and RSC outperform in
speed. However, their advantages in speed come at a cost of statistical accuracy.

A.2. Comparison of Performance of Algorithm 1 with Different τ ’s. We con-
sider Algorithm 1 under Scenarios 1 and 2 with different choices of parameter τ . We let
τ = c(

∑
i,j Ai,j)/n, and vary the value of c among {2, 5, 10, 20, 30, 50}. Shown in Figure 6,

the errors of Algorithm 1 are nearly identical once c is greater than 5.

APPENDIX B: ADDITIONAL PROOFS OF MAIN RESULTS

In order for Lemma 2 to be applied to lower bounding the performance of community
detection in DCBM, we need a version of Lemma 2 that can handle approximately equal
sizes. To be specific, suppose X = (X1, . . . , Xm,
Xm+1, . . . , Xm+m1) have independent Bernoulli entries. Given 1 ≥ p > q ≥ 0 and θ0, θ1, . . . , θm+m1 >
0 such that

(34)
1

m

m∑
i=1

θi,
1

m1

m+m1∑
i=m+1

θi ∈ [1− δ, 1 + δ].

When m and m1 are approximately equal, we are interested in understanding the minimum
possible Type I+II error of testing

(35)

H0 : X ∼
m⊗
i=1

Bern (θ0θip)⊗
m+m1⊗
i=m+1

Bern (θ0θiq)

vs. H1 : X ∼
m⊗
i=1

Bern (θ0θiq)⊗
m+m1⊗
i=m+1

Bern (θ0θip) .
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Fig 4. Comparison of speed for all six methods under Scenario 1 (top), and the same comparison without
CMM displayed (bottom).

The setting of Lemma 2 is a special case where m = m1 and δ = 0.

Lemma 5. Suppose that as m → ∞, 1 < p/q = O(1), pmax0≤i≤2m θ
2
i = o(1), δ = o(1)

and
∣∣∣ mm1
− 1
∣∣∣ = o(1). If θ0m(

√
p−√q)2 →∞,

inf
φ

(PH0φ+ PH1(1− φ)) ≥ exp
(
−(1 + o(1))θ0m(

√
p−√q)2

)
.

Otherwise, there exists a constant c ∈ (0, 1) such that infφ (PH0φ+ PH1(1− φ)) ≥ c.

B.1. Proof of Theorem 1 for k = 2. By the definition of the loss function, n`(z̃, z) ≤
n/2 for any z̃ ∈ [2]n. Therefore, we only need to calculate P(n`(ẑ, z) = m) for 1 ≤ m ≤ n/2.
We will keep using the definitions Γu,v = {i : z(i) = u, z̃(i) = v}, Cu = Γu,1 ∪ Γu,2 and
Γ = Γ1,2 ∪ Γ2,1 for all u, v ∈ [2]. Recall in (24) we have shown

P (L(z̃) > L(z)) ≤
∏
i<j

Ỹij 6=Yij

exp

(
−1

2
θiθj(

√
p−√q)2

)
.
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Fig 5. Comparison of speed for all six methods under Scenario 2 (top), and the same comparison without
CMM displayed (bottom).

Since∑
i<j

Ỹij 6=Yij

θiθj =
∑
i∈Γ1,1

θi
∑
i∈Γ1,2

θi +
∑
i∈Γ1,1

θi
∑
i∈Γ2,1

θi +
∑
i∈Γ1,2

θi
∑
i∈Γ2,1

θi +
∑
i∈Γ2,1

θi
∑
i∈Γ2,2

θi

≥
∑
i∈Γ

θi

(
(1− δ)n−

∑
i∈Γ

θi

)
,

we have

(36) P (L(z̃) > L(z)) ≤ exp

(
−1

2

∑
i∈Γ

θi

(
(1− δ)n−

∑
i∈Γ

θi

)
(
√
p−√q)2

)
.

Denote m′ = ηn for some η = o(1) satisfying η−1 = o(I). We define τ exactly the same way
as in Section 5.2. We use the notation

Rt =
1

n

n∑
i=1

exp
(
−(1− t)θi

n

2
(
√
p−√q)2

)
.
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Fig 6. The effect of different choices of τ for Scenario 1 (left) and Scenario 2 (right). The x-axis is the value
of c with τ = c(

∑
i,j Ai,j)/n.

Recall the constant M used in Section 5.2.
Case 1: 1 ≤ m ≤M . By (36), we have

P(n`(ẑ, z) = m) ≤
∑
|Γ|=m

exp

(
−1

2

∑
i∈Γ

θi

(
(1− δ)n−

∑
i∈Γ

θi

)
(
√
p−√q)2

)
.

Using the argument in Section 5.2, we have P(n`(z̃, z) = m) ≤ (2nMRδ+2η)
m.

Case 2: M ≤ m ≤ m′. We have
∑

i∈τ(Γ) θi ≤ 2|τ(Γ)| ≤ 2ηn due to (26). Note that n −∑
i∈Γ θi =

∑
i∈Γc θi ≥ |Γc|θmin ≥ nθmin/2. For any m ≤ m′, using the monotone property of

x(1− x) for x ∈ [0, 1], we have

∑
i∈Γ

θi

(
(1− δ)n−

∑
i∈Γ

θi

)
≥
∑
i∈τ(Γ)

θi

(1− δ)n−
∑
i∈τ(Γ)

θi

 ≥ ∑
i∈τ(Γ)

θi(1− δ − 2η)n.

Thus, by (36), we have

P (L(z̃) > L(z)) ≤
∏

i∈τ(Γ)

exp
(
−θi(1− δ − 2η)

n

2
(
√
p−√q)2

)
.
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Using the argument in Section 5.2, we have

P(n`(z̃, z) = m) ≤ (2eM)m
(
e2MnRδ+2η

m/M

)m/M
.

Case 3: m > m′. Under this scenario, we can take an arbitrary subset Γ′ ⊂ τ(Γ) such that
|Γ′| = ηm/M , which leads to

∑
i∈Γ′ θi ≤ 2ηn. Recall n −

∑
i∈Γ θi =

∑
i∈Γc θi ≥ |Γc|θmin ≥

nθmin/2. Using (36), together with the property of x(1− x) for x ∈ [0, 1], we have

P (L(z̃) > L(z)) ≤ exp

(
−1

2

∑
i∈Γ′

θi

(
(1− δ)n−

∑
i∈Γ′

θi

)
(
√
p−√q)2

)
≤
∏
i∈Γ′

exp
(
−θi(1− δ − 2η)

n

2
(
√
p−√q)2

)
.

By the argument used in Section 5.2, we have

P(n`(z̃, z) = m) ≤ (2eM)m
(
e2MnRδ+2η

η2m/M

)ηm/M
.

Note that the above rate involves Rδ+2η instead of R
1/2
δ+2η for the case k ≥ 3 in Section 5.2.

This results in a tighter bound for P (L(z̃) > L(z)).
Finally by applying the same techniques used in Section 5.2, we obtain the desired bound

for E`(z̃, z).

B.2. Proof of Theorem 2. We only state the proof for the case k ≥ 3. The proof for
the case k = 2 can be derived using essentially the same argument. For a label vector, recall
the notation nu(z) = |{i ∈ [n] : z(i) = u}|. Under Condition N, there exists a z∗ ∈ [k]n such
that n1(z∗) ≤ n2(z∗) ≤ n3(z∗) ≤ · · · ≤ nk(z

∗) with n1(z∗) = n2(z∗) = bn/(βk)c, and that
(nu(z∗))−1

∑
i:z∗(i)=u θi ∈ (1− δ

4 , 1 + δ
4) for all u ∈ [k].

1◦ As a first step, we define a community detection problem on a subset of the parameter
space such that we can avoid the complication of label permutation. To this end, given z∗,

for each u ∈ [k], let Tu ⊂ {i : z∗(i) = u} with cardinality
⌈
nu(z∗)− δn

4k2β

⌉
collect the indices

of the largest θi’s in {θi : z(i) = u}. Let T = ∪ku=1Tu. Define

Z∗ =
{
z ∈ [k]n : z(i) = z∗(i) for all i ∈ T, n

βk
− 1 ≤ nu(z) ≤ βn

k
+ 1 for all u 6= v ∈ [k]

}
.

Since z∗ ∈ Z∗, the latter is not empty. By the definition of T and Condition N, maxi∈T c θi is
bounded by a constant. Thus, for any z such that z(i) = z∗(i) for all i ∈ T , we have

1

nu(z)

∑
{i:z(i)=u}

θi ∈ (1− δ, 1 + δ), for all u ∈ [k].

Therefore, we can define a smaller parameter space P0
n = P0

n(θ, p, q, k, β; δ) ⊂ Pn(θ, p, q, k, β; δ)
where
(37)
P0
n(θ, p, q, k, β; δ) =

{
P : Pij = θiθjBz(i)z(j), z ∈ Z∗, Buu = p,∀u ∈ [k], Buv = q,∀u 6= v

}
.
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So we have

(38) inf
ẑ

sup
Pn(θ,p,q,k,β;δ)

En`(ẑ, z) ≥ inf
ẑ

sup
P0
n

En`(ẑ, z) = inf
ẑ

sup
P0
n

EH(ẑ, z),

where H(·, ·) is the Hamming distance. Here, the equality is due to the fact that for any two
z1, z2 ∈ Z∗ they share the same labels for all indices in T . Thus, we have H(z1, z2) ≤ 1

2δ
n
βk ,

and so when δ is small we have n`(z1, z2) = infπ∈Πk
H(π(z1), z2) = H(z1, z2).

2◦ We now turn to lower bounding the rightmost side of (38), which relies crucially on our
previous discussion in Section 5.1. To this end, observe that

inf
ẑ

sup
P0

EH(ẑ, z) ≥ inf
ẑ

ave
Z∗

EH(ẑ, z) ≥
∑
i∈T c

inf
ẑ(i)

ave
Z∗

P(ẑ(i) 6= z(i))

≥ c δ
k
n

1

|T c|
∑
i∈T c

inf
ẑ(i)

ave
Z∗

P(ẑ(i) 6= z(i)),(39)

for some constant c > 0. Here, ave stands for arithmetic average. The first inequality holds
since minimax risk is lower bounded by Bayes risk. The second inequality is due to the fact
that for any z ∈ Z∗, z(i) = z∗(i) for all i ∈ T , and so infimum can be taken over all ẑ with
ẑ(i) = z∗(i) for i ∈ T . The last inequality holds because |T c| ≥ c δnk for some constant c by
its definition.

We now focus on lower bounding inf ẑ(i) aveZ∗ P(ẑ(i) 6= z(i)) for each i ∈ T c. Without loss

of generality, suppose 1 ∈ T c. Then we partition Z∗ into disjoint subsets Z∗ = ∪ku=1Z
∗
u where

Z∗u = {z ∈ Z∗ : z(1) = u}, u ∈ [k].

Note that for any u 6= v, there is a 1-to-1 correspondence between the elements in Z∗u and
Z∗v . In particular, for each z ∈ Z∗u, there exists a unique z′ ∈ Z∗v such that z(i) = z′(i) for all
i 6= 1. Thus, we can simultaneously index all {Z∗u}ku=1 by the second to the last coordinates
of the z vectors contained in them. We use z−1 to indicate the subvector in [k]n−1 excluding
the first coordinate and collect all the different z−1’s into a set Z−1. Then we have

inf
ẑ(1)

ave
Z∗

P(ẑ(1) 6= z(1))

≥ 1

k(k − 1)

∑
u<v

inf
ẑ(1)

(
ave
Z∗u

P(ẑ(1) 6= u) + ave
Z∗v

P(ẑ(1) 6= v)

)
≥ 1

k(k − 1)
inf
ẑ(1)

(
ave
Z∗1

P(ẑ(1) 6= 1) + ave
Z∗2

P(ẑ(1) 6= 2)

)
≥ 1

k(k − 1)

1

|Z−1|
∑

z−1∈Z−1

inf
ẑ(1)

(
Pz=(1,z−1)(ẑ(1) 6= 1) + Pz=(2,z−1)(ẑ(1) 6= 2)

)
.(40)

Note that by the definition of z∗ and Z∗, it is guaranteed that for either (1, z−1) or (2, z−1),
|n1
n2
− 1| = o(1). Therefore, we can apply Lemma 5 to bound from below each term in the

summation of the rightmost side of the last display by exp
(
−(1 + η)θ1

n
βk (
√
p−√q)2

)
for
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some η = o(1). Together with (38) – (40), this implies that

inf
ẑ

sup
P

E`(ẑ, z) ≥ c δ
k3

1

|T c|
∑
i∈T c

exp

(
−(1 + η)θi

n

βk
(
√
p−√q)2

)

≥ c δ
k3

1

n

n∑
i=1

exp

(
−(1 + η)θi

n

βk
(
√
p−√q)2

)
≥ c δ

k3
exp (−(1 + η)I) = exp (−(1 + o(1))I) .

Here, the first inequality is simple algebra. The second inequality holds since T c only contains
within each community defined by z∗ the nodes with the smallest θi’s. The third inequality
is a direct application of Jensen’s inequality, and the last equality holds since log k = o(I)
and log 1

δ = o(I). This completes the proof.

B.3. Proofs of Lemma 1 and Corollary 2. We now prove Lemma 1 and Corollary
2, which characterize the performance of Algorithm 1. To prove Lemma 1, we need two
auxiliary lemmas, whose proofs will be given in Appendix D. In the rest of this part, we let
P = (Pij) = (θiθjBz(i)z(j)) for notational convenience.

The following lemma characterizes the connection between measure on misclassification
and geometry of the point cloud. The result is not tied to any specific clustering algorithm
or choice of norm.

Lemma 6. Let z ∈ [k]n be the true label for a DCBM in P ′n(θ, p, q, k, β; δ, α). Given any
z̃ ∈ ({0} ∪ [k])n, any {ṽu}u∈[k], {Vi}i∈[n] ⊂ Rn and any b > 0, define

Ṽi = ṽz̃(i) for all i ∈ Sc0,

where S0 = {i ∈ [n] : z̃(i) = 0}. Then, for any norm ‖·‖ satisfying triangle inequality, as long
as

(41) min
z(i)6=z(j)

‖Vi − Vj‖ ≥ 2b,

we have
min
π∈Πk

∑
{i:z̃(i)6=π(z(i))}

θi ≤
∑
i∈S0

θi + (2β2 + 1)
∑
i∈S

θi,

where S =
{
i ∈ Sc0 : ‖Ṽi − Vi‖ ≥ b

}
.

Lemma 7. Under the settings of Lemma 1, let τ = C1

(
np‖θ‖2∞ + 1

)
for some sufficiently

large C1 > 0 in Algorithm 1. Then, for any constant C ′ > 0, there exists some C > 0 only
depending on C1, C

′ and α such that

‖P̂ − P‖F ≤ C
√
k(np‖θ‖2∞ + 1),

with probability at least 1− n−(1+C′) uniformly over P ′n(θ, p, q, k, β; δ, α).
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Proof of Lemma 1. Let Pi denote the ith row of P and P̄i = ‖Pi‖−1
1 Pi the `1 normalized

row. By definition, for sufficiently large values of n,

(42)
pn

2βk
≤ ‖Pi‖1

θi
=
∑
j:j 6=i

θjBz(i)z(j) ≤ 2αnp, for any i ∈ [n],

under the conditions δ = o(1) and ‖θ‖∞ = o(n/k).
Note that P̄i = P̄j when z(i) = z(j). Our first task is to lower bound ‖P̄i − P̄j‖1 when

z(i) 6= z(j), which serves as the separation condition among different clusters. For any i and
j such that z(i) = u 6= v = z(j), we assume ‖Pi‖1/θi ≤ ‖Pj‖1/θj without loss of generality.
Then,

‖P̄i − P̄j‖1 ≥
∑

l:z(l)=u

|Pil − Pjl| =
∑

l:z(l)=u

∣∣∣∣ θlBuu
‖Pi‖1/θi

− θlBuv
‖Pj‖1/θj

∣∣∣∣
=

1

‖Pj‖1/θj

∑
l:z(l)=u

θl

∣∣∣∣‖Pj‖1/θj‖Pi‖1/θi
Buu −Buv

∣∣∣∣
≥ p− q
‖Pj‖1/θj

n

2βk
(43)

≥ p− q
4αβkp

.(44)

Here, (43) holds since
‖Pj‖1/θj
‖Pi‖1/θiBuu ≥ p and Buv ≤ q, and (44) is due to (42). By switching i

and j, the foregoing argument also works for the case where ‖Pi‖1/θi > ‖Pj‖1/θj . Hence,

(45) min
z(i) 6=z(j)

‖P̄i − P̄j‖1 ≥
p− q

4αβkp
.

Let ẑ ∈ ({0} ∪ [k])n and v̂1, ..., v̂k ∈ Rn denote a solution to the optimization problem (8)
(with all nodes in S0 assigned to the 0th community). Define matrix V̂ ∈ Rn×n with the ith

row V̂i = v̂ẑ(i). If ẑ(i) = 0, set V̂i as the zero vector. Define S = {i ∈ [n] : ‖V̂i − P̄i‖1 ≥ p−q
8αβkp}

and recall S0 = {i ∈ [n] : ‖P̂i‖1 = 0}. Then, by the separation condition (45) and Lemma 6,
we have

(46) min
π∈Πk

∑
i:ẑ(i)6=π(z(i))

θi ≤ (2β2 + 1)
∑
i∈S

θi +
∑
i∈S0

θi.

In what follows, we derive bounds for
∑

i∈S θi and
∑

i∈S0
θi, respectively. Recall that P̃i =

‖P̂i‖−1
1 P̂i. By the definition of ẑ and V̂ , we have

(47)

n∑
i=1

‖P̂i‖1‖V̂i − P̃i‖1 ≤ (1 + ε)

n∑
i=1

‖P̂i‖1‖P̄i − P̃i‖1.
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In order to bound
∑

i∈S θi, we first derive a bound for
∑

i∈S ‖P̂i‖1. That is,∑
i∈S
‖P̂i‖1 ≤ 8αβkp

p− q
∑
i∈S
‖P̂i‖1‖V̂i − P̄i‖1(48)

≤ 8αβkp

p− q
∑
i∈S

(
‖P̂i‖1‖V̂i − P̃i‖1 + ‖P̂i‖1‖P̄i − P̃i‖1

)
≤ 8(2 + ε)αβkp

p− q

n∑
i=1

‖P̂i‖1‖P̄i − P̃i‖1(49)

≤ 16(2 + ε)αβkp

p− q

n∑
i=1

‖P̂i − Pi‖1(50)

≤ 16(2 + ε)αβnkp

p− q
‖P̂ − P‖F,(51)

where (48) uses the definition of S, (49) is by the inequality (47), and (50) is by the inequality

‖‖x‖−1
1 x− ‖y‖−1

1 y‖1 ≤ 2‖x−y‖1
‖x‖1∨‖y‖1 which in turn is due to the triangle inequality.

Now we are ready to bound
∑

i∈S θi as∑
i∈S

θi ≤
2βk

pn

∑
i∈S
‖Pi‖1(52)

≤ 2βk

pn

∑
i∈S

(
‖P̂i‖1 + ‖P̂i − Pi‖1

)
(53)

≤ 2βk

pn

(
16(2 + ε)αβnkp

p− q
‖P̂ − P‖F + n‖P̂ − P‖F

)
(54)

≤ (66 + 32ε)αβ2k2

p− q
‖P̂ − P‖F,(55)

where (52) is by the inequality (42), (53) is due to the triangle inequality, (54) uses (51) and
Cauchy-Schwarz, and (55) holds since α, β, k ≥ 1.

We now turn to bounding
∑

i∈S0
θi. To this end, simple algebra leads to∑

i∈S0

θi ≤
2βk

pn

∑
i∈S0

‖Pi‖1(56)

≤ 2βk

pn

n∑
i=1

‖P̂i − Pi‖1(57)

≤ 2βk

p
‖P̂ − P‖F ≤

αβ2k2

p− q
‖P̂ − P‖F,(58)

where (56) is by the inequality (42), (57) uses the definition of S0 and (58) is due to the
Cauchy-Schwarz inequality.

Combining the bounds in (55), (58) and (46), we have

(59) min
π∈Πk

∑
{i:ẑ(i)6=π(z(i))}

θi ≤
C(1 + ε)k2

p− q
‖P̂ − P‖F,
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where we have absorbed α and β into the constant C. By Lemma 7, we have

min
π∈Πk

∑
{i:ẑ(i)6=π(z(i))}

θi ≤ C
(1 + ε)k5/2

√
n‖θ‖2∞p+ 1

p− q
,

with probability at least 1− n−(1+C′). This completes the proof.

Proof of Corollary 2. Under the condition mini θi = Ω(1), the loss minπ∈Πk

∑
{i:ẑ(i)6=π(z(i))} θi

can be lower bounded by n`(ẑ, z) multiplied by a constant. Moreover, since p ≥ n−1, k = O(1)

and ‖θ‖∞ = O(1), the rate
k5/2
√
n‖θ‖2∞p+1

p−q is bounded by O
(√

np
p−q

)
= O

(√
n|√p−√q|−1

)
.

Thus, it is sufficient to show n−1/2|√p−√q|−1 = O(I−1/2). This is true by observing that

e−I ≥ 1

n

n∑
i=1

exp
(
−θi

n

k
(
√
p−√q)2

)
≥ exp

(
−‖θ‖∞

n

k
(
√
p−√q)2

)
.

Thus, the proof is complete.

B.4. Proofs of Theorem 3, Theorem 4 and Corollary 3. Now we are going to give
proofs of Theorem 3, Theorem 4 and Corollary 3. Note that both Theorem 3 and Corollary 3
are direct consequences of Theorem 4. The main argument in the proof of Theorem 4 is the
following lemma.

Lemma 8. Suppose 1 < p/q = O(1) and δ = o
(
p−q
p

)
. If there exist two sequences

γ1 = o
(
p−q
kp

)
and γ2 = o

(
p−q
k2p

)
, a constant C1 > 0 and permutations {πi}i∈[n] ⊂ Πk such

that

(60) min
i∈[n]

P

 1

n

n∑
j=1

θj1{ẑ0−i(j) 6=πi(z(j))} ≤ γ1,
1

n

n∑
j=1

1{ẑ0−i(j)6=πi(z(j))} ≤ γ2

 ≥ 1− n−(1+C1),

uniformly for all probability distributions in P ′n(θ, p, q, k, β; δ, α). Then, we have for all i ∈ [n],

P
(
ẑ0
−i(i) 6= πi(z(i))

)
≤ (k − 1) exp

(
−(1− η)θi(n(1) + n(2))Jt∗(p, q)/2

)
+ n−(1+C1)

uniformly for all probability distributions in P ′n(θ, p, q, k, β; δ, α), where η = o(1).

Proof. In what follows, let Ei denote the event in (60). We are going to derive a bound for
P
(
ẑ0
−1(1) 6= π1(z(1)) and E1

)
. For the sake of brevity, we are going to use ẑ and z to denote

ẑ0
−1 and π1(z) in the proof with slight abuse of notaion. Define nu = |{i ∈ [n] : z(i) = u}|,
mu = |{i ∈ [n] : ẑ(i) = u}| and Θ̂u =

∑
{i:ẑ(i)=u,z(i)=u} θi. Without loss of generality, consider

the case z(i) = 1. Then,

P(ẑ(1) 6= 1 and E1) ≤
k∑
l=2

P(ẑ(1) = l and E1).
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The arguments for bounding P(ẑ(1) = l and E1) are the same for l = 2, ..., k. Thus, we only
give the bound for l = 2 in details. By the definition, we have

(61) P(ẑ(1) = 2 and E1) ≤ P

 1

m2

∑
{i:ẑ(i)=2}

A1i ≥
1

m1

∑
{i:ẑ(i)=1}

A1i and E1

 .

Define independent random variables Xi ∼ Bernoulli(θ1θiq), Yi ∼ Bernoulli(θ1θip), and Zi ∼
Bernoulli(θ1θip) for all i ∈ [n]. Then, a stochastic order argument bounds the right hand side
of (61) by

(62) P

 1

m2

∑
{i:ẑ(i)=2,z(i)=2}

Xi +
1

m2

∑
{i:ẑ(i)=2,z(i)=1}

Zi ≥
1

m1

∑
{i:ẑ(i)=1,z(i)=1}

Yi and E1

 .

Using Chernoff bound, for any λ > 0, we upper bound (62) by

E

 ∏
{i:ẑ(i)=2,z(i)=2}

(θ1θiqe
λ/m2 + 1− θ1θiq)

∏
{i:ẑ(i)=2,z(i)=1}

(θ1θiαpe
λ/m2 + 1− θ1θiαp)

∏
{i:ẑ(i)=1,z(i)=1}

(θ1θipe
−λ/m1 + 1− θ1θip)1{E1}


≤ E

exp

 ∑
{i:ẑ(i)=2,z(i)=2}

(θ1θiqe
λ/m2 − θ1θiq) +

∑
{i:ẑ(i)=2,z(i)=1}

(θ1θiαpe
λ/m2 − θ1θiαp)


exp

 ∑
{i:ẑ(i)=1,z(i)=1}

(θ1θipe
−λ/m1 − θ1θip)

1{E1}


= E

{
exp

(
θ1m2q(e

λ/m2 − 1) + θ1m1p(e
−λ/m1 − 1)

)
1{E1}

}
(63)

×E
{

exp
(

(Θ̂2 −m2)θ1q(e
λ/m2 − 1

)
1{E1}

}
(64)

×E
{

exp
(

(Θ̂1 −m1)θ1p(e
−λ/m1 − 1)

)
1{E1}

}
(65)

×E

exp

 ∑
{i:ẑ(i)=2,z(i)=1}

θ1θiαp(e
λ/m2 − 1)

1{E1}

 .(66)

In what follows, we set

λ =
m1m2

m1 +m2
log

p

q
,

We are going to give bounds for the four terms (63), (64), (65) and (66), respectively. On the
event E1,

|Θ̂2 −m2| ≤

∣∣∣∣∣∣
∑

{i:z(i)=2}

θi − n2

∣∣∣∣∣∣+ |n2 −m2|+
∑

{i:z(i)=2,ẑ(i)=1}

θi ≤
(
γ1 + γ2 +

δβ

k

)
n,
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and
q|eλ/m2 − 1| = p

m1
m1+m2 q

m2
m1+m2 − q ≤ p− q,

we have

E
{

exp
(

(Θ̂2 −m2)θ1q(e
λ/m2 − 1

)
1{E1}

}
≤ exp

(
n

(
γ1 + γ2 +

δβ

k

)
θ1(p− q)

)
,

which is a bound for (64). A similar argument leads to a bound (65), which is

E
{

exp
(

(Θ̂1 −m1)θ1p(e
−λ/m1 − 1)

)
1{E1}

}
≤ exp

(
n

(
γ1 + γ2 +

δβ

k

)
θ1(p− q)

)
.

The last term (66) has a bound

E

exp

 ∑
{i:ẑ(i)=2,z(i)=1}

θ1θiαp(e
λ/m2 − 1)

1{E1}

 ≤ exp (nγ1αθ1(p− q)) .

Finally, we need a bound for (63). With the current choice of λ,

−m2q(e
λ/m2 − 1)−m1p(e

−λ/m1 − 1) =
1

2
(m1 +m2)J m1

m1+m2

(p, q).

Note that ∣∣∣(m1 +m2)J m1
m1+m2

(p, q)− (n1 + n2)J n1
n1+n2

(p, q)
∣∣∣

≤ |n1 + n2 −m1 −m2|J n1
n1+n2

(p, q) + (m1 +m2)
∣∣∣J m1

m1+m2

(p, q)− J n1
n1+n2

(p, q)
∣∣∣

≤ nγ2Jτ (p, q) + n(1 + γ2) |Jτ (p, q)− Jτ̂ (p, q)| ,

where τ = n1
n1+n2

and τ̂ = m1
m1+m2

. We will give a bound for |Jτ (p, q)− Jτ̂ (p, q)|. Since∣∣ ∂
∂τ Jτ (p, q)

∣∣ = 1
2

∣∣∣(p− q)− ptq1−t log p
q

∣∣∣ ≤ 1
2 |p − q| + 1

2p| log p − log q| ≤ |p − q|, we have

|Jτ (p, q)− Jτ̂ (p, q)| ≤ |p− q||τ − τ̂ | ≤ βkγ2(p− q). Hence, we have a bound for (63), which is

E
{

exp
(
θ1m2q(e

λ/m2 − 1) + θ1m1p(e
−λ/m1 − 1)

)
1{E1}

}
≤ exp

(
−1

2
θ1(n1 + n2)J n1

n1+n2

(p, q) +
1

2
θ1nγ2J n1

n1+n2

(p, q) +
1

2
θ1n(1 + γ2)kβγ2(p− q)

)
.

Combining the above bounds for (63), (64), (65) and (66), we have

P (ẑ(1) = 2 and E1)

≤ exp

(
−1

2
θ1(n1 + n2)J n1

n1+n2

(p, q)

)
× exp

(
−1

2
θ1nγ2J n1

n1+n2

(p, q) +

[
(2 + α)γ1 + (2 + kβ)γ2 +

2δβ

k

]
θ1n(p− q)

)
.
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By the property of Jt(p, q) stated in Lemma 12, J n1
n1+n2

(p, q) ≥ (4β2)−1 (p−q)2
p . Then, under

the assumptions γ1 = o
(
p−q
p

)
, γ2 = o

(
p−q
pk

)
and δ = o

(
k(p−q)
p

)
, we have

P (ẑ(1) = 2 and E1) ≤ exp

(
−1

2
(1− η)θ1(n1 + n2)J n1

n1+n2

(p, q)

)
,

for some η = o(1). The same bound also holds for P (ẑ(1) = l and E1) for l = 2, ..., k. Thus,
a union bound argument gives

P(ẑ(1) 6= 1 and E1) ≤ (k − 1) exp

(
−1

2
(1− η)θ1(n1 + n2)J n1

n1+n2

(p, q)

)
.

Hence,

P(ẑ(1) 6= 1) ≤ (k − 1) exp

(
−1

2
(1− η)θ1(n1 + n2)J n1

n1+n2

(p, q)

)
+ n−(1+C1).

Now let us use the original notation and apply the above argument for each node, which leads
to the bound

P
(
ẑ0
−i(i) 6= πi(z(i))

)
≤ (k − 1) exp

(
−1

2
(1− η)θi min

u6=v

[
(nu + nv)J nu

nu+nv
(p, q)

])
+ n−C1 ,

for all ∈ [n]. By the property of Jt(p, q) stated in Lemma 9, minu6=v

[
(nu + nv)J nu

nu+nv
(p, q)

]
=

(n(1) + n(2))Jt∗(p, q), with t∗ specified by (15). Thus, the proof is complete.

Proof of Theorem 4. It is sufficient to check that the initial clustering step satisfies

(60) with γ1 = o
(
p−q
kp

)
and γ2 = o

(
p−q
k2p

)
. This can be done using the bound in Lemma 1

under the assumptions (16) and (17). Note that the n initial clustering results {ẑ0
−i} may not

correspond to the same permutation. This problem can be taken care of by the consensus
step (12). Details of the argument are referred to the proof of Theorem 2 in [2].

Proofs of Theorem 3 and Corollary 3. Theorem 3 is a direct implication of Theo-
rem 4 by observing I = J when β = 1. The fact that (n(1) +n(2))Jt∗(p, q) ≥ 2n(1)J1/2(p, q) ≥
2n
βk (
√
p−√q)2 by Lemma 11 implies the result for the case k ≥ 3 in Corollary 3. For k = 2,

observe that

1

n

n∑
i=1

exp

(
−θi

n

2β
(
√
p−√q)2

)
≤

[
1

n

n∑
i=1

exp
(
−θi

n

2
(
√
p−√q)2

)]β
.

This implies the result for k = 2 in Corollary 3.

APPENDIX C: PROPERTIES OF JT (P,Q)

In this section, we study the quantity Jt(p, q) defined in (13). We will state some lemmas
about some useful properties of Jt(p, q) that we have used in the paper. Recall that for
p, q, t ∈ (0, 1),

Jt(p, q) = 2(tp+ (1− t)q − ptq1−t).
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Lemma 9. Given p, q ∈ (0, 1), let f(x1, x2) = x1p + x2q − (x1 + x2)p
x1

x1+x2 q
x2

x1+x2 where
x1, x2 > 0. Then the function f is increasing in terms of x1 and x2, respectively.

Proof. By differentiating f against x1 we get

∂f(x1, x2)

∂x1
= p− q

(
p

q

) x1
x1+x2

− q
(
p

q

) x1
x1+x2

log

(
p

q

)
x2

x1 + x2
.

Thus limx1→∞
∂f(x1,x2)

∂x1
= 0. Moreover,

∂2f(x1, x2)

∂x2
1

= −q
(
p

q

) x1
x1+x2

log2

(
p

q

)
x2

2

(x1 + x2)3
≤ 0,

Therefore, ∂f(x1,x2)
∂x1

≥ 0 for all x1, x2 > 0. This shows f(x1, x2) is increasing with respect to
x1. Similarly we can prove that f(x1, x2) is also an increasing function in terms of x2.

Lemma 10. For any 0 < q < p < 1 and 0 < t ≤ 1
2 , we have

Jt(p, q) ≤ J1−t(p, q).

Proof. Define S(t) = 1
2 (Jt(p, q)− J1−t(p, q)) = (2t− 1)(p− q)−

(
q(pq )t − p( qqp)t

)
. Then,

we have

S′′(t) = − log2

(
q

p

)(
ptq1−t − p1−tqt

)
≥ 0.

Since S(0) = S(1/2) = 0, we have S(t) ≤ 0 for all t ∈ (0, 1/2].

Lemma 11. For any 0 < q < p < 1 and 0 < x1 ≤ x2, we have

2x1J1/2(p, q) ≤ (x1 + x2)J x1
x1+x2

(p, q) ≤ (x1 + x2)J1/2(p, q).

Proof. The first inequality 2x1J1/2(p, q) ≤ (x1 + x2)J x1
x1+x2

(p, q) is a consequence of

Lemma 9 and x1 ≤ x2. Since
(
∂
∂t

)2
Jt(p, q) = −2ptq1−t log2

(
p
q

)
≤ 0, Jt(p, q) is concave

in t. Thus,

(67)
1

2
(Jt(p, q) + J1−t(p, q)) ≤ J1/2(p, q).

When t ∈ (0, 1/2], Jt(p, q) ≤ 1
2 (Jt(p, q) + J1−t(p, q)) according to Lemma 10. Thus, Jt(p, q) ≤

J1/2(p, q), which leads to the second inequality (x1 + x2)J x1
x1+x2

(p, q) ≤ (x1 + x2)J1/2(p, q) by

the assumption x1 ≤ x2.

Lemma 12. For any 0 < p, q, t < 1, we have

(68) 2 min(t, 1− t)(√p−√q)2 ≤ Jt(p, q) ≤ 2(
√
p−√q)2.

Moreover, if max(p/q, q/p) ≤M , then we have

(69) Jt(p, q) ≤
(

2 +
4M4

3

)
min(t, 1− t) (p− q)2

min(p, q)
.
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Proof. Without loss of generality, let p > q. We first consider the case 0 < t ≤ 1/2. By
Lemma 11, we have

2
x1

x1 + x2
J1/2(p, q) ≤ J x1

x1+x2

(p, q) ≤ J1/2(p, q).

Let x1
x1+x2

= t, and we have

(70) 2t(
√
p−√q)2 ≤ Jt(p, q) ≤ (

√
p−√q)2.

Now we consider the case 1/2 ≤ t < 1. Let s = 1− t. By Lemma 10 and (70), we have

Jt(p, q) ≥ Js(p, q) ≥ 2s(
√
p−√q)2 = 2(1− t)(√p−√q)2.

Using (67) and (70), we have

Jt(p, q) ≤ 2J1/2(p, q)−Js(p, q) ≤ 2J1/2(p, q)− 2s(
√
p−√q)2 = 2t(

√
p−√q)2 ≤ 2(

√
p−√q)2.

Hence,

(71) 2(1− t)(√p−√q)2 ≤ Jt(p, q) ≤ 2(
√
p−√q)2.

Combine (70) and (71), and we can derive (68) for p > q. A symmetric argument leads to
the same result for p < q. When, p = q, the result trivially holds. Thus, the proof for (68) is
complete.

To prove (69), we use the identity

1

2t(1− t)
Jt(p, q) = p

1

1− t

(
1−

(
q

p

)1−t
)

+ q
1

t

(
1−

(
p

q

)t)
.

By Taylor’s theorem, we have

1

α
(1− xα) = 1− x+

1

2
(1− α)(x− 1)2 − 1

6
(α− 1)(α− 2)ξα−3(x− 1)3,

for some ξ between x and 1. Thus, using the condition that max(p/q, q/p) ≤M , we have

1

2t(1− t)
Jt(p, q) ≤

(
1 +

2M4

3

)
(p− q)2

min(p, q)
.

Then, we can derive (69) by the fact that t(1− t) ≤ min(t, 1− t).

APPENDIX D: PROOFS OF AUXILIARY RESULTS

Proof of Lemma 2. Note that (19) is a simple vs. simple hypothesis testing problem.
By the Neyman–Pearson lemma, the optimal test is the likelihood ratio test φ which rejects
H0 if

m∏
i=1

(θ0θip)
Xi(1− θ0θip)

1−Xi

2m∏
i=m+1

(θ0θiq)
Xi(1− θ0θiq)

1−Xi

<

m∏
i=1

(θ0θiq)
Xi(1− θ0θiq)

1−Xi

2m∏
i=m+1

(θ0θip)
Xi(1− θ0θip)

1−Xi .
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Therefore,

PH0φ = P

(
m∑
i=1

(
Xi log

q(1− θ0θip)

p(1− θ0θiq)
− log

1− θ0θip

1− θ0θiq

)
+

2m∑
i=m+1

(
Xi log

p(1− θ0θiq)

q(1− θ0θip)
− log

1− θ0θiq

1− θ0θip

)
> 0

)
.

To establish the desired bound for this quantity, we employ below a refined version of the
Cramer–Chernoff argument [3, Proposition 14.23]. To this end, for any fixed t > 0, define
independent random variables {Wi}2mi=1 by

P
(
Wi = t log

q

p

)
= θ0θip, P

(
Wi = t log

1− θ0θiq

1− θ0θip

)
= 1− θ0θip, for i = 1, ...,m,

and

P
(
Wi = t log

p

q

)
= θ0θiq, P

(
Wi = t log

1− θ0θip

1− θ0θiq

)
= 1− θ0θiq, for i = m+ 1, ..., 2m.

In addition, let

Bi =

{
(θ0θip)

1−t(θ0θiq)
t + (1− θ0θip)

1−t(1− θ0θiq)
t, i = 1, . . . ,m;

(θ0θiq)
1−t(θ0θip)

t + (1− θ0θiq)
1−t(1− θ0θip)

t, i = m+ 1, . . . , 2m.

We lower bound PH0φ by

PH0φ = P

(
m∑
i=1

Wi +

2m∑
i=m+1

Wi > 0

)

≥
∑

0<
∑

i wi<L

2m∏
i=1

P(Wi = wi)

≥

(
2m∏
i=1

Bi

)
e−L

∑
0<

∑
i wi<L

2m∏
i=1

Pi(wi)e
wi

Bi

=

(
2m∏
i=1

Bi

)
e−L

∑
0<

∑
i wi<L

2m∏
i=1

Qi(wi)

=

(
2m∏
i=1

Bi

)
e−LQ

(
0 <

2m∑
i=1

Wi < L

)
,

where

Qi

(
Wi = t log

q

p

)
=

(θ0θip)
1−t(θ0θiq)

t

Bi
, Qi

(
Wi = t log

1− θ0θiq

1− θ0θip

)
=

(1− θ0θip)
1−t(1− θ0θiq)

t

Bi

for i = 1, ...,m and

Qi

(
Wi = t log

p

q

)
=

(θ0θiq)
1−t(θ0θip)

t

Bi
, Qi

(
Wi = t log

1− θ0θip

1− θ0θiq

)
=

(1− θ0θiq)
1−t(1− θ0θip)

t

Bi
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for i = m+1, ..., 2m. We have also used the abbreviations Pi(wi) = P(Wi = wi) and Qi(wi) =
Q(Wi = wi).

To obtain the desired lower bound, we set t to be the minimizer of
∏2m
i=1Bi. Since the

minimizer is a stationary point, it satisfies

(72)

2m∑
i=1

EQWi = 0.

For any t, a, b ∈ (0, 1), recall the definition of Jt(a, b) in (13). By Lemma 12, we have

(73) Jt(1− a, 1− b) ≤ CaJt(a, b),

where C only depends on the ratio a/b. Therefore, under the condition a � b = o(1), (73)
implies

(74) log

(
1− 1

2
Jt(a, b)−

1

2
Jt(1− a, 1− b)

)
≥ −1

2
(1 + η)Jt(a, b),

for some η = o(1) independent of t. Using (74), under the assumption that 1 < p/q = O(1),
we have

2m∏
i=1

Bi ≥ exp

(
−1 + η

2

m∑
i=1

Jt(θ0θiq, θ0θip)−
1 + η

2

2m∑
i=m+1

Jt(θ0θip, θ0θiq)

)
= exp

(
−(1 + η)θ0m

(
p+ q − p1−tqt − q1−tpt

))
.(75)

Hence,

min
0≤t≤1

2m∏
i=1

Bi ≥ exp

(
−(1 + η)θ0m max

0≤t≤1

(
p+ q − p1−tqt − q1−tpt

))
= exp

(
−(1 + η)θ0m(

√
p−√q)2

)
.

We now turn to lower bounding e−LQ
(

0 <
∑2m

i=1Wi < L
)

with t satisfying (72). To this

end, we first calculate the variances of the Wi’s. For i = 1, ...,m, there exists some constant
C > 0 such that

VarQ(Wi) ≤ EQ(W 2
i )

≤
(
t log

p

q

)2

Qi

(
t log

q

p

)
+

(
t log

1− θ0θiq

1− θ0θip

)2

Qi

(
t log

1− θ0θiq

1− θ0θip

)
≤ Cθ0θip (log(θ0θip)− log(θ0θiq))

2 + (log(1− θ0θip)− log(1− θ0θiq))
2

≤ Cθ0θip
(θ0θip− θ0θiq)

2

(θ0θiq)2
+ C(θ0θip− θ0θiq)

2

≤ C
θ0θi(p− q)2

p
.

In addition, we have

EQ(W 2
i ) ≥

(
t log

p

q

)2

Qi

(
t log

q

p

)
&
θ0θi(p− q)2

p
, and (EWi)

2 = o

(
θ0θi(p− q)2

p

)
.
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Similar bounds hold for Wi, i = m+ 1, ..., 2m. Thus, we obtain that

2m∑
i=1

VarQ(Wi) �
θ0m(p− q)2

p
.

Note that with t ∈ [γ, 1−γ] and p/q = O(1), the value of Wi is bounded by constant, for any
i ∈ [2m]. Under the assumption that θ0m(

√
p − √q)2 → ∞, we have

∑2m
i=1 VarQ(Wi) → ∞,

implying the indicator function 1{
|Wi−EWi|>ε

√∑2m
i=1 VarQ(Wi)

} goes to 0 for every i.

Thus

lim
m→∞

2m∑
i=1

E(Wi − EWi)
21{
|Wi−EWi|>ε

√∑2m
i=1 VarQ(Wi)

} = 0,

for any constant ε > 0. Together with (72), the Lindeberg condition implies that under Q,∑2m
i=1Wi√∑2m

i=1 VarQ(Wi)
converges to N(0, 1). Taking L =

√∑2m
i=1 VarQ(Wi), we have that for any

η = o(1),

e−LQ

(
0 <

2m∑
i=1

Wi < L

)
≥ exp

(
−ηθ0m(

√
p−√q)2

)
for sufficiently large values of m. This completes the proof when θ0m(

√
p−√q)2 →∞.

When θ0m(
√
p−√q)2 = O(1), then we have

inf
φ

(PH0φ+ PH1(1− φ)) =

∫
dPH0 ∧ dPH1

≥ 1

2

(∫ √
dPH0dPH1

)2

=
1

2

(
2m∏
i=1

(
θ0θi
√
pq +

√
(1− θ0θip)(1− θ0θiq)

))2

≥ 1

2
exp

(
−(2 + η)θ0m(

√
p−√q)2

)
≥ c.

This completes the proof.
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Proof of (21). We bound PH0φ by

PH0φ ≤

 n∏
i=n/2+1

EetXi

n/2∏
i=1

Ee−tXi


= exp

 n∑
i=n/2+1

log
(
1− θ0θiq + θ0θiqe

t
)

+

n/2∑
i=1

log
(
1− θ0θip+ θ0θipe

−t)
≤ exp

 n∑
i=n/2+1

(
−θ0θiq + θ0θiqe

t
)

+

n/2∑
i=1

(
−θ0θip+ θ0θipe

−t)
= exp

(
−θ0n

2

(
p+ q − pe−t − qet

))
= exp

(
−θ0n

2
(
√
p−√q)2

)
,

where we have set et =
√
p/q. The same bound can be established for PH1(1− φ).

Proof of Lemma 5. The proof is very similar to that of Lemma 2. Therefore, we only
sketch the difference. Without loss of generality, let θ1 ≥ θ2 ≥ ... ≥ θm, θm+1 ≥ θm+2 ≥ ... ≥
θm+m1 , and m ≤ m1. Then, we have

inf
φ

(PH0φ+ PH1(1− φ)) ≥ inf
φ

(
PH̄0

φ+ PH̄1
(1− φ)

)
,

where H̄0 and H̄1 correspond to the following two hypotheses.

H̄0 : X ∼
m⊗
i=1

Bern (θ0θip)⊗
2m⊗

i=m+1

Bern (θ0θiq)

vs. H̄1 : X ∼
m⊗
i=1

Bern (θ0θiq)⊗
2m⊗

i=m+1

Bern (θ0θip) .

Bounding infφ
(
PH̄0

φ+ PH̄1
(1− φ)

)
is handled by the proof of Lemma 2 except that we do

not have the relation (18) exactly. This slightly change the derivation of (75), as we will
illustrate below. By the definition of Jt(·, ·), we have

1

2

(
n∑
i=1

Jt(θ0θiq, θ0θip) +
2m∑

i=m+1

Jt(θ0θip, θ0θiq)

)

=

(
θ0

m∑
i=1

θi

)
(tq + (1− t)p− qtp1−t) +

(
θ0

2m∑
i=m+1

θi

)
(tp+ (1− t)p− ptq1−t)

= θ0m(p+ q − p1−tqt − q1−tpt) + θ0m

∣∣∣∣∣ 1

m

m∑
i=1

θi − 1

∣∣∣∣∣ (tq + (1− t)p− qtp1−t)

+θ0m

∣∣∣∣∣ 1

m

2m∑
i=m+1

θi − 1

∣∣∣∣∣ (tp+ (1− t)p− ptq1−t)

≤ θ0m(p+ q − p1−tqt − q1−tpt) + Cηθ0m(
√
p−√q)2,
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for some η = o(1). The last inequality uses Lemma 12 and the fact that δ = o(1). Since the
term Cηθ0m(

√
p−√q)2 is of smaller order compared with the targeted exponent, the desired

result can be derived following the remaining proof of Lemma 2.

Proof of Lemma 6. For each u ∈ [k], we define

Cu =
{
i ∈ z−1(u) ∩ Sc0 : ‖Ṽi − Vi‖ < b

}
.

Following [1], we divide the sets {Cu}u∈[k] into three groups. Define

R1 = {u ∈ [k] : Cu = ∅},
R2 = {u ∈ [k] : Cu 6= ∅,∀i, j ∈ Cu, z̃(i) = z̃(j)},
R3 = {u ∈ [k] : Cu 6= ∅,∃i, j ∈ Cu, s.t. i 6= j, z̃(i) 6= z̃(j)}.

Then, it is easy to see that ∪u∈[k]Cu = Sc0\Sc and Cu ∩ Cv = ∅ for any u 6= v. Suppose there

exists some i ∈ Cu and j ∈ Cv such that u 6= v but z̃(i) = z̃(j). Then, by the fact Ṽi = Ṽj , we
have

‖Vi − Vj‖ ≤ ‖Vi − Ṽi‖+ ‖Vj − Ṽj‖ < 2b,

contradicting (41). This means z̃(i) and z̃(j) take different values if i and j are not in the
same Cu’s. By the definition of R2, the nodes in ∪u∈R2Cu have the same partition induced by
z and z̃. Therefore,

min
π∈Πk

∑
{i:ẑ(i)6=π(z(i))}

θi ≤
∑
i∈S0

θi +
∑
i∈S

θi +
∑

i∈∪u∈R3
Cu

θi.

It is sufficient to bound
∑

i∈∪u∈R3
Cu θi. By the definition of R3, we observe that each Cu for

some u ∈ R3 contains at least two different labels given by z̃. Thus we have |R2|+ 2|R3| ≤ k.
Moreover, since k = |R1|+ |R2|+ |R3|, we have |R3| ≤ |R1|. This leads to∑

i∈∪u∈R3
Cu

θi ≤ |R3|(1 + δ)
βn

k

≤ |R1|(1 + δ)
βn

k

≤ 1 + δ

1− δ
β2

∑
i∈∪u∈R1

{i∈[n]:z(i)=u}

θi

≤ 1 + δ

1− δ
β2
∑
i∈S

θi

≤ 2β2
∑
i∈S

θi.

This completes the proof.

Proof of Lemma 7. Define the matrix P ′ ∈ Rn×n by P ′ij = θiθjBz(i)z(j) for each i, j ∈
[n]. Then, P ′ has rank at most k and differs from P only by the diagonal entries. By the
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definition of P̂ , we have ‖P̂ − Tτ (A)‖2F ≤ ‖P ′ − Tτ (A)‖2F. After rearrangement, we have

‖P̂ − P‖2F ≤ 2
∣∣∣〈P̂ − P ′, Tτ (A)− P

〉∣∣∣+ ‖P ′ − P‖2F

≤ 2‖P̂ − P ′‖F sup
{K:‖K‖F=1,rank(K)≤2k}

|〈K,Tτ (A)− P 〉|+ ‖P ′ − P‖2F

≤ 1

4
‖P̂ − P ′‖2F + 4 sup

{K:‖K‖F=1,rank(K)≤2k}
|〈K,Tτ (A)− P 〉|2 + ‖P ′ − P‖2F

≤ 1

2
‖P̂ − P‖2F +

3

2
‖P ′ − P‖2F + 4 sup

{K:‖K‖F=1,rank(K)≤2k}
|〈K,Tτ (A)− P 〉|2 .

Therefore,

(76) ‖P̂ − P‖2F ≤ 3‖P ′ − P‖2F + 8 sup
{K:‖K‖F=1,rank(K)≤2k}

|〈K,Tτ (A)− P 〉|2 .

Apply singular value decomposition to K and we get K =
∑2k

l=1 λlulu
T
l . Then,

|〈K,Tτ (A)− P 〉| ≤
2k∑
l=1

|λl||uTl (Tτ (A)−P )ul| ≤ ‖Tτ (A)−P‖op

2k∑
l=1

|λl| ≤
√

2k‖Tτ (A)−P‖op.

By Lemma 5 of [2], ‖Tτ (A) − P‖op ≤ C
√
nαp‖θ‖2∞ + 1 with probability at least 1 − n−C′ ,

where the constant C ′ can be made arbitrarily large. Hence,

8 sup
{K:‖K‖F=1,rank(K)≤2k}

|〈K,Tτ (A)− P 〉|2 ≤ C1k(nαp‖θ‖2∞ + 1),

with probability at least 1− n−C′ Moreover,

3‖P ′ − P‖2F = 3
n∑
i=1

θ2
iB

2
z(i)z(i) ≤ 3α2p2‖θ‖∞n(1 + δ) ≤ C2α

2p‖θ‖2∞n.

Using (76), the proof is complete by absorbing α into the constant.
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