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Community detection is a central problem of network data analysis.
Given a network, the goal of community detection is to partition the network
nodes into a small number of clusters, which could often help reveal inter-
esting structures. The present paper studies community detection in Degree-
Corrected Block Models (DCBMs). We first derive asymptotic minimax
risks of the problem for a misclassification proportion loss under appropri-
ate conditions. The minimax risks are shown to depend on degree-correction
parameters, community sizes and average within and between community
connectivities in an intuitive and interpretable way. In addition, we propose a
polynomial time algorithm to adaptively perform consistent and even asymp-
totically optimal community detection in DCBMs.

1. Introduction. In many fields such as social science, neuroscience and
computer science, it has become increasingly important to process and make infer-
ence on relational data. The analysis of network data, a prevalent form of relational
data, becomes an important topic for statistics and machine learning. One central
problem of network data analysis is community detection: to partition the nodes in
a network into subsets. A meaningful partition of nodes can often uncover inter-
esting information that is not apparent in a complicated network.

An important line of research on community detection is based on Stochas-
tic Block Models (SBMs) [16]. For any p ∈ [0,1], let Bern(p) be the Bernoulli
distribution with success probability p. Under an SBM with n nodes and k com-
munities, given a symmetric probability matrix B = (Buv) = BT ∈ [0,1]k×k and a
label vector z = (z(1), . . . , z(n))T ∈ [k]n, where [k] = {1, . . . , k} for any k ∈ N, its
adjacency matrix A = (Aij ) ∈ {0,1}n×n, with ones encoding edges, is assumed to

be symmetric with zero diagonals and Aij = Aji
ind.∼ Bern(Bz(i)z(j)) for all i > j .

In other words, the probability of an edge connecting any pair of nodes only de-
pends on their community memberships. To date, researchers in physics, computer
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science, probability theory and statistics have gained great understanding on com-
munity detection in SBMs; see, for instance, [1, 2, 5, 7, 9, 10, 14, 15, 20–23,
27] and the references therein. Despite a rich literature dedicated to their theoreti-
cal properties, SBMs suffer significant drawbacks when it comes to modeling real
world social and biological networks. In particular, due to the model assumption,
all nodes within the same community in an SBM are exchangeable, and hence have
the same degree distribution. In comparison, nodes in real world networks often
exhibit degree heterogeneity even when they belong to the same community [24].
For example, Bickel and Chen [5] showed that for a karate club network, SBM
does not provide a good fit for the data set, and the resulting clustering analysis is
qualitatively different from the truth.

One way to accommodate degree heterogeneity is to introduce a set of degree-
correction parameters {θi : i = 1, . . . , n}, one for each node, which can be inter-
preted as the popularity or importance of a node in the network. Then one could

revise the edge distributions to Aij = Aji
ind.∼ Bern(θiθjBz(i)z(j)) for all i > j ,

and this gives rise to the Degree-Corrected Block Models (DCBMs) [8, 18]. In
a DCBM, within the same community, a node with a larger value of degree-
correction parameter is expected to have more connections than that with a smaller
value. On the other hand, SBMs are special cases of DCBMs in which the degree-
correction parameters are all equal. Empirically, the larger class of DCBMs is able
to provide possibly much better fits to many real world network datasets [24].
Throughout the paper, we allow k and B to scale with n as n tends to infinity.
Since the proposal of the model, there have been various methods proposed for
community detection in DCBMs, including but not limited to spectral clustering
[13, 17, 19, 25] and modularity based approaches [4, 6, 18, 28]. On the theoretical
side, [12] provides an information-theoretic characterization of the impossibility
region of community detection for DCBMs with two clusters, and sufficient con-
ditions have been given in [6, 28] for strongly and weakly consistent community
detection. However, two fundamental statistical questions remain unanswered:

• What are the fundamental limits of community detection in DCBMs?
• Once we know these limits, can we achieve them adaptively via some polyno-

mial time algorithm?

The answer to the first question can provide important benchmarks for comparing
existing approaches and for developing new procedures. The answer to the second
question can lead to new practical methodologies with theoretically justified opti-
mality. The present paper is dedicated to provide answers to these two questions.

Main contributions. Our main contributions are two-folded. First, we carefully
formulate community detection in DCBMs as a decision-theoretic problem and
then work out its asymptotic minimax risks with sharp constant in the exponent
under certain regularity conditions. For example, let k be a fixed constant. Sup-
pose there are k communities all about the same size n/k and the average within
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community and between community edge probabilities are p and q , respectively,
with p > q and p/q = O(1), then under mild regularity conditions, the minimax
risk under the loss function that counts the proportion of misclassified nodes takes
the form

(1)

[
1

n

n∑
i=1

exp
(
−θi

n

k
(
√

p − √
q)2

)]1+o(1)

as n → ∞ whenever it converges to zero and the maximum expected node degree
scales at a sublinear rate with n. The general fundamental limits to be presented
in Section 2 allow the community sizes to differ and the number of communities
k to grow to infinity with n. To the best our knowledge, this is the first minimax
risk result for community detection in DCBMs. The minimax risk (1) has an intu-
itive form. In particular, the ith term in the summation can be understood as the
probability of the ith node being misclassified. When θi is larger, the chance of
the node being misclassified gets smaller as it has more edges, and hence more
information of its community membership is available in the network. The term
n/k is roughly the community size. Since the community detection problem can
be reduced to a hypothesis testing problem with n/k as its effective sample size,
a larger k implies a more difficult problem. Furthermore, (

√
p − √

q)2 reflects the
degree of separation among the k clusters. Note that p and q are the average within
and between community edge probabilities and so (

√
p − √

q)2 measures the dif-
ference of edge densities within and between communities. If the clusters are more
separated in the sense that the within and between community edge densities dif-
fer more, the chance of each node being misclassified becomes smaller. When the
degree-correction parameters are all equal to one and p = o(1), the expression in
(1) reduces to the minimax risk of community detection in SBMs in [27].

In addition, we investigate computationally feasible algorithms for adaptively
achieving minimax optimal performance. In particular, we propose a polynomial
time two-stage algorithm. In the first stage, we obtain a relatively crude community
assignment via a weighted k-medians procedure on a low-rank approximation to
the adjacency matrix. Working with a low-rank approximation (as opposed to the
leading eigenvectors of the adjacency matrix) enables us to avoid common eigen-
gap conditions needed to establish weak consistency for spectral clustering meth-
ods. Based on result of the first stage, the second stage applies a local optimization
to improve on the community assignment of each network node. Theoretically, we
show that it can adaptively achieve asymptotic minimax optimal performance for a
large collection of parameter spaces. The empirical effectiveness of the algorithm
is illustrated by simulation.

Connection to previous work. The present paper is connected to a number of
papers on community detection in DCBMs and SBMs.

It is connected to the authors’ previous work on minimax community detec-
tion in SBMs [10, 27]. However, the involvement of degree-correction parameters



2156 GAO, MA, ZHANG AND ZHOU

poses significant new challenges. For the study of fundamental limits, especially
minimax lower bounds, the fundamental two-point testing problem in DCBMs
compares two product probability distributions with different marginals, while in
SBMs, the two product distributions can be divided to two equal sized blocks
within which the marginals are the same. Consequently, a much more refined
Cramér–Chernoff argument is needed to establish the desired bound. In addition, to
establish matching minimax upper bounds, the analysis of the maximum likelihood
estimators is technically more challenging than that in [27] due to the presence of
degree-correction parameters and the wide range in which they can take values. In
particular, we use a new folding argument to obtain the desired bounds. For adap-
tive estimation, the degree-correction parameters further increase the number of
nuisance parameters. As a result, although we still adopt a “global-to-local” two-
stage strategy to construct the algorithm, neither stage of the proposed algorithm
in the present paper can be borrowed from the algorithm proposed in [10]. We will
give more detailed comments on the first stage below. For the second stage, the pe-
nalized neighbor voting approach in [10] requires estimation of degree-correction
parameters with high accuracy, and hence is infeasible. We propose a new normal-
ized neighbor voting procedure to avoid estimating θi ’s.

The first stage of the proposed algorithm is connected to the literature on spec-
tral clustering, especially [17]. The novelty in our proposal is that we cluster the
rows of a low-rank approximation to the adjacency matrix directly as opposed to
the rows of the matrix containing the leading eigenvectors of the adjacency matrix.
As a result, the new spectral clustering algorithm does not require any eigengap
condition to achieve consistency.

Organization. After a brief introduction to common notation, the rest of the
paper is organized as follows. Section 2 presents the decision-theoretic formula-
tion of community detection in DCBMs and derives matching asymptotic minimax
lower and upper bounds under appropriate conditions. Given the fundamental lim-
its obtained, we propose in Section 3 a polynomial time two-stage algorithm and
study when a version of it can adaptively achieve minimax optimal rates of con-
vergence. The finite sample performance of the proposed algorithm is examined in
Section 4 on simulated data examples. Some proofs of the main results are given
in Section 5 with additional proofs deferred to the Appendices (supplement [11]).

Notation. For an integer d , we use [d] to denote the set {1,2, . . . , d}. For a
positive real number x, �x	 is the smallest integer no smaller than x and 
x� is
the largest integer no larger than x. For a set S, we use 1{S} to denote its indi-
cator function and |S| to denote its cardinality. For a vector v ∈ R

d , its norms
are defined by ‖v‖1 = ∑n

i=1 |vi |, ‖v‖2 = ∑n
i=1 v2

i and ‖v‖∞ = max1≤i≤n |vi |.
For two matrices A,B ∈ R

d1×d2 , their trace inner product is defined as 〈A,B〉 =∑d1
i=1

∑d2
j=1 AijBij . The Frobenius norm and the operator norm of A are defined

by ‖A‖F = √〈A,A〉 and ‖A‖op = smax(A), where smax(·) denotes the largest sin-
gular value.
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2. Fundamental limits. In this section, we present fundamental limits of
community detection in DCBMs. We shall first define an appropriate parameter
space and a loss function. A characterization of asymptotic minimax risks then
follows.

2.1. Parameter space and loss function. Recall that a random graph of size n

generated by a DCBM has its adjacency matrix A satisfying Aii = 0 for all i ∈ [n]
and

(2) Aij = Aji
ind.∼ Bern(θiθjBz(i)z(j)) for all i �= j ∈ [n].

For each u ∈ [k] and a given z ∈ [k]n, we let nu = nu(z) = ∑n
i=1 1{z(i)=u} be the

size of the uth community. Let P = E[A] ∈ [0,1]n×n. We propose to consider the
following parameter space for DCBMs of size n:

Pn(θ,p, q, k,β; δ) =
{
P ∈ [0,1]n×n : ∃z ∈ [k]n and B = BT ∈ R

k×k,

s.t. Pii = 0,Pij = θiθjBz(i)z(j),∀i �= j ∈ [n],
1

nu

∑
z(i)=u

θi ∈ [1 − δ,1 + δ],∀u ∈ [k],(3)

max
u�=v

Buv ≤ q < p ≤ min
u

Buu,

n

βk
− 1 ≤ nu ≤ βn

k
+ 1,∀u ∈ [k]

}
.

We are mostly interested in the behavior of minimax risks over a sequence of
such parameter spaces as n tends to infinity and the key model parameters θ,p, q, k

scale with n in some appropriate way. On the other hand, we take β ≥ 1 as an abso-
lute constant and require the (slack) parameter δ to be an o(1) sequence throughout
the paper.

To see the rationale behind the definition in (3), let us examine each of the
parameters used in the definition. The starting point is θ ∈ R

n+, which we treat for
now as a given sequence of degree-correction parameters. Given θ , we consider all
possible label vectors z such that the approximate normalization 1

nu

∑
z(i)=u θu =

1 + o(1) holds for all communities. The Introduction of the slack parameter 0 <

δ = o(1) rules out those parameter spaces in which community detection can be
trivially achieved by only examining the normalization of the θi’s. On the other
hand, the proposed normalization ensures that for all u �= v ∈ [k],
Buu ≈ 1

nu(nu − 1)

∑
i:z(i)=u

∑
j �=i:z(j)=u

Pij and Buv ≈ 1

nunv

∑
i:z(i)=u

∑
j :z(j)=v

Pij .

Therefore, Buu and Buv can be understood as the (approximate) average connec-
tivity within the uth community and between the uth and the vth communities,
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respectively. Under this interpretation, p can be seen as a lower bound on the
within community connectivities and q an upper bound on the between commu-
nity connectivities. We require the assumption p > q to ensure that the model is
“assortative” in an average sense. Finally, we also require the individual commu-
nity sizes to be contained in the interval [n/(βk)−1, βn/k+1]. In other words, the
community sizes are assumed to be of the same order. Although we have focused
on the case of assortative networks, we expect the same expression of minimax
rates to hold in the disassortative case, that is, minu�=v Buv ≥ q > p ≥ maxu Buu.

REMARK 1. An interesting special case of the parameter space in (3) is when
θ = 1n, where 1n ∈ R

n is the all one vector. In this case, the parameter space
reduces to one for assortative stochastic block models.

As for the loss function, we use the following misclassification proportion that
has been previously used in the investigation of community detection in stochastic
block models [10, 27]:

(4) �(ẑ, z) = 1

n
min
π∈�k

H
(
ẑ, π(z)

)
,

where H(·, ·) is the Hamming distance defined as H(z1, z2) = ∑
i∈[n] 1{z1(i) �=z2(i)}

and �k is the set of all permutations on [k]. Here, the minimization over all per-
mutations is necessary since we are only interested in comparing the partitions re-
sulting from z and ẑ and so the actual labels used in defining the partitions should
be inconsequential.

2.2. Minimax risks. Now we study the minimax risk of the problem

(5) inf
ẑ

sup
Pn(θ,p,q,k,β;δ)

E�(ẑ, z).

In particular, we characterize the asymptotic behavior of (5) as a function of
n, θ,p, q, k and β . The key information-theoretic quantity that governs the mini-
max risk of community detection is I , which is defined through

(6) exp(−I ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

n

n∑
i=1

exp
(
−θi

n

2
(
√

p − √
q)2

)
, k = 2,

1

n

n∑
i=1

exp
(
−θi

n

βk
(
√

p − √
q)2

)
, k ≥ 3.

Note that I depends on n not only directly but also through θ , p, q and k.

Minimax upper bounds. Given any parameter space Pn(θ,p, q, k,β; δ), we can
define the following estimator:

(7)

ẑ = argmax
z′∈Pn(θ,p,q,k,β;δ)

∏
1≤i<j≤n

[
(θiθjp)Aij (1 − θiθjp)1−Aij 1{z′(i)=z′(j)}

+ (θiθj q)Aij (1 − θiθjq)1−Aij 1{z′(i) �=z′(j)}
]
.
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If there is a tie, we break it arbitrarily. The estimator (7) is the maximum likelihood
estimator for a special case of DCBM where Buu = p and Buv = q for all u �=
v ∈ [k]. In other cases, the objective function in (7) is a misspecified likelihood
function. For any sequences {an} and {bn}, we write an = �(bn) if an ≥ Cbn for
some absolute constant C > 0 for all n ≥ 1. The following theorem characterizes
the asymptotic behavior of the risk bounds for the estimator (7).

THEOREM 1 (Minimax upper bounds). Consider any sequence {Pn(θ,p, q,

k,β; δ)}∞n=1 such that as n → ∞, I → ∞, p > q , ‖θ‖∞ = o(n/k), mini∈[n] θi =
�(1) and log k = o(min(I, logn)). When k ≥ 3, further assume β ∈ [1,

√
5/3).

Then the estimator in (7) satisfies

lim sup
n→∞

1

I
log

(
sup

Pn(θ,p,q,k,β;δ)
E�(ẑ, z)

)
≤ −1.

Before proceeding, we briefly discuss the conditions in Theorem 1. First, the
condition mini∈[n] θi = �(1) requires that all θi ’s are at least of constant or-
der. One should note that this condition does not rule out the possibility that
maxi θi � mini θi , and so a great extent of degree variation, even within the same
community, is allowed. Next, log k = o(logn) requires that the number of commu-
nities k, if it diverges to infinity, grows at a subpolynomial rate with the number
of nodes n. Furthermore, β ∈ [1,

√
5/3) is a technical condition that we need for

a combinatorial argument in the proof to go through when k ≥ 3. When k = O(1)

and �(1) = mini θi ≤ ‖θ‖∞ = O(1), Theorem 1 only requires I → ∞, which is
equivalent to n(p − q)2/p → ∞. Informed readers might find the result in Theo-
rem 1 in parallel to that in [27]. However, due to the presence of degree-correction
parameters, the proof of Theorem 1 is significantly different from that of the corre-
sponding result in [27]. For example, a new folding argument is employed to deal
with degree heterogeneity.

Minimax lower bounds. We now show that the rates in Theorem 1 are asymp-
totic minimax optimal by establishing matching minimax lower bounds. To this
end, we require the following condition on the degree-correction parameters
θ ∈ R

n+. The condition guarantees that Pn(θ,p, q, k,β; δ) is non-empty. More-
over, it is only needed for establishing minimax lower bounds.

CONDITION N. We say that θ ∈ R
n+ satisfies Condition N if:

1. When k = 2, there exists a disjoint partition C1,C2 of [n], such that |C1| =

n/2�, |C2| ∈ {
n/2�, 
n/2� + 1} and |Cu|−1 ∑

i∈Cu
θi ∈ (1 − δ/4,1 + δ/4) for

u = 1,2.
2. When k ≥ 3, there exists a disjoint partition {Cu}u∈[k] of [n], such that |C1| ≤

|C2| ≤ · · · ≤ |Ck|, |C1| = |C2| = 
n/(βk)� and |Cu|−1 ∑
i∈Cu

θi ∈ (1 − δ/4,1 +
δ/4) for all u ∈ [k].



2160 GAO, MA, ZHANG AND ZHOU

We note that the condition is only on θ (as opposed to the parameter space) and
the actually communities in the data generating model need not coincide with the
partition that occurs in the statement of the condition.

With the foregoing definition, we have the following result.

THEOREM 2 (Minimax lower bounds). Consider any sequence {Pn(θ,p, q,

k,β; δ)}∞n=1 such that as n → ∞, I → ∞, 1 < p/q = O(1), p‖θ‖2∞ = o(1),
logk = o(I ), log(1/δ) = o(I ) and θ satisfies Condition N. Then

lim inf
n→∞

1

I
log

(
inf
ẑ

sup
Pn(θ,p,q,k,β;δ)

E�(ẑ, z)
)

≥ −1.

Compared with the conditions in Theorem 1, the conditions of Theorem 2 are
slightly different. The condition 1 < p/q = O(1) ensures that the smallest aver-
age within community connectivity is of the same order as (albeit larger than) the
largest average between community connectivity. Such an assumption is typical
in the statistical literature on block models. The condition ‖θ‖2∞p = o(1) ensures
that the maximum expected node degree scales at a sublinear rate with the network
size n. Furthermore, when k = O(1), the condition log k = o(I ) can be dropped
because it is equivalent to I → ∞, which in turn is necessary for the minimax risk
to converge to zero.

Combining both theorems, we have the minimax risk of the problem.

COROLLARY 1. Under the conditions of Theorems 1 and 2, we have

inf
ẑ

sup
Pn(θ,p,q,k,β;δ)

E�(ẑ, z) = exp
(−(

1 + o(1)
)
I
)
,

where o(1) stands for a sequence whose absolute values tend to zero as n tends to
infinity.

Setting β = 1 in Corollary 1 leads to the minimax result (1) in the Introduction.
We refer to Section 1 for the meanings of the terms in I .

REMARK 2. When θ = 1n, the foregoing minimax risk reduces to the cor-
responding result for stochastic block models [27] in the sparse regime where
q < p = o(1). In this case, (6) implies that the minimax risk is

exp
(−(

1 + o(1)
)
I
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
−(

1 + o(1)
)n
2
(
√

p − √
q)2

)
, k = 2,

exp
(
−(

1 + o(1)
) n

βk
(
√

p − √
q)2

)
, k ≥ 3.

Note that when q < p = o(1), the Rényi divergence of order 1
2 used in the minimax

risk expression in [27] is equal to (1 + o(1))(
√

p − √
q)2.
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3. An adaptive and computationally feasible procedure. Theorem 1 shows
that the minimax rate can be achieved by the estimator (7) obtained via combina-
torial optimization which is not computationally feasible. Moreover, the procedure
depends on the knowledge of the parameters θ , p and q . These features make it
not applicable in practical situations. In this section, we introduce a two-stage al-
gorithm for community detection in DCBMs, which is not only computationally
feasible but also adaptive over a wide range of unknown parameter values. We
show that the procedure achieves minimax optimal rates under certain regularity
conditions.

3.1. A two-stage algorithm. The proposed algorithm consists of an initializa-
tion stage and a refinement stage.

Initialization: Weighted k-medians clustering. To explain the rationale behind
our proposal, with slight abuse of notation, let P = (Pij ) ∈ [0,1]n×n, where for all
i, j ∈ [n], Pij = Pji = θiθjBz(i)z(j). Except for the diagonal entries, P is the same
as in (3). For any i ∈ [n], let Pi denote the ith row of P . Then for all i such that
z(i) = u, we observe that

θ−1
i Pi = (θ1Bu,z(1), . . . , θnBu,z(n))

are all equal. Thus, there are exactly k different vectors that the normalized row
vectors {θ−1

i Pi}ni=1 can be. Moreover, which one of the k vectors the ith normal-
ized row vector equals is determined solely by its community label z(i). This ob-
servation suggests one can design a reasonable community detection procedure
by clustering the sample counterparts of the vectors {θ−1

1 P1, θ
−1
2 P2, . . . , θ

−1
n Pn},

which leads us to the proposal of Algorithm 1.
In Algorithm 1, Steps 1 and 2 aim to find an estimator P̂ of P by solving a low

rank approximation problem. Then, in Step 3, we can use ‖P̂i‖−1
1 P̂i as a surrogate

for θ−1
i Pi . Finally, Step 4 performs a weighted k-median clustering procedure ap-

plied on the row vectors of the n × k matrix⎡
⎢⎣‖P̂1‖−1

1 P̂1
· · ·

‖P̂n‖−1
1 P̂n

⎤
⎥⎦ .

The main novelty of the proposed Algorithm 1 lies in the first two steps. To
improve the effect of denoising in the sparse regime, Step 1 removes the rows
and the columns of A whose sums are too large. This idea was previously used
in community detection in SBMs [7]. If one omits this step, the high probabil-
ity error bound for the output of Algorithm 1 could suffer an extra multiplier of
order O(logn). The choice of τ will be made clear in Lemma 1 and Remark 4
below. Note that the potential loss of information in Step 1 for those highly impor-
tant nodes will be later recovered in the refinement state. The P̂ matrix sought in
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Algorithm 1: Weighted k-medians Clustering

Data: Adjacency matrix A ∈ {0,1}n×n, number of clusters k, tuning
parameter τ .

Result: Initial label estimator ẑ0.
1 Define Tτ (A) ∈ {0,1}n×n by replacing the ith row and column of A whose

row sum is larger than τ by zeroes for each i ∈ [n]
2 Solve

P̂ = argmin
rank(P )≤k

∥∥Tτ (A) − P
∥∥2

F;

3 Let P̂i be the ith row of P̂ . Define S0 = {i ∈ [n] : ‖P̂i‖1 = 0}. Set ẑ0(i) = 0

for i ∈ S0, and define P̃i = P̂i/‖P̂i‖1 for i /∈ S0
4 Solve a (1 + ε)-k-median optimization problem on Sc

0. That is, find
{ẑ0(i)}i∈Sc

0
in [k]|Sc

0 | that satisfies

k∑
u=1

min
vu∈Rn

∑
{i∈Sc

0 :ẑ0(i)=u}
‖P̂i‖1‖P̃i − vu‖1

(8)

≤ (1 + ε) min
z∈[k]n

k∑
u=1

min
vu∈Rn

∑
{i∈Sc

0 :z(i)=u}
‖P̂i‖1‖P̃i − vu‖1.

Step 2 can be obtained by an eigendecomposition of Tτ (A), that is, P̂ = Û�̂ÛT ,
where Û ∈ R

n×k collects the k leading eigenvectors, and �̂ is a diagonal matrix of
top k eigenvalues. A notable difference between Algorithm 1 and many existing
spectral clustering algorithms (e.g., [17, 19, 25]) is that we work with the estimated
probability matrix P̂ directly rather than its leading eigenvectors Û . As we shall
see later, such a difference allows us to avoid eigengap assumption required for
performance guarantees in the aforementioned papers. Using weighted k-median
in Step 4 is mainly for technical reasons, as it allows us to establish the same error
bound under weaker conditions. In a recent paper [6], a weighted k-medians algo-
rithm was also used in community detection in DCBMs. A key difference is that
we apply it on the matrix P̂ , while [6] applied it on an estimator of the membership
matrix (1{z(i)=z(j)}) ∈ {0,1}n×n obtained from a convex program.

Refinement: Normalized network neighbor counts. As we shall show later, the
error rate of Algorithm 1 decays polynomially with respect to the key quantity I

defined in (6). To achieve the desired exponential decay rate with respect to I as in
the minimax rate, we need to further refine the community assignments obtained
from Algorithm 1.
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Algorithm 2: A Prototypical Refinement Procedure

Data: Adjacency matrix A ∈ {0,1}n×n, number of clusters k and a
community label vector ẑ0;

Result: A refined community label vector ẑ ∈ [k]n;
1 For each i ∈ [n], let

(9) ẑ(i) = argmax
u∈[k]

1

|{j : ẑ0(j) = u}|
∑

{j :ẑ0(j)=u}
Aij .

To this end, we propose a prototypical refinement procedure in Algorithm 2. The
algorithm determines a possibly new community label for the ith node by counting
the number of neighbors that the ith node has in each community normalized by
the corresponding community size, and then picking the label of the community
that maximizes the normalized counts. If there is a tie, we break it in an arbitrary
way.

To see the rationale behind Algorithm 2, let us consider a simplified version of
the problem. Suppose k = 2, n = 2m + 1 for some integer m ≥ 1, B11 = B22 = p

and B12 = B21 = q . Moreover, let us assume that the community labels of the
first 2m nodes are such that z(i) = 1 for i = 1, . . . ,m and z(i) = 2 for i = m +
1, . . . ,2m. The label of the last node z(n) remains to be determined from the data.
When {z(i) : i = 1, . . . ,2m} are the truth, the determination of the label for the nth
node reduces to the following testing problem:

(10)

H0 : {An,i}i∈[n−1] ∼
m⊗

i=1

Bern(θnθip) ⊗
2m⊗

i=m+1

Bern(θnθiq), vs.

H1 : {An,i}i∈[n−1] ∼
m⊗

i=1

Bern(θnθiq) ⊗
2m⊗

i=m+1

Bern(θnθip).

The hypotheses H0 and H1 are joint distributions of {An,i}i∈[n−1] in the two cases
z(n) = 1 and z(n) = 2, respectively. For this simple versus simple testing problem,
the Neyman–Pearson lemma dictates that the likelihood ratio test is optimal. How-
ever, it is not a satisfying answer for our goal, since the likelihood ratio test needs
to use the values of the unknown parameters p, q and θ . While it is possible to ob-
tain sufficiently accurate estimators for p and q , it is hard to do so for θ , especially
when the network is sparse. In summary, the dependence of the likelihood ratio
test on nuisance parameters makes it impossible to apply in practice. To overcome
this difficulty, we propose to consider a simple test which

(11) rejects H0 if
∑

i:z(i)=1

An,i <
∑

i:z(i)=2

An,i .
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As we shall show later in Lemma 2 and (21), this simple procedure achieves the
optimal testing error exponent. It is worthwhile to point out that it does not require
any knowledge of p, q or θ , and hence the procedure is adaptive. A detailed study
of the testing problem (10) is given in Section 5.1.

Inspired by the foregoing discussion, when k = 2 and the two community sizes
are different, we propose to normalize the counts in (11) by the community sizes.
Moreover, when there are more than two communities, we propose to perform
pairwise comparison based on the foregoing (normalized) test statistic for each pair
of community labels, which becomes the procedure in (9) as long as we replace the
unknown truth z with an initial estimator ẑ0. For a good initial estimator such as
the one output by Algorithm 1, the refinement can lead to minimax optimal errors
in misclassification proportion for a large collection of parameter spaces.

In the disassortative case, that is, when minu�=v Buv ≥ q > p ≥ maxu Buu, we
may keep using Algorithm 1 while replacing the definition of ẑ(i) in Step 1 of Al-

gorithm 2 with ẑ(i) = argminu∈[k]
∑

j :ẑ0(j)=u
Aij

|{j :ẑ0(j)=u}| . We expect the analysis in the next
subsection to go through in the disassortative case with the foregoing modification.

3.2. Performance guarantees. In this part, we state high probability perfor-
mance guarantees for the proposed procedure. The theoretical property of the al-
gorithms requires an extra bound on the maximal entry of EA. We incorporate this
condition into the following parameter space:

P ′
n(θ,p, q, k,β; δ,α)

=
{
P = (θiθjBz(i)z(j)1{i �=j}) ∈Pn(θ,p, q, k,β; δ) : max

u∈[k]Buu ≤ αp
}
.

The parameter α is assumed to be a constant no smaller than 1 that does not
change with n. By studying the proofs of Theorem 2 and Theorem 1, the min-
imax lower and upper bounds do not change for the slightly smaller parameter
space P ′

n(θ,p, q, k,β; δ,α). Therefore, the rate exp(−(1 + o(1))I ) still serves as
a benchmark for us to develop theoretically justifiable algorithms for the parameter
space P ′

n(θ,p, q, k,β; δ,α).

3.2.1. Error rate for the initialization stage. As a first step, we provide the
following high probability error bound for Algorithm 1.

LEMMA 1 (Error bound for Algorithm 1). Assume δ = o(1), 1 < p/q = O(1)

and ‖θ‖∞ = o(n/k). Let τ = C1(np‖θ‖2∞ +1) for some sufficiently large constant
C1 > 0 in Algorithm 1. Then, there exist some constants C′,C > 0, such that for
any generative model in P ′

n(θ,p, q, k,β; δ,α), we have with probability at least
1 − n−(1+C′),

min
π∈�k

∑
{i:ẑ(i) �=π(z(i))}

θi ≤ C
(1 + ε)k5/2

√
n‖θ‖2∞p + 1

p − q
.
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Lemma 1 provides a uniform high probability bound for the sum of θi ’s of the
nodes which are assigned wrong labels. Before discussing the implication of this
result, we give two remarks.

REMARK 3. Algorithm 1 applies a weighted k-medians procedure on the ma-
trix P̂ instead of its leading eigenvectors. This is the main difference between
Algorithm 1 and many traditional spectral clustering algorithms. As a result, we
avoid any eigengap assumption that is imposed to prove consistency results for
spectral clustering algorithms [17, 19, 25, 26].

REMARK 4. Lemma 1 suggests that the thresholding parameter τ in Algo-
rithm 1 should be set at the order of np‖θ‖2∞ + 1. Under the extra assumption
maxi �=j EAij

mini �=j EAij
= O(1), we can use a data-driven version τ = C1

1
n

∑
i �=j Aij for some

large constant C1 > 0. The result of Lemma 1 stays the same.

REMARK 5. The extra (1 + ε) slack that we allow in Algorithm 1 is also
reflected in the error bound.

The following corollary exemplifies how the result of Lemma 1 can be special-
ized into a high probability bound for the loss function (4) with a rate depending
on I under some stronger conditions. These conditions, especially mini θi = �(1),
can be relaxed in Theorem 4 stated in the next paragraph.

COROLLARY 2. Under the conditions of Lemma 1, if we further assume
p ≥ n−1, k = O(1) and �(1) = mini θi ≤ ‖θ‖∞ = O(1), then there exist some
constants C ′,C > 0, such that for any generative model in P ′

n(θ,p, q, k,β; δ,α),
we have �(ẑ, z) ≤ C(1 + ε)I−1/2 with probability at least 1 − n−(1+C′).

Error rate for the refinement stage. As exemplified in Corollary 2, the conver-
gence rate for the initialization step is typically only the polynomial in I as op-
posed to the exponential rate in the minimax rate. Thus, there is room for improve-
ment. In what follows, we show that a specific way of applying Algorithm 2 on
the output of Algorithm 1 leads to significant performance enhancement in terms
of misclassification proportion. To this end, let us first state in Algorithm 3 the
combined algorithm for which we are able to establish the improved error bounds.
Here and after, for any i ∈ [n], let A−i ∈ {0,1}(n−1)×(n−1) be the submatrix of A

obtained from removing the ith row and column of A.

REMARK 6. The last step (12) of Algorithm 3 constructs a final label estima-
tor ẑ from ẑ0−1, ẑ

0−2, . . . , ẑ
0−n. Since the labels given by ẑ0−1, ẑ

0−2, . . . , ẑ
0−n are only

comparable after certain permutations in �k , we need this extra step to resolve this
issue.
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Algorithm 3: A Provable Version of Algorithm 1 + Algorithm 2

Data: Adjacency matrix A ∈ {0,1}n×n and number of clusters k;
Result: Clustering label estimator ẑ ∈ [k]n;

1 For each i ∈ [n], apply Algorithm 1 to A−i . The result, which is a vector of
dimension n − 1, is stored in (ẑ0−i (1), . . . , ẑ0−i(i − 1), ẑ0−i(i + 1), . . . , ẑ0−i(n))

2 For each i ∈ [n], the ith entry of ẑ0−i is set as

ẑ0−i (i) = argmax
u∈[k]

1

|{j : ẑ0−i (j) = u}|
∑

j :ẑ0−i (j)=u

Aij ;

3 Set ẑ(1) = ẑ0−1(1). For each i ∈ {2, . . . , n}, set

(12) ẑ(i) = argmax
u∈[k]

∣∣{j : ẑ0−1(j) = u
} ∩ {

j : ẑ0−i (j) = ẑ0−i (i)
}∣∣.

REMARK 7. Algorithm 3 is a theoretically justifiable version for combining
Algorithm 1 and Algorithm 2. In order to obtain a rate-optimal label assignment
for the ith node, we first apply the initial clustering procedure in Algorithm 1 on
the subnetwork consisting of the remaining n − 1 nodes and the edges among
them. Then one applies the refinement procedure in Algorithm 2 to assign a label
for the ith node. The independence between the initialization and the refinement
stages facilitates the technical arguments in the proof. However, in practice, one
can simply apply Algorithm 1 followed by Algorithm 2. The numerical difference
from Algorithm 3 is negligible in all the data examples we have examined.

A special case: almost equal community sizes. In the special case where the
community sizes are almost equal, we can show that ẑ output by Algorithm 3
achieves the minimax rate.

THEOREM 3. Under the conditions of Lemma 1, we further assume β = 1,

k = O(1), mini θi = �(1), δ = o(
p−q

p
), ‖θ‖2∞p ≥ n−1 and (1+ε)‖θ‖∞p3/2√

n(p−q)2 = o(1).

Then there is a sequence η = o(1) such that the output ẑ of Algorithm 3 satisfies

lim
n→∞ inf

P ′
n(θ,p,q,k,β;δ,α)

P
{
�(ẑ, z) ≤ exp

(−(1 − η)I
)} = 1.

Theorem 3 shows that when the community sizes are almost equal, the min-
imax rate exp(−(1 + o(1))I ) can be achieved within polynomial time. We note
that the conditions that we need here are stronger than those of Theorem 1. When
k = O(1), ε = O(1) and �(1) = mini θi ≤ ‖θ‖∞ = O(1), Theorem 1 only re-

quires I → ∞, which is equivalent to p1/2√
n(p−q)

= o(1), while Theorem 3 requires



COMMUNITY DETECTION 2167

p3/2√
n(p−q)2 = o(1). Whether the extra factor p

p−q
can be removed from the assump-

tions is an interesting problem to investigate in the future. However, as long as
p � p − q , then all the other conditions in Theorem 1 and Theorem 3 match and
the algorithm achieves the desired rate even when 1

n
� p � logn

n
.

General case. We now state a general high probability error bound for Algo-
rithm 3. To introduce this result, we define another information-theoretic quantity.
For any t ∈ (0,1), define

(13) Jt (p, q) = 2
(
tp + (1 − t)q − ptq1−t ).

By Jensen’s inequality, it is straightforward to verify that Jt (p, q) ≥ 0 and
Jt (p, q) = 0 if and only if p = q . As a special case, when t = 1

2 , we have

(14) J 1
2
(p, q) = (

√
p − √

q)2.

For a given z ∈ [k]n, let n(1) ≤ · · · ≤ n(k) be the order statistics of community sizes
{nu(z) : u = 1, . . . , k}. Then we define the quantity J by through

(15) exp(−J ) = 1

n

n∑
i=1

exp
(
−θi

(
n(1) + n(2)

2

)
Jt∗(p, q)

)

with t∗ = n(1)

n(1)+n(2)
. With the foregoing definitions, the following theorem gives a

general error bound for Algorithm 3.

THEOREM 4. Under the conditions of Lemma 1, we further assume that δ =
o(

p−q
p

), ‖θ‖2∞p ≥ n−1,

(16)
(1 + ε)k5/2‖θ‖∞

√
p√

n(p − q)
= o

(
p − q

kp

)
,

and

(17) min
γ≥0

{
n−1∣∣{i ∈ [n] : θi ≤ γ

}∣∣ + (1 + ε)k5/2‖θ‖∞
√

p

γ
√

n(p − q)

}
= o

(
p − q

k2p

)
.

Then there is a sequence η = o(1) such that the output ẑ of Algorithm 3 satisfies

lim
n→∞ inf

P ′
n(θ,p,q,k,β;δ,α)

P
{
�(ẑ, z) ≤ exp

(−(1 − η)J
)} = 1.

Theorem 4 gives a general error bound for the performance of Algorithm 3. It
is easy to check that the conditions (16) and (17) are satisfied under the settings
of Theorem 3. Therefore, Theorem 3 is a special case of Theorem 4. Theorem 4
shows that Algorithm 3 converges at the rate exp(−(1 + o(1))J ). According to
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the properties of Jt (p, q) stated in Appendix C, one can show that when n(1) =
(1 + o(1))n(2), J = (1 + o(1))I , and that in general

n(1)(
√

p − √
q)2 ≤

(
n(1) + n(2)

2

)
Jt∗(p, q) ≤

(
n(1) + n(2)

2

)
(
√

p − √
q)2.

Using this relation, we can state the convergence rate in Theorem 4 using the quan-
tity I .

COROLLARY 3. Under the conditions of Theorem 4, there is a sequence η =
o(1) such that the output ẑ of Algorithm 3 satisfies

lim
n→∞ inf

P ′
n(θ,p,q,2,β;δ,α)

P
{
�(ẑ, z) ≤ exp

(−(1 − η)β−1I
)} = 1,

lim
n→∞ inf

P ′
n(θ,p,q,k,β;δ,α)

P
{
�(ẑ, z) ≤ exp

(−(1 − η)I
)} = 1, for k ≥ 3.

Therefore, when k ≥ 3, the minimax rate exp(−(1 + o(1))I ) is achieved by
Algorithm 3. The only situation where the minimax rate is not achieved by Algo-
rithm 3 is when k = 2 and β > 1. For this case, there is an extra β−1 factor on the
exponent of the convergence rate.

REMARK 8. If we further assume that mini �=j Bij = �(q), a careful exami-
nation of the proofs shows that we can improve the term k5/2 in the conclusion
of Lemma 1 and in the conditions (16) and (17) to k3/2. Since it is unclear what
the optimal power exponent for k is in these circumstances, we do not pursue it
explicitly in this paper.

4. Numerical results. In this section, we present numerical experiments on
simulated datasets generated from DCBMs. In particular, we compare the per-
formance of two versions of our algorithm with three state-of-the-art methods:
SCORE [17], CMM [6] and RSC (Regularized Spectral Clustering) [25] in two
different scenarios. On simulated data examples, both versions of our algorithm
outperformed SCORE and RSC in terms of misclassification proportion. The per-
formance of CMM was comparable to our algorithm. However, our algorithm not
only gives slightly better accuracy on the simulated datasets, but it also enjoys the
advantage of easy implementation, fast computation and scalability to networks
of large sizes since it does not involve convex programming. We also apply our
method to a real data set [3]. Our algorithms perform comparably with the best
results in literature.

Scenario 1. We set n = 300 nodes and k = 2. The sizes of the two communities
are set as 100 and 200, respectively. The off-diagonal entries of the adjacency

matrix were generated as Aij = Aji
ind.∼ Bern(θiθjp) if z(i) = z(j) and Aij =
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FIG. 1. Left panel: boxplots of misclassification proportions for the five algorithms over 100 inde-
pendent repetitions. Right panel: histogram of θi .

Aji
ind.∼ Bern(θiθj q) if z(i) �= z(j). We let p = 0.1 and q = 3p/10. The degree-

correction parameters are set as θi = |Zi |+1− (2π)−1/2 where Zi
i.i.d.∼ N(0,0.25)

for i = 1, . . . , n. It is straightforward to verify that Eθi = 1.
We compare misclassification proportions of the following six algorithms:4

1. The SCORE method in [17];
2. The weighted k-medians procedure in Algorithm 1;
3. Refinement of the output of Algorithm 1 by Algorithm 2;
4. Iterate Algorithm 2 10 times after initialization by Algorithm 1;
5. The CMM method in [6];
6. The RSC method in [25].

We conducted the experiments with 100 independent repetitions and summa-
rize the performances of the six algorithms through boxplots of misclassification
proportions. Figure 1 shows that our refinement step (Algorithm 2) significantly
improved the performance of the initialization step (Algorithm 1). Moreover, it
helps to further reduce the error if we apply the refinement step for a few more
iterations. Among the six algorithms, our proposed procedures give the best per-
formance. The CMM algorithm is slightly worse than our procedures with refine-
ment, but is better than Algorithm 1, RSC and SCORE. See Appendix A.1 for
detailed comparison of running times.

Scenario 2. Here, we set n = 800 and k = 4 and all community sizes are set
equal. The adjacency matrix is generated in the same way as in Scenario 1 except
that θi’s are independent draws from a Pareto distribution with density function
f (x) = αβα

xα+1 1{x≥β}, with α = 5 and β = 4/5. The choice of α and β ensures that
Eθi = 1.

4The numerical performance of Algorithm 3 was indistinguishable from that of the second algo-
rithm in the list in all the experiments conducted.
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FIG. 2. Left panel: boxplots of misclassification proportions for the five algorithms over 100 inde-
pendent repetitions. Right panel: histogram of θi .

As in Scenario 1, we compare the performance of the six algorithms over 100
independent repetitions. Figure 2 shows the boxplots of the misclassification pro-
portions. The overall message is similar to Scenario 1, except that CMM is almost
as good as our procedures with refinement, but all of them outperform Algorithm 1,
RSC and SCORE. Despite its comparable performance on this task, CMM requires
noticeably longer running time than our procedures on the simulated datasets due
to the involvement of convex programming. Therefore, its scalability to large net-
works is more limited; see Appendix A.1 for detailed comparison of speed. For
the implementations of Algorithm 1 in both scenarios, we let τ = c(

∑
i,j Ai,j )/n

with c = 20. However, the choice of τ has minimal effect on the performance of
Algorithm 1 as long as c ≥ 5; see Appendix A.2.

The political blog dataset. We compare our algorithm with the others on the
political blog dataset [3]. It presents a network of connections among 1490 po-
litical blogs. After the pre-processing step as in [18], we consider 1222 nodes
in the largest component. The network consists two communities, the liberal one
with 586 blogs and the conservative one with 636 blogs. It is undirected and with
no self-loop. As shown in Table 1, the SCORE method has the best known error
rate (58 nodes) in the literature. Our algorithms give comparable (59 nodes for
Algorithm 2) and even slightly better results (57 nodes for Algorithm 2 with 10
iterations).

TABLE 1
Comparison of Algorithms on the Political Blog Dataset

Method SCORE Algo. 1 Algo. 2 Algo. 2 (10 iter.) CMM RSC

# errors 58 65 59 57 61 63
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5. Proofs. This section presents proofs for some main results of the paper. In
Section 5.1, we first study a fundamental testing problem for community detec-
tion in DCBMs. The theoretical results for this testing problem are critical tools to
prove minimax lower and upper bounds for community detection. We then state
the proof of Theorem 1. Proofs of the other main results are deferred to the Ap-
pendices.

5.1. A fundamental testing problem. As a prelude to all proofs, we consider
the hypothesis testing problem (10) that not only is fundamental to the study of
minimax risk but also motivates the proposal of Algorithm 2. To paraphrase the
problem, suppose X = (X1, . . . ,Xm,Xm+1, . . . ,X2m) have independent Bernoulli
entries. Given 1 ≥ p > q ≥ 0 and θ0, θ1, . . . , θ2m > 0 such that

(18)
m∑

i=1

θi =
2m∑

i=m+1

θi = m.

We are interested in understanding the minimum possible Type I + II error of
testing

H0 : X ∼
m⊗

i=1

Bern(θ0θip) ⊗
2m⊗

i=m+1

Bern(θ0θiq) vs.

(19)

H1 : X ∼
m⊗

i=1

Bern(θ0θiq) ⊗
2m⊗

i=m+1

Bern(θ0θip).

In particular, we are interested in the asymptotic behavior of the error for a se-
quence of such testing problems in which p, q and the θi’s scale with m as
m → ∞. First, we have the following lower bound result.

LEMMA 2. Suppose that as m → ∞, 1 < p/q = O(1) and p max0≤i≤2m θ2
i =

o(1). If θ0m(
√

p − √
q)2 → ∞,

inf
φ

(
PH0φ + PH1(1 − φ)

) ≥ exp
(−(

1 + o(1)
)
θ0m(

√
p − √

q)2)
.

Otherwise if θ0m(
√

p − √
q)2 = O(1), there exists a constant c ∈ (0,1) such that

infφ(PH0φ + PH1(1 − φ)) ≥ c.

According to the Neyman–Pearson lemma, the optimal testing procedure is the
likelihood ratio test. However, such a test depends on the values of {θi}2m

i=1,p, q ,
and is not appropriate in practice. On the other hand, the following simple test:

(20) φ = 1{∑m
i=1 Xi<

∑2m
i=m+1 Xi}.

can be shown to achieve the optimal error bound

(21) PH0φ + PH1(1 − φ) ≤ 2 exp
(−θ0m(

√
p − √

q)2)
.
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Combining Lemma 2 and (21), we find that the minimax testing error for the
problem (19) is e−(1+o(1))θ0m(

√
p−√

q)2
. This explains why the minimax rate for

community detection in DCBM takes the form of e−(1+o(1))I in Corollary 1. More-
over, the simple testing function (20) serves as a critical component in Algorithm 2.
The fact that (20) can achieve the optimal testing error exponent in (21) explains
why our algorithm can achieve the minimax rate when the community sizes are
equal (Theorem 3).

5.2. Proof of Theorem 1. Throughout the proof, we let z denote the truth, ẑ

the estimator defined in (7) and z̃ a generic assignment vector. In addition, we
let L denote the objective function in (7). In what follows, we focus on proving
the upper bounds for k ≥ 3 while the case of k = 2 is deferred to Appendix B.1.
The proof for k = 2 is slightly different because in this case, when a node is mis-
clustered, one is able to identify the exact wrong label the node is assigned which
is not possible when k ≥ 3.

Outline and additional notation. We have the following basic equality:

En�(ẑ, z) =
n∑

m=1

mP
(
n�(ẑ, z) = m

)
.(22)

Thus, to prove the desired upper bounds, we are to work out appropriate bounds
for the individual probabilities P(n�(ẑ, z) = m). To this end, for any given m, our
basic idea is to first bound P(L(z̃) > L(z)) for any z̃ such that n�(ẑ, z) = m and
then apply the union bound. To carry out these calculations in detail, we divide the
entire proof into three major steps: (i) In the first step, we derive a generic upper
bound expression for the quantity P(L(z̃) > L(z)) for any deterministic z̃.

(ii) In the second step, we further materialize the upper bound expression ac-
cording to different values of m where m = n�(z̃, z). In particular, we shall use
different arguments in three different regimes of m values. Together with the union
bound, we shall obtain bounds for all probabilities P(n�(ẑ, z) = m).

(iii) In the last step, we supply the bounds obtained in the second step to (22)
to establish the theorem. Indeed, the bounds we derive in the second step decay
geometrically once m is larger than some critical value which depends on the rate
of the error bounds. Thus, we divide the final arguments here according to three
different regimes of error rates.

After a brief Introduction to some additional notation, we carry out these three
steps in order. We denote nmin = minu∈[k] |{i : z(i) = u}|, nmax = maxu∈[k] |{i :
z(i) = u}| and θmin = mini∈[n] θi . Note that nmin ≥ n/(βk), nmax ≤ βn/k and
θmin = �(1). For any t ∈ (0,1), we define

(23) Rt = 1

n

n∑
i=1

exp
(−(1 − t)θinmin(

√
p − √

q)2)
.
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In order to show E�(ẑ, z) ≤ exp(−(1 − o(1))I ), it is sufficient to prove E�(ẑ, z) ≤
Rt for some t = o(1), since Rt ≤ 1

n

∑n
i=1 exp(−(1 − t)θin/(βk)(

√
p − √

q)2) ≤
exp(−(1 − t)I ), where the second inequality is by Jensen inequality.

Step 1: Bounding P(L(z̃) > L(z)). For any deterministic z̃, we have

P
(
L(z̃) > L(z)

) = P

( ∑
i<j,z(i)=z(j)

z̃(i) �=z̃(j)

(
Aij log

q(1 − θiθjp)

p(1 − θiθjq)
+ log

1 − θiθjq

1 − θiθjp

)

+ ∑
i<j,z(i) �=z(j)

z̃(i)=z̃(j)

(
Aij log

p(1 − θiθjq)

q(1 − θiθjp)
+ log

1 − θiθjp

1 − θiθj q

)
> 0

)
.

When z(i) = z(j), we have P(Aij = 1) = θiθjp
′ for some p′ ≥ p, and so

E exp
(

1

2

(
Aij log

q(1 − θiθjp)

p(1 − θiθj q)
+ log

1 − θiθjq

1 − θiθjp

))

= θiθj

√
q

p
p′ +

√
1 − θiθj q

1 − θiθjp

(
1 − θiθjp

′)

= θiθj
√

qp +
√

(1 − θiθjq)(1 − θiθjp)

+ θiθj

(
p′ − p

)(√
q

p
−

√
1 − θiθj q

1 − θiθjp

)

≤ exp
(
log(

√
pqθiθj +

√
1 − θiθjq

√
1 − θiθjp)

)
≤ exp

(
−1

2
θiθj (

√
q − √

p)2
)
.

Similarly, when z(i) �= z(j) we also have

E exp
(

1

2

(
Aij log

p(1 − θiθj q)

q(1 − θiθjp)
+ log

1 − θiθjp

1 − θiθjq

))

≤ exp
(
log(

√
pqθiθj +

√
1 − θiθjq

√
1 − θiθjp)

)
≤ exp

(
−1

2
θiθj (

√
q − √

p)2
)
.

For any assignment vector z̃, define membership matrix Ỹ ∈ {0,1}n×n with Ỹij =
1{z̃(i)=z̃(j)} for all i �= j and zero otherwise. Let Y be the membership matrix as-
sociated with the truth z. Note that the membership matrix is invariant under per-
mutation of the community labels. By applying the Chernoff bound with t = 1

2 we
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have

(24)

P
(
L(z̃) > L(z)

) ≤ ∏
i<j

Ỹij �=Yij

exp
(
−1

2
θiθj (

√
p − √

q)2
)

= ∏
i �=j

Ỹij �=Yij

exp
(
−1

4
θiθj (

√
p − √

q)2
)
.

Step 2: Bounding P(n�(ẑ, z) = m). To obtain the desired bounds on these
probabilities, we introduce a way to partition each community according to the val-
ues of the degree-correction parameters. Given the truth z and any deterministic as-
signment vector z̃, let Cu = {i ∈ [n] : z(i) = u}, �u = {i ∈ [n] : z(i) = u, z̃(i) �= u}
and � = ⋃

u∈[k] �u. Note that �u and � depend on z̃.
Let M ≥ 2 be a large enough constant integer to be determined later. For each

Cu we decompose it as Cu = C+
u ∪ C−

u such that

(25) C+
u ∩ C−

u = ∅,
∣∣C−

u

∣∣ =
⌈ |Cu|

M

⌉
, min

i∈C+
u

θi ≥ max
i∈C−

u

θi .

Due to the approximate normalization of degree-correction parameters, for suffi-
ciently large values of n,

(26) max
i∈C−

u

θi ≤ 3/2.

Since |C+
u | ≤ (M − 1)|C−

u |, we can define a mapping τu : Cu → C−
u such that its

restriction on C−
u is identity. Moreover, we could require that for any i ∈ C−

u ,
|τ−1

u (i)| ≤ M . Let τ be the mapping from [n] to
⋃k

u=1 C−
u such that the restric-

tion of τ on Cu is τu. The main reason for introducing τ is to deal with the range
of values the degree-correction parameters can take. The right-hand side of (24)
shows that the desired bounds depend crucially on quantities of the form

∑
i∈S θi

for some set S. For any set S, the sum
∑

i∈S θi is not necessarily upper bounded
by a constant multiple of the size of the set |S|. However, by (26), we can always
upper bound

∑
i∈S θτ(i) by a constant multiple of |S|. This gives us a way to relate

the probability bounds and the number of misclassified nodes. Such a point can be
seen more clearly as we go to the explicit calculation below.

Let

(27) m′ = ηn/k

for some η = o(1) with η−1 = o(I ) and k ≤ nη. We now derive bounds for
P(n�(ẑ, z) = m) for m ∈ [1,M], (M,m′] and (m′, n] separately.



COMMUNITY DETECTION 2175

Case 1: 1 ≤ m ≤ M . In this case, we have

P
(
n�(ẑ, z) = m

)
≤ ∑

z̃:|�|=m

exp
(
−1

2

∑
i∈�

θi

(
(1 − δ)2nmin − ∑

i∈�

θi

)
(
√

p − √
q)2

)

≤ ∑
z̃:|�|=m

exp
(
−1

2

∑
i∈�

θτ(i)

(
(1 − δ)2nmin − ∑

i∈�

θτ(i)

)
(
√

p − √
q)2

)

≤ ∑
z̃:|�|=m

∏
i∈�

exp
(
−1

2
θτ(i)

(
(1 − δ)2nmin − 2M

)
(
√

p − √
q)2

)
.

Here, the first inequality comes from direct application of (24) and the union
bound. Since ‖θ‖∞ = o(n/k) = o(nmin) and M is a constant, we have

∑
i∈� θi =

o(nmin). This, together with the monotonicity of the function x(1−x) when x is in
the right neighborhood of zero, implies the second inequality. The third inequality
is due to (26). Since M is a constant and M/nmin can be upper bounded by η for
large values of n, we further have

P
(
n�(ẑ, z) = m

) ≤ ∑
z̃:|�|=m

∏
i∈�

exp
(−θτ(i)(1 − δ − 2η)2nmin(

√
p − √

q)2)

≤ km

(
n∑

i=1

exp
(−θτ(i)(1 − δ − 2η)nmin(

√
p − √

q)2))m

≤ km

(
M

n∑
i=1

exp
(−θi(1 − δ − 2η)nmin(

√
p − √

q)2))m

= (knMRδ+2η)
m.

Here and after, the notation
∑

z̃:|�|=m means summing over all deterministic as-
signment vectors z̃ such that |�| = n�(z̃, z) = m. The last inequality holds since
for any i ∈ C−

u , |τ−1
u (i)| ≤ M .

Case 2: M < m ≤ m′. In this case, we cannot directly apply the argument in
case 1 since we can no longer guarantee that

∑
i∈� θi = o(nmin) and so the second

inequality of the last display no longer holds. To proceed, we can further bound
the rightmost side of (24) by B1 × B2, where

B1 = ∏
(i,j):z(i)=z(j)

z̃(i)�=z̃(j)

exp
(
−1

4
θiθj (

√
p − √

q)2
)
,

B2 = ∏
(i,j):z(i) �=z(j)

z̃(i)=z̃(j)

exp
(
−1

4
θiθj (

√
p − √

q)2
)
.
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In what follows, we focus on upper bounding B1 and the same upper bound
holds for B2 by essentially repeating the arguments. For B1, we have

B1 =
k∏

u=1

k∏
u′=1

∏
{i:z(i)=u,
z̃(i)=u′}

∏
{j :z(j)=u,
z̃(j) �=u′}

exp
(
−1

4
θiθj (

√
p − √

q)2
)

=
k∏

u=1

∏
u′ �=u

exp
(
−1

4

∑
{i:z(i)=u,
z̃(i)=u′}

θi

∑
{j :z(j)=u,
z̃(j) �=u′}

θj (
√

p − √
q)2

)
(28)

×
k∏

u=1

∏
u′=u

exp
(
−1

4

∑
{i:z(i)=u,
z̃(i)=u′}

θi

∑
{j :z(j)=u,
z̃(j) �=u′}

θj (
√

p − √
q)2

)
.

Thus,

B1 ≤
k∏

u=1

∏
u′ �=u

exp
(
−1

4

∑
{i:z(i)=u,
z̃(i)=u′}

θi

∑
{j :z(j)=u,
z̃(j)=u}

θj (
√

p − √
q)2

)

(29)

×
k∏

u=1

∏
u′ �=u

exp
(
−1

4

∑
{i:z(i)=u,
z̃(i)=u}

θi

∑
{j :z(j)=u,
z̃(j)=u′}

θj (
√

p − √
q)2

)
.

FIG. 3. Illustration of reduction to (29) when k = 4. Only nodes from the first community are
shown, which are rearranged according to z̃. In the left panel the gray regions correspond to terms
in (28). In the right panel, the gray regions correspond to terms in (29). Note that the area of the
gray regions in the left panel is larger than the one in the right panel.
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Figure 3 illustrates why the inequality in (29) holds. Furthermore, we notice that

(29) =
k∏

u=1

∏
u′ �=u

exp
(
−1

2

∑
{i:z(i)=u,
z̃(i)=u′}

θi

∑
{j :z(j)=u,
z̃(j)=u}

θj (
√

p − √
q)2

)

=
k∏

u=1

exp
(
−1

2

∑
i∈�u

θi

∑
j∈Cu\�u

θj (
√

p − √
q)2

)
(30)

=
k∏

u=1

exp
(
−1

2

∑
i∈�u

θi

(∑
i∈Cu

θi − ∑
i∈�u

θi

)
(
√

p − √
q)2

)
.

To further bound the right-hand side of (30), recall that θmin = mini θi = �(1).
Then ∑

i∈Cu

θi − ∑
i∈�u

θi = ∑
Cu\�u

θi ≥ (|Cu| − |�u|)θmin ≥ |Cu|θmin

2
.

Here, the last inequality holds since |�u| ≤ |�| ≤ m′ = o(nmin) ≤ 1
2 |Cu|. Together

with the property of the function x(1 − x), x ∈ [0,1], when M ≥ 5
θmin

, we have

(31)

∑
i∈�u

θi

(∑
i∈Cu

θi − ∑
i∈�u

θi

)
≥ ∑

i∈τu(�u)

θi

(∑
i∈Cu

θi − ∑
i∈τu(�u)

θi

)

≥ ∑
i∈τu(�u)

θi

(∑
i∈Cu

θi − 2ηnmin

)
.

Here, the first inequality holds since∑
i∈τu(�u)

θi ≤ ∣∣τu(�u)
∣∣ max
i∈C−

u

θi ≤ 2
(
M−1|Cu| + 1

) ≤ 1

2
|Cu|θmin.

The second inequality is due to (26), nmin ≥ n
βk

− 1 and the fact |τu(�u)| ≤ |�u| ≤
ηn/k in the current case. Thus,

B1 ≤
k∏

u=1

exp
(
−1

2

∑
i∈�u

θi

(∑
i∈Cu

θi − ∑
i∈�u

θi

)
(
√

p − √
q)2

)

≤
k∏

u=1

exp
(
−1

2

∑
i∈τu(�u)

θi

(∑
i∈Cu

θi − 2ηnmin

)
(
√

p − √
q)2

)

≤ ∏
i∈τ(�)

exp
(
−1

2
θi

( ∑
j∈Cz(i)

θj − 2ηnmin

)
(
√

p − √
q)2

)

≤ ∏
i∈τ(�)

exp
(
−1

2
θi(1 − δ − 2η)nmin(

√
p − √

q)2
)
.
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Here, the last inequality is due to the approximate normalization constraint on
the θi’s. Thus, with the same bound on B2, we obtain that for any z̃ such that
M < n�(z̃, z) ≤ m′,

P
(
L(z̃) > L(z)

) ≤ ∏
i∈τ(�)

exp
(−θi(1 − δ − 2η)nmin(

√
p − √

q)2)
.

Since for any i ∈ C−
u , |τ−1

u (i)| ≤ M , we obtain that |τ(�)| ≥ m/M , and so we have

P
(
n�(ẑ, z) = m

)
≤ ∑

z̃:|�|=m

km
∏

i∈τ(�)

exp
(−θi(1 − δ − 2η)nmin(

√
p − √

q)2)

≤
(
mM

m

)(
m

m/M

)
km 1

(m/M)!

×
(

n∑
i=1

exp
(−θi(1 − δ − 2η)nmin(

√
p − √

q)2))m/M

≤ (ekM)m
(

e2MnRδ+2η

m/M

)m/M

.

Here, the second inequality is based on counting and the details are as follows.
Note that each term in

∏
i∈τ(�) is a product of at least m/M terms. First, there

are at most
( m
m/M

)
of sets τ(�) that map to the same m/M-product. Then there

are at most
(mM

m

)
of sets � that map to the same τ(�) [recall that for any i ∈

C−
u , |τ−1

u (i)| < M]. For each m/M-product, it appear at most (m/M)! times from
the expansion of nRδ+2η, and that explains the existence of 1/(m/M)!. The last
inequality holds since

(n
m

) ≤ ( en
m

)m and n! ≥ √
2πnn+1/2e−n.

Case 3: m > m′. In this case, we cannot use the same argument as in case 2
since (31) does not necessarily hold. To proceed, let �u,u′ = {i ∈ [n] : z(i) =
u, z̃(i) = u′} for any u,u′ ∈ [n]. We have

B1 =
k∏

u=1

k∏
u′=1

exp
(
−1

4

∑
{i:z(i)=u,
z̃(i)=u′}

θi

∑
{j :z(j)=u,
z̃(j) �=u′}

θj (
√

p − √
q)2

)

=
k∏

u=1

k∏
u′=1

exp
(
−1

4

∑
i∈�u,u′

θi

∑
j∈Cu\�u,u′

θj (
√

p − √
q)2

)

=
k∏

u=1

k∏
u′=1

exp
(
−1

4

∑
i∈�u,u′

θi

( ∑
j∈Cu

θj − ∑
j∈�u,u′

θj

)
(
√

p − √
q)2

)
.
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FIG. 4. In the left panel, we display nodes in Cu ∪ C̃u′ , where C̃u′ = {i : z̃(i) = u′}. We
also define C̃u in the same way. The gray parts indicates nodes correctly clustered, that is,
{i ∈ Cu ∪ C̃u′ : z̃(i) = z(i)}. Note |�u,u| ≤ |Cu \ �u,u′ | and |�u′,u′ | ≤ |C̃u′ \ �u′,u′ |. The right panel
displays the same nodes but after the labels u and u′ flipped, and the gray part indicating nodes
correctly clustered after flipping.

To further proceed, we need to lower bound all |Cu \ �u,u′ | for all u �= u′. To
this end, we essentially follow the arguments leading to Lemma A.1 of [27]. Let
nmax and nmin be the maximum and the minimum community sizes. We argue that
we must have |Cu \�u,u′ | ≥ nmin/9 for all u′ �= u. Indeed, if this were not the case,
we could switch the labels u and u′ in z. This could reduce the Hamming distance
between z and z̃ by at least (see Figure 4 for illustration)

|�u,u′ | − |Cu \ �u,u′ | − ∣∣{i : z̃(i) = u′} \ �u,u′
∣∣

≥ nmin − 1

9
nmin − 1

9
nmin −

(
nmax −

(
nmin − 1

9
nmin

))
≥ n

k

(
5

3β
− β

)
> 0.

Here, the last inequality holds when 1 ≤ β <
√

5/3. This leads to a contradiction
since by definition, no permutation of the labels should be able to reduce �(z̃, z).

In each �u,u′ , ∀1 ≤ u,u′ ≤ k we can find an arbitrary subset �′
u,u′ ⊂ �u,u′ such

that |�′
u,u′ | = η|�u,u′ |. In this way, �′ � ⋃

u∈[k]
⋃

u′ �=u �′
u,u′ satisfies |�′| = η|�| ≤

ηm and
∑

i∈�′
u,u′ θi ≤ 2|�′

u,u′ | ≤ 2η|Cu|.
Note that for η = o(1),

∑
i∈Cu

θi − ∑
i∈�u,u′

θi ≥ θmin|Cu \ �u,u′ | ≥ nminθmin

9
≥ 2η

βn

k
≥ 2η|Cu|.

Together with the property of the function x(1 − x), x ∈ [0,1], we have

∑
i∈�u,u′

θi

(∑
i∈Cu

θi − ∑
i∈�u,u′

θi

)
≥ ∑

i∈�′
u,u′

θi

(∑
i∈Cu

θi − ∑
i∈�′

u,u′

θi

)

≥ ∑
i∈�′

u,u′

θi

(
(1 − δ)|Cu| − 2η|Cu|)

≥ ∑
i∈�′

u,u′

θi(1 − δ − 2η)nmin.
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Then

B1 ≤
k∏

u=1

k∏
u′=1

exp
(
−1

4

∑
i∈�′

u,u′

θi(1 − δ − 2η)nmin(
√

p − √
q)2

)

=
k∏

u=1

exp
(
−1

4

∑
i∈�′

u

θi(1 − δ − 2η)nmin(
√

p − √
q)2

)

≤ ∏
i∈�′

exp
(
−1

4
θi(1 − δ − 2η)nmin(

√
p − √

q)2
)
.

Thus, with the same bound on B2 we get

P
(
L(z̃) > L(z)

) ≤ ∏
i∈�′

exp
(
−1

2
θi(1 − δ − 2η)nmin(

√
p − √

q)2
)
.

Note we have an extra 1/2 factor inside the exponent compared with Case 2. Since
for each � we can find a subset �′ with |�′| = η|τ(�)| ≥ ηm/M satisfying the
above inequality, we have

P
(
n�(ẑ, z) = m

)
≤ ∑

z̃:|�|=m

km
∏
i∈�′

exp
(
−1

2
θi(1 − δ − 2η)nmin(

√
p − √

q)2
)

≤ km

(
mM

m

)(
m

ηm/M

)
1

(ηm/M)!

×
(

n∑
i=1

exp
(
−1

2
θi(1 − δ − 2η)nmin(

√
p − √

q)2
))ηm/M

≤ (ekM)m
(e2MnR

1/2
δ+2η

η2m/M

)ηm/M

,

where the last equality is due to Cauchy–Schwarz.
To sum up, until now we have derived the probability P(n�(ẑ, z) = m) for each

1 ≤ m ≤ n as follows:

(32) P
(
n�(ẑ, z) = m

) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(knMRδ+2η)
m, 1 ≤ m ≤ M,

(ekM)m
(

e2MnRδ+2η

m/M

)m/M

, M < m ≤ ηn

k
,

(ekM)m
(e2MnR

1/2
δ+2η

η2m/M

)ηm/M

, m >
ηn

k
.
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Step 3: Bounding E�(ẑ, z). As we have pointed out in the proof outline, we
shall combine (22) with (32) in this step to complete the proof. To this end, we
divide the argument into three cases according to different possible growth rates
of Rδ+2η.

Case 1: Rδ+2η ≤ 1
2(ekM)M+2n

. Recall that m′ = ηn/k. Then

En�(ẑ, z) = P
(
n�(ẑ, z) = 1

)

+
m′∑

m=2

mP
(
n�(ẑ, z) = m

) +
n∑

m=m′+1

mP
(
n�(ẑ, z) = m

)
.

We have P(n�(ẑ, z) = 1) = kMnRδ+2η which is upper bounded by 1/2. Together
with (ekM)Me2MnRδ+2η ≤ 1/2, we have

m′∑
m=2

mP
(
n�(ẑ, z) = m

)

=
M∑

m=2

mP
(
n�(ẑ, z) = m

) +
m′∑

m=M+1

mP
(
n�(ẑ, z) = m

)

≤
M∑

m=2

m2−m +
m′∑

m=M+1

(ekM)M
(
e2MnRδ+2η

)
m2−(m−M)/M

≤ C1(ekM)Me2MnRδ+2η,

for some constant C1 > 1 where the last inequality is due to the properties of power
series. For m > m′, we have

P(n�(ẑ, z) = m)

nRδ+2η

≤ (ekM)m
(e2MnR

1/2
δ+2η

η2m/M

)ηm/M−2

≤ (ekM)m
((

e2Mn

η2m/M

) 1
2
(

e2MnRδ+2η

η2m/M

) 1
2
)ηm/M−2

.

We are to show that the above ratio is upper bounded by e−m. This is because
e2Mn/(η2m/M) ≤ η−3e2M2k since m ≥ ηn/k and e2MnRδ+2η/(η

2m/M) ≤
1/(2(kM)Mη3n) since nRδ+2η ≤ 1/(2(eM)M). Then for some constant C2 > 0
we have

P(n�(ẑ, z) = m)

nRδ+2η

≤ (ekM)m
(

C2

η3n

) ηm
2M

= exp
(
m log(ekM) + ηm

2M
log

(
C2

η3n

))
≤ e−m,
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where the last inequality is due to the fact that k ≤ nη. By the property of power
series, we have

n∑
m=m′+1

mP
(
n�(ẑ, z) = m

) ≤ nRδ+2η

n∑
m=m′+1

me−m ≤ C3nRδ+2η,

for some constant C3 > 0. Finally, by Jensen’s inequality and the assumption
logk = o(I ),

En�(ẑ, z) ≤ kMnRδ+2η + C1(ekM)Me2MnRδ+2η + C3nRδ+2η

= n exp
(−(

1 − o(1)
)
I
)
.

Case 2: Rδ+2η ≥ M logn

(ekM)M+2n
. Let m0 = 2(ekM)M+2nRδ+2η. Recall that I →

∞ and that log k = o(I ). So η−1 = o(I ) and m0 ≤ m′. We have

E�(ẑ, z) ≤ m0

n
+

m′∑
m=m0+1

P
(
n�(ẑ, z) = m

) + ∑
m>m′

P
(
n�(ẑ, z) = m

)
.

To obtain the last display, we divide both sides of (22) by n, replace all the m’s in
front of the probabilities in the summation by n and then upper bound the first m0
probabilities by one. To further bound the right-hand side of the last display, we
have

m′∑
m=m0+1

P
(
n�(ẑ, z) = m

) ≤
m′∑

m=m0+1

(
(ekM)M+2nRδ+2η

m0

)m/M

≤
m′∑

m=m0+1

2−m/M ≤ M2−m0/M.

Since m0 ≥ 2M logn, we have 2−m/M ≤ 2−2 logn ≤ m0/n. Thus,

m′∑
m=m0+1

P
(
n�(ẑ, z) = m

) ≤ Mm0

n
.

For m ≥ m′, we are going to show P(n�(ẑ, z) = m) ≤ 2−ηm/M . We have

P
(
n�(ẑ, z) = m

) ≤
((ekM)

M
η e2M2nR

1/2
δ+2η

η2m′
)ηm/M

≤
((ekM)

M
η

+3
R

1/2
δ+2η

η3

)ηm/M

.

Since Rδ+2η ≤ exp(−(1 − δ − 2η)I) by Jensen’s inequality, log k = o(I ) and

η−1 = o(I ), we have η−3(ekM)
M
η

+3
R

1/2
δ+2η ≤ 1/2. Then∑

m>m′
P

(
n�(ẑ, z) = m

) ≤ ∑
m>m′

2−ηm/M ≤ η−1M2−η2n/M ≤ m0

n
.

Thus, by Jensen’s inequality, E�(ẑ, z) ≤ (2 + M)m0/n ≤ exp(−(1 − o(1))I ).
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Case 3: 1
2(ekM)M+2n

< Rδ+2η <
M logn

(ekM)M+2n
. Let m0 = 2M logn. As we have

shown in Case 2, M logn ≤ m′. Then

E�(ẑ, z) ≤ m0

n
+

m′∑
m=m0+1

P
(
n�(ẑ, z) = m

) + ∑
m>m′

P
(
n�(ẑ, z) = m

)
.

We have

m′∑
m=m0+1

P
(
n�(ẑ, z) = m

) ≤
m′∑

m=m0+1

(
(ekM)M+2nRδ+2η

m0

)m/M

≤
m′∑

m=m0+1

2−m/M ≤ M2−m0 ≤ m0

n
.

For m > m′, in Case 2 we have shown∑
m>m′

P
(
n�(ẑ, z) = m

) ≤ ∑
m>m′

2−ηm/M ≤ η−1M2−η2n/M,

which is also upper bounded by m0/n. Together we have E�(ẑ, z) ≤ 3m0/n.
Since 2(ekM)M+2Rδ+2η ≥ 1/n and log k = o(I ), we have n exp(−(1 − o(1))I ) ≥
M logn for some positive sequence o(1). Then E�(ẑ, z) ≤ exp(−(1 − o(1))I ).

6. Concluding remarks. This paper studies community detection for
DCBMs. We have derived the minimax rates of the problem for a wide collec-
tion of parameter spaces. An efficient two-stage algorithm has been proposed and
proved to achieve the minimax rates in various scenarios. The results provide a
solid foundation for future investigations of some interesting open problems in
this area. For example, it is unknown whether the minimax rates in this paper can
still be achieved if the number of clusters k is unknown. Moreover, it is of interest
to see whether the signal-to-noise ratio condition p3/2

n1/2(p−q)2 = o(1) in Theorem 3
can be improved by a polynomial-time algorithm. Finally, the minimax rate may
exhibit a different form if the sizes of clusters are far from being comparable. In
this case, it also makes sense to study a different loss function other than that used
in this paper.

SUPPLEMENTARY MATERIAL

Supplement to “Community detection in degree-corrected block models.”
(DOI: 10.1214/17-AOS1615SUPP; .pdf). The supplement [11] presents additional
numerical results, additional proofs of main results, properties of Jt (p, q) and
proofs of auxiliary results.

https://doi.org/10.1214/17-AOS1615SUPP
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