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Abstract

Mixture models of Plackett-Luce (PL), one of the most fun-
damental ranking models, are an active research area of both
theoretical and practical significance. Most previously pro-
posed parameter estimation algorithms instantiate the EM
algorithm, often with random initialization. However, such
an initialization scheme may not yield a good initial estimate
and the algorithms require multiple restarts, incurring a large
time complexity. As for the EM procedure, while the E-step
can be performed efficiently, maximizing the log-likelihood
in the M-step is difficult due to the combinatorial nature of
the PL likelihood function. Therefore, previous authors favor
algorithms that maximize surrogate likelihood functions. How-
ever, the final estimate may deviate from the true maximum
likelihood estimate as a consequence. In this paper, we ad-
dress these known limitations. We propose an initialization
algorithm that can provide a provably accurate initial estimate
and an EM algorithm that maximizes the true log-likelihood
function efficiently. Experiments on both synthetic and real
datasets show that our algorithm is competitive in terms of ac-
curacy and speed to baseline algorithms, especially on datasets
with a large number of items.

Introduction
Learning to rank is an active area of research with wide-
ranging applications in recommendation systems, informa-
tion retrieval, crowdsourcing and the social sciences. The
Plackett-Luce (PL) model (Plackett 1975; Luce 1959) is one
of the most fundamental ranking models. In a universe of
n items, the PL model posits that item i has a latent utility
θ∗i ∈ R. The probability of observing a full ranking π given
by the user (most preferred item first) is given as

PPL(π = [π1, .., πn] |θ∗) =
n−1∏
i=1

exp
(
θ∗πi
)∑n

j=i exp
(
θ∗πj

) . (1)

The maximum likelihood estimate (MLE) can be obtained
using iterative algorithms such as the Minorize-Maximize
(MM) algorithm of Hunter (2004) and enjoys favorable theo-
retical properties (Hajek, Oh, and Xu 2014). In recent years,
an algorithm known as Luce spectral ranking (LSR) (Maystre
and Grossglauser 2015) has become the method of choice for
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maximum likelihood inference for PL models. LSR outputs
the MLE just like MM but is often much faster.

The PL model is closely connected to the Bradley-Terry-
Luce (BTL) model (Luce 1959) for pairwise comparisons.
For two items i 6= j, the probability that i is ranked ahead of
j in a ranking is equal to the probability that i beats j in a
pairwise comparison under the BTL model. That is,

PPL(π(i) < π(j)) = PBTLij =
1

1 + exp
(
−(θ∗i − θ∗j )

) ,
(2)

where π(i) is the position of item i in ranking π.
The classical PL model assumes that there is a universal

preference ordering of the items according to their utilities.
However, in practice, there might be multiple subpopula-
tions of users with different preference profiles which cannot
be fully captured by a single PL model. In such settings, a
mixture of PL models is a more appropriate modeling as-
sumption.

Problem Descriptions. Consider a mixture model with
K components and n items for some constant K. Let β∗ =
[β∗1 , . . . , β

∗
K ]>, β∗>1 = 1 denote the mixing distribution.

For component k ∈ [K] (where [a] denotes [1, . . . , a]), the
utility parameters for the items are

θ∗k = [θ∗k1 , . . . , θ∗kn ]> ∈ Rn .

Let θ∗ = [θ∗1, . . . , θ∗K ] ∈ Rn×K denote the concatena-
tion of the K sets of parameters. A ranking dataset Π is a
collection of full rankings.

Consider the following generative model for a ranking
dataset of size m. For l ∈ [m], let z∗l ∈ [K] denote the
mixture component membership where P(z∗l = k) = β∗k .
Then a permutation πl is drawn from the PL distribution
parametrized by θ∗zl . That is,

PPL(πl = [πl,1, . . . , πl,n] | z∗l ,θ∗) =
n−1∏
i=1

exp
(
θ
∗z∗l
πl,i

)
∑n
j=i exp

(
θ
∗z∗l
πl,j

) ,
(3)

where πl,i denote the i-th item in permutation πl. The reader
may recognize two identifiability issues here. The first is
parameter translation. For each component, the distributions
parametrized by θ∗k and θ∗k + c · 1n are the same for any
c ∈ R. The second is mixture components (columns of θ∗)
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relabeling. To account for these issues, we consider the fol-
lowing error metric.

dist(θ,θ∗) := min
R∈OK×K

‖N(θ)R−N(θ∗)‖F , (4)

where OK×K is the set of all permutation matrices (Strang
et al. 1993, Chapter 2) of size K ×K and N is the normal-
ization operator (i.e., N(θ)· k = θk − 1

n (θk)>1n).
Prior Works. Generalizing the PL model to mixtures adds

a layer of complexity to the inference problem. In general,
the likelihood function is non-convex in the model parame-
ters. Most previously proposed algorithms instantiate the EM
algorithm (Dempster, Laird, and Rubin 1977). As a general
recipe, an EM algorithm is initialized with some parameter
θ(0) (e.g., using random initialization). It then repeats the
following two steps for t = 1, 2, . . . until convergence.

The E-step computes the posterior class probability condi-
tioned on the current estimate:

qkl = P(z∗l = k |πl,θ(t−1)) ∝ βk ·PPL(πl |z∗l = k, θ(t−1))
(5)

for l ∈ [m], k ∈ [K] where PPL is given in Equation (3) and
β the prior class probability. Thanks to the closed form of
the PL likelihood function, the E-step can be done efficiently.
The M-step obtains the next estimate θ(t) by maximizing
the joint log-likelihood function which decomposes into K
weighted log-likelihood functions. Namely,

θ(t) = arg max
θ

K∑
k=1

( m∑
l=1

qkl logPPL(πl, z
∗
l = k |θ)

)
.

(6)
Due to the combinatorial nature of the PL likelihood func-
tion, the derivative of the log likelihoood function has a com-
plicated form. As a result, maximizing the (weighted) log-
likelihood via gradient-based algorithms quickly becomes
inefficient as n grows.

The first practical approach towards solving the M-step
uses the Minorize-Maximize algorithm of Hunter (2004),
yielding the EMM algorithm of Gormley and Murphy (2008).
While guaranteed to solve the M-step, it has been observed
that the MM subroutine converges slowly even for datasets
with a moderate number of items (e.g., Figure 2). Motivated
by practical concerns, researchers have developed pseudo-
likelihood estimators that optimize, instead of the true log-
likelihood function, alternative objective functions. Two such
algorithms are the Generalized Method of Moments (GMM)
of Azari Soufiani et al. (2013) and Composite Marginal Like-
lihood (CML) of Zhao and Xia (2018). It has been observed
experimentally that GMM is considerably faster than MM
and CML is even faster than GMM with comparable accu-
racy. Besides maximum likelihood (ML) inference methods,
previous authors have also proposed Bayesian inference al-
gorithms (Guiver and Snelson 2009; Mollica and Tardella
2017). In this paper, we focus primarily on ML algorithms
but include additional experiments with Bayesian methods in
the supplementary materials.

Using GMM and CML to solve the M-step gives us the
EM-GMM algorithm (Zhao, Villamil, and Xia 2018) and
the EM-CML algorithm (Zhao, Liu, and Xia 2020), respec-
tively. The only non-EM algorithm for learning PL mixtures

that we are aware of is a GMM-based algorithm proposed in
Zhao, Piech, and Xia (2016); Zhao and Xia (2019). However,
the construction of the algorithm is quite ad-hoc and the au-
thors did not show extension of the algorithm to more than 2
mixture components. In addition, previous authors primarily
restrict their experiments to datasets with a small number of
items such as the SUSHI datasets (Kamishima 2003) with
n = 10. It is unknown how the previous methods perform
when n is large. Recent works have also studied PL mixtures
learning with features and partial rankings (Tkachenko and
Lauw 2016; Liu et al. 2019). While we include possible ex-
tensions of our algorithm in the supplementary materials, our
main focus in this paper is an improved algorithm for the
classical setting.

Our Contributions. We propose a new EM algorithm for
learning mixtures of PL models that
• Has a provably accurate initialization procedure with a

finite sample error guarantee, the first of its kind in the
literature;

• Efficiently maximizes the weighted log-likelihood func-
tion in the M-step without using a surrogate likelihood
or objective function, thus returning the true maximum
likelihood estimate;

• Performs competitively with the previously proposed al-
gorithms in terms of accuracy and speed, and is scalable
to datasets with n ≥ 100.

The Spectral EM Algorithm
In this section, we present our algorithmic contributions. Sec-
tion describes the spectral initialization algorithm and Sec-
tion describes the EM refinement procedure.

Spectral Initialization
The initialization for our algorithm is delegated to spectral
clustering (Algorithm 1) and a least squares minimization
algorithm (Algorithm 2). To apply spectral clustering, we
first embed each ranking πl into a ‘pairwise vector’ – Xl ∈
{0, 1}(

n
2) where each entry corresponds to a pair of items. As

an overload of notation, we use d = (d1, d2) where d1 < d2

to denote the entry corresponding to the pair (d1, d2). Define

Xl,d(π) =

1 if πl(d1) < πl(d2)

0 otherwise

. (7)

Let X ∈ Rm×(n2) denote the concatenation of the embed-
dings of m rankings in dataset Π. Given a target number of
components K, Algorithm 1 can then be applied to the rows
of X to obtain K clusters, {Ĉk}Kk=1 ⊆ [m].

For each cluster of rankings Ĉk, we estimate the preference
probability for a pair (i, j) as

P̂ kij =
1

|Ĉk|

∑
l∈Ĉk

1[πl(i) < πl(j)] . (8)

From the preference probability estimates for all pairs, Al-
gorithm 2 recovers the utility parameter θ̂k. It applies the

9295



Algorithm 1 Spectral Clustering with Adaptive Dimension
Reduction

Input: Dataset Π = {π1, . . . , πm}, number of mixture
components K and threshold T .

Output: K clusters of rankings.

1: Embed the rankings as the rows of a matrix X ∈
{0, 1}m×(n2) according to Equation (7).

2: Perform SVD: X = USV >, where the singular values
are arranged from largest to smallest.

3: Let r̂ be largest index in [K] such that the difference
between the successive singular values is greater than T ,
i.e., r̂ = max{a ∈ [K] : Saa − S(a+1)(a+1) ≥ T} .

4: Run k-means on the rows of XV1:r̂ with K clusters:(
ẑ, {ĉk}Kk=1

)
= arg min
z∈{1,...,K}m

{ck}∈Rr̂

m∑
l=1

‖V >1:r̂Xl − czl‖22 .

5: Return clusters Ĉk = {l ∈ [m] : ẑl = k} for k ∈ [K].

Algorithm 2 Least Squares Parameter Estimation

Input: Pairwise preference matrix P̂ ∈ Rn×n.
Output: Normalized parameter estimate θ̂.

1: Solve the least squares optimization problem

θ̂ = arg max
θ:θ>1=0

∑
i6=j

(φ̂ij − (θi − θj))2 ,

where φ̂ij = ln(P̂ij/(1− P̂ij)) .

logit function on the pairwise probabilities and solves a con-
strained least squares minimization problem, which can be
efficiently done using off-the-shelf solvers (Virtanen et al.
2020). Algorithm 3 summarizes the spectral initialization
algorithm.

Remarks. The application of spectral clustering to mix-
tures of PL models has also appeared in a manuscript by
Shah and Song (2018). There, the authors apply the clas-
sical spectral clustering algorithm – clustering the rows of
XV1:K – and their analysis requires a spectral gap condition
which is hard to verify. We use spectral clustering with adap-
tive dimension reduction and our analysis does not require
any spectral gap condition (Zhang and Zhou 2022). Further-
more, we focus on parameter estimation while Shah and
Song (2018) only focus on clustering, resulting in different
theoretical guarantees. The choice of threshold T in Algo-
rithm 3 is to satisfy a mild technical condition in the analysis
of spectral clustering. In our experiments, the performance
of the EM algorithm does not seem to critically depend on
this threshold.

Intuition behind Algorithm 2. Recall the connection be-
tween the PL model and the BTL model in Equation (2).
Suppose we observe a large sample drawn from a single
PL distribution. Then P̂ij ≈ P ∗ij = 1/

(
exp

(
−(θ∗i − θ∗j )

) )
and φ̂ij = ln(P̂ij/1 − P̂ij) ≈ θ∗i − θ∗j . Solving the least

Algorithm 3 Spectral Initialization
Input: Dataset Π = {π1, . . . , πm}, number of mixture

components K.
Output: Parameter estimates for K mixture components

θ̂ = [θ̂1, . . . , θ̂K ] ∈ Rn×K .

1: Run Algorithm 1 on Π with T =
√
n
√
m+ n

√
log n to

obtain K clusters Ĉ1, . . . , ĈK .
2: Estimate the pairwise preference probabilities P̂ kij per

Equation (8) for each cluster.
3: Run Algorithm 2 on {P̂ k}Kk=1 and return the parameter

estimates for K mixture components.

squares optimization problem recovers θ̂ ≈ θ∗. In the mix-
ture setting, if the estimates P̂ k’s are accurate, we obtain
good parameter estimates (e.g., Theorem 1). Rajkumar and
Agarwal (2016) apply a similar idea in their algorithm for
ranking from comparisons of O(n log n) pairs under a single
BTL model. They first apply the logit function on the pair-
wise preference probabilities, followed by a low rank matrix
completion algorithm (Keshavan, Montanari, and Oh 2009).
Their algorithm produces a ranking. On the other hand, our
goal is mixture learning and the resulting theoretical analysis
is different.

Iterative Refinement via EM
The Weighted LSR Algorithm. As noted before, we wish to
maximize the weighted log-likelihood (6) efficiently. Towards
this goal, we generalize the Luce spectral ranking (LSR)
algorithm (Maystre and Grossglauser 2015) to incorporates
sample weights. The original LSR algorithm produces the
MLE. Our generalized algorithm outputs the weighted MLE
(see Theorem 2).

The intuition behind LSR is an interpretation of the PL
ranking generative process as a sequence of choices (Plackett
1975). Given a ranking πl, define its choice breaking as

Bπl = {(πl,1, {πl,1, . . . , πl,n}, l), (πl,2, {πl,2, . . . , πl,n}, l)
. . . , (πl,n−1, {πl,n−1, πl,n}, l)} .

Each tuple (i, A, l) ∈ B(πl) is a choice enumeration of the
ranking πl. Given a ranking dataset Π = {π1, . . . , πm}, de-
fine the choice breaking of Π as the union of all ranking-level
choice breakings:

BΠ = Bπ1 ∪ . . . ∪ Bπm . (9)

Note that |BΠ| = m(n−1). When the dataset Π is clear from
context, we simply use B to denote the dataset-level choice
breaking.

We now introduce sample weights. Firstly, define the
‘weight’ of a choice breaking B with weight vector w and
parameter θ ∈ Rn as

γ(B, w, θ) = w>
(

1∑
j∈A e

θj

)
(i,A,l)∈B

, (10)

where w ∈ Rm(n−1)
+ is an arbitrary weight vector;
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(
1∑

j∈A e
θj

)
(i,A,l)∈B

is also vector in Rm(n−1)
+ where each

entry corresponds to a choice enumeration (i, A, l).
The reader may recognize that the weight vector w has the

same size as the choice breaking while sample weights are
often given at the ranking level – each ranking πl is assigned
a weight ql for l ∈ [m] as in (6). Given sample weights
q = (q1, . . . , qm), one simply sets

w = [q1, . . . , q1︸ ︷︷ ︸
n−1 terms

, q2, . . . , q2︸ ︷︷ ︸
n−1 terms

, . . . , qm, . . . , qm︸ ︷︷ ︸
n−1 terms

]> . (11)

Given a choice breaking B and items i, j, define the set of
choice enumerations where i ‘beats’ j as

Bi�j = {(i, A, l) ∈ B : j ∈ A} .

As a shorthand notation, for a weight vector w corresponding
to choice breaking B, define wj�i as the sub-vector of w
corresponding to Bi�j .

Similarly to the original LSR algorithm, we construct a
Markov chain (MC) and recover PL parameters from its
stationary distribution. This MC has n states. Given choice
breaking B, weight vector w and parameter θ, the pairwise
transition probabilities of M are given as

Mij =


1
d · γ(Bj�i, wj�i, θ) if i 6= j

1− 1
d ·
∑
k 6=i γ(Bk�i, wk�i, θ) if i = j

, (12)

where d is a sufficiently large normalization constant such
that M does not contain any negative entries. Intuitively,
Mij is proportional to the sum of the weights of all choice
enumerations where j ‘beats’ i.

Algorithm 4 summarizes the weighted LSR algorithm. It
repeatedly constructs a Markov chain based on the current
estimate, computes its stationary distribution and recovers
the next estimate until convergence. When sample weights
are not given, the weighted LSR algorithm reduces to the
original LSR algorithm.

The EM-LSR Algorithm. In the E-step, we compute the
posterior class probabilities qk ∈ Rm, k ∈ [K]. The M step
consists of K maximization problem as shown in Equation
(6). These can be solved in parallel by running Algorithm 4
on Π using qk as sample weights for k ∈ [K]. Algorithm 5
summarizes the overall algorithm.

In another EM-based approach for learning PL mixtures,
Liu et al. (2019) use the unweighted LSR algorithm. There,
the E-step remains the same. The key differences lie in ini-
tialization (they use random initialization) and in the M-step.
Our algorithm maximizes the weighted log-likelihood via
weighted LSR and is therefore an exact EM algorithm. On
the other hand, Liu et al. use the posterior class probabilities
to perform a random clustering of the rankings and then run
unweighted LSR on each cluster, making their algorithm an
inexact EM algorithm. From additional experiments in the
supplementary materials, one can observe that the stochastic
M-step actually leads to worse estimates without a significant
reduction in inference time.

Algorithm 4 Weighted Luce Spectral Ranking
Input: Dataset Π = {π1, . . . , πm}, (optional) weight

vector q ∈ Rm+ and (optional) initial estimate θ̂(0) ∈ Rn.
Output: Normalized estimate of the item parameters

θ̂ ∈ Rn.

1: Obtain choice breaking B from Π per Equation (9).
2: If the weight vector q is not given, set q = 1m.
3: Construct w from q per Equation (11).
4: If the initial estimate is not given, set θ̂(0) = 0n.
5: For t = 1, . . . until convergence

5.1: Construct a Markov chain M with pairwise transi-
tion probability per Equation (12) from choice breaking
B, weight vector w and parameter θ̂(t−1).

5.2: Compute the stationary distribution of M (e.g.,
via power iteration), p and return the normalized estimate
θ̂(t) = log(p)−

(
1
n

∑n
i=1 log(p)

)
· 1n

Algorithm 5 Spectral EM (EM-LSR)
Input: Dataset Π = {π1, . . . , πm}, number of com-

ponents K, prior distribution β, (optional) initial estimate
θ̂(0) ∈ Rn×K .

Output: Normalized estimate θ̂ = [θ̂1, . . . , θ̂K ].

1: If θ̂(0) is not given, run Algorithm 3 on Π withK mixture
components and set θ̂(0) to the output.

2: For t = 1, 2, . . . until convergence
2.1: E-step – Compute the class posterior probabilities

qkl = p(z∗l = k|πl, θ̂(t−1)) for l ∈ [m], k ∈ [K].
2.2: M-step – Estimate θ̂k(t) by running Algorithm 4

on Π with sample weight vector qk = [qk1 , . . . , q
k
m] and

initial estimate θ̂k(t−1) for k ∈ [K].

Theoretical Analysis
In this section, we study the theoretical properties of EM-
LSR. Specifically we present the finite sample error guarantee
for the spectral initialization algorithm and study the M-
step of not only our EM-LSR algorithm but also related EM
algorithms.

Spectral Initialization
Central to the analysis of the spectral initialization algorithm
is the accuracy of spectral clustering (Algorithm 1). Our anal-
ysis starts from the fact that, under the pairwise representation
in Equation (7), the PL distribution exhibits sub-gaussian
characteristics (Vershynin 2018; Shah and Song 2018). The
detailed descriptions of these characteristics are not immedi-
ately important to our discussions so we refer the interested
reader to the supplementary materials. However, we empha-
size that these characteristics also appear in a broad class of
ranking models known as random utility models (RUMs) that
subsume the PL model. The spectral clustering algorithm is
model-agnostic. It can be applied to mixtures of sub-gaussian
distributions and enjoys high clustering accuracy if the signal-
to-noise ratio (SNR) is high. We also show how, by changing
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the mapping function used in Algorithm 2, we can perform
parameter estimation for a general RUM, not just PL. Thanks
to this flexibility, Algorithm 3 can be a useful tool for learning
mixtures of general RUMs.

We now consider an expressive generative model for mix-
tures of K PLs where Algorithm 3 produces a provably ac-
curate estimate. The generative model assumes that for all
mixture components, only the utilities of the first L items
are different while the those of the remaining n − L items
are the same. This model reflects the phenomenon where
users from different sub-populations differ in their preference
among a few items while the remaining items are essentially
interchangeable. Intuitively, one would expect that when L
is small, so is the difference between the subpopulations and
it is harder to separate the rankings into the correct clusters.
On the other hand, when L is large, the difference among the
subpopulations is large and it is easier to separate the clusters.
The following theorem captures this intuition.
Theorem 1. Consider a mixture of K Plackett-Luce models
with uniform mixing probabilities. Suppose that θ∗ki = 0 ∀i ∈
[L+ 1 : n] and θ∗k1:L ∼ N(0, IL) for k ∈ [K]. Fix a constant
α > 0. There exist constants c, c1, C1, C2, D such that if
m ≥ cmax{K4,Kn} then the output θ̂ of Algorithm 3
satisfies the following. If L ≥ c1 exp

(
C1

√
log n

)
, then

dist(θ̂,θ∗)

= O

(
exp

(
D
√

log n
)(√K2n log n

m
+

√
Kn

eL0.99

))
with probability 1 − O( Kn8 ) − O(K2n2exp

(
−L0.99

)
). If

L ≥ C2n
α and assuming that n = ω(logm), then

dist(θ̂,θ∗) = O

(
exp

(
D
√

log n
) √K2n log n

m

)
with probability 1−O( Kn8 )−O(K2n2exp (−nα)).

The first error bound is a sum of two terms. The first
is the estimation error incurred by Algorithm 2 which di-
minishes with increasing m. The second comes from the
clustering error incurred by Algorithm 1 and is controlled by
the SNR of the generative model. One can also check that
exp

(√
log n

)
= o(nα) for any α > 0 and exp

(√
log n

)
=

ω(log n). When L ≈ exp
(
O(
√

log n)
)

(low SNR), there is
significant clustering error and the second term scales ap-
proximately as O(

√
n

eL
) = O

(
1

poly(n)

)
. Hence, Algorithm 3

converges to within a small radius around θ∗ given a suffi-
ciently large m. However, when L is polynomial in n (high
SNR), estimation error dominates clustering error, giving us
the second error bound which diminishes with sample size m.
In this regime, the spectral initialization algorithm works well
as a standalone mixture learning algorithm. Note that this
guarantee holds even for a small α > 0, when the fraction of
‘informative’ items diminishes: L/n = o(1). Our proposed
generative model is new and could be a useful analysis frame-
work for future works. To the best of our knowledge, the
finite sample error bounds are also the first of their kind in
the literature.

Iterative Refinement via EM
Accuracy of the M-step. The following theorem generalizes
Theorem 1 of Maystre and Grossglauser (2015).
Theorem 2. The output of weighted LSR (Algorithm 4) is
the maximum weighted log-likelihood estimate:

θMLE
q := arg max

θ

m∑
l=1

ql · logPPL(πl, zl | θ) .

As noted before, the EMM algorithm is an alternative
approach that exactly solves the M-step using the (weighted)
MM algorithm. In other words, assuming perfect numerical
precision and the same initialization, EMM and EM-LSR
will produce the same final estimate. However, our EM-LSR
algorithm is often much faster than EMM (e.g., Figure 1).

Convergence of EM. It is well known that the EM algo-
rithm converges to a stationary point (Wu 1983). There is,
unfortunately, no guarantee how close such a point is to the
global optimum. However, assuming correct model specifica-
tion and that the initial estimate falls within a neighborhood
around θ∗ which satisfies certain high SNR conditions, the
EM algorithm will converge to θ∗ (Wang et al. 2015; Wu
et al. 2016; Balakrishnan, Wainwright, and Yu 2017). The
area around θ∗ where this desirable behaviour occurs is re-
ferred to as the basin of attraction. We leave the detailed
characterization of the basin of attraction as a subject of
future studies.

True Likelihood versus Surrogate Likelihood. For two
other commonly used EM algorithms in the literature – EM-
CML and EM-GMM – previous authors use random initial-
ization. On the other hand, ours uses spectral initialization.
However, initialization is not the only differentiating charac-
teristic of our algorithm. In fact, our algorithm, EM-CML and
EM-GMM are fundamentally different EM-based algorithms.
To see why, one needs to inspect the objective function of the
M-step. Suppose that all three algorithms are initialized at
some θ̂(0). Let {qkl }

k∈[K]
l∈[m] denote the posterior class proba-

bilities conditioned on θ̂(0) per Equation (5).
In the first iteration, EM-LSR and EMM maximize the

weighted log-likelihood.

θ̂
(1)
LSR = arg max

θ

m∑
l=1

K∑
k=1

[
qkl · logPPL(πl, zl | θk)

]
.

On the other hand, EM-CML maximizes the composite (sur-
rogate) marginal likelihood. θ̂(1)

CML = arg maxθ

m∑
l=1

K∑
k=1

[ ∑
i,j:

πl(i)<πl(j)

qkl log

(
1

1 + exp
(
−(θki − θkj )

))] .
Lastly, EM-GMM minimizes the following function.

θ̂
(1)
GMM = arg min

θ

K∑
k=1

∑
i6=j

(
F̂ kij−

1

1 + exp
(
−(θki − θkj )

))2

,

where F̂ kij =
∑m
l=1 1[πl(i)<πl(j)] q

k
l∑m

l=1 q
k
l

.
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One can see that the objective functions are different and
so are their solutions. Hence, even if we initialize all three
algorithms with the same estimate, their trajectories will be
different in general. While EM-LSR and EMM converges to
the true MLE when initialized within the basin of attraction,
this may not be true for EM-GMM and EM-CML. This dif-
ference is supported by our experiments, where even with
the same initialization, the algorithms produce different final
estimates.

Experiments
We compare our spectral EM algorithm to the following
baselines: EMM, EM-GMM and EM-CML.

Synthetic Datasets. We simulate data from the genera-
tive model as described in Theorem 1. We set n = 100 and
L = 5 while varying the number of mixture components K
for different experiments. Figure 1 shows estimation error
and total inference time against the sample size m, averaged
over 25 trials. Spectral initialization consistently gives better
initial estimates than both random initialization and GMM
initialization (Zhao, Piech, and Xia 2016). To keep a fair
comparison, we use spectral initialization for all algorithms.
When K is small (e.g., Figures 1a and 1b) all four methods
are quite accurate. When the number of mixture components
are moderate (e.g., Figures 1c and 1d), the advantages that
EM-LSR enjoys over the other methods become more ap-
parent. While EMM becomes too inefficient for practical
purposes, EM-LSR remains relatively efficient and produces
more accurate estimates than both EM-CML and EM-GMM.

Real Datasets. We include commonly used datasets in
previous works such as APA, Irish Elections (West, North,
Meath) and SUSHI all with n < 15. We partition all the
rankings with a 80-20 training-testing split; and the train
rankings into 80% for inference and 20% for validation. K
is chosen using Bayesian Information Criterion (Gelman,
Hwang, and Vehtari 2014) on the validation set and the log-
likelihood of the final model is evaluated using the test set.
For these datasets, EM-LSR and EMM are the most accurate
while EM-CML is the fastest, especially on datasets with a
large m such as the Irish election datasets. To understand
the relative speed between EM-LSR and EM-CML, note that
the bottle neck in these EM algorithms is the M-step. The
most time-consuming procedure in the M-step of EM-LSR is
constructing the Markov chain in Algorithm 4 with time com-
plexity O(mn2). For EM-CML, it is solving a constrained
concave maximization problem via SLSQP (Virtanen et al.
2020) and may scale at least as Ω(n3). 1. Therefore, EM-
CML tends to be faster for datasets with a small n and a large
m. However, its inference time could grow significantly with
n.

Indeed, the setting where EM-LSR outperforms the base-
lines is when n is large. We perform additional experiments
on the ML-10M movie ratings datasets (Harper and Konstan
2015). To generate rankings, we first run a low rank matrix
completion algorithm (Zitnik and Zupan 2012) on the user-

1SLSQP solves a sequence of quadratic optimization problems
with n variables. Each solves a linear system with n variables and
n equations and generally takes O(n3) (Strang et al. 1993).

(a) For a small number of mixture compo-
nents, all methods are quite accurate. As
the theory implies, EMM and EM-LSR pro-
duce similar estimates.

(b) EM-LSR is comparatively efficient (fig-
ure shows total inference time).

(c) For a moderate number of mixture
components, EM-LSR is the most accurate
method (EMM not shown due to timeout).

(d) EM-LSR and EM-CML are the only
two methods that are efficient for a moder-
ate number of mixture components.

Figure 1. `2 error and inference time on synthetic datasets.
EM-LSR is competitive in terms of accuracy and speed to
the baseline algorithms.

9299



item rating matrix to fill in the missing entries. We then select
n movies from the set of all movies and the rankings are
obtained from the completed matrix. Figure 2 shows the per-
formance of the four methods on two versions of the ML-10M
datasets with n = 25 and n = 100 given increasing training
data up to 14k. In the supplementary materials (Nguyen and
Zhang 2023), we also include additional experiments, strate-
gies to extend EM-LSR to handle partial rankings with ties
and comparisons to a Bayesian method (Mollica and Tardella
2017). Table 1 summarizes the experimental results on real
datasets.

Test log-likelihood (inference time)

Dataset LSR CML GMM EMM

APA -4.6 (600) -4.6 (33) -4.6 (2.2K) -4.6 (9.24K)

West -11.9 (810) -12.0 (200) -11.9 (5.8K) -11.9 (25K)

Sushi -13.6 (746) -14.0 (24.6) -13.8 (489) -13.8 (1.2K)

North -18.7 (1.5K) -18.9 (120) -18.7 (3.1K) -18.8 (14K)

Meath -23.6 (1.5K) -23.9 (497) -23.7 (30K) -23.6 (70K)

ML (25) -49.2 (3.7K) -50.1 (2.5K) -49.8 (26K) -49.2 (63K)

ML (50) -131 (5.8K) -132 (6.8K) -132 (125K) NA

ML (100) -326 (12K) -330 (27K) -332 (490K) NA

ML (200) -787 (25K) -799 (81K) NA NA

Table 1. Test log-likelihood and inference time on real
datasets. ‘NA’ denotes not available due to timeout. Best
performances are in bold.

Conclusion
We have proposed an accurate and efficient algorithm for
learning a mixture of Plackett-Luce models. For future works,
we would like to consider other initialization methods such
as the method of moments or tensor decomposition. Detailed
characterization of the basin of attraction within which the
EM algorithm converges to the true parameter is also a chal-
lenging open question. On a more practical note, incorporat-
ing the representation power of deep neural networks into
our algorithm will further increase its utility for large scale
recommendation systems applications.
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Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.;
Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt,
P.; and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature
Methods, 17: 261–272.
Wang, Z.; Gu, Q.; Ning, Y.; and Liu, H. 2015. High dimen-
sional em algorithm: Statistical optimization and asymptotic
normality. Advances in neural information processing sys-
tems, 28.
Wu, C.; Yang, C.; Zhao, H.; and Zhu, J. 2016. On the conver-
gence of the em algorithm: A data-adaptive analysis. arXiv
preprint arXiv:1611.00519.
Wu, C. J. 1983. On the convergence properties of the EM
algorithm. The Annals of statistics, 95–103.
Zhang, A. Y.; and Zhou, H. H. 2022. Leave-one-out Singu-
lar Subspace Perturbation Analysis for Spectral Clustering.
arXiv preprint arXiv:2205.14855.
Zhao, Z.; Liu, A.; and Xia, L. 2020. Learning Mixtures
of Plackett-Luce Models with Features from Top-l Orders.
arXiv preprint arXiv:2006.03869.
Zhao, Z.; Piech, P.; and Xia, L. 2016. Learning mixtures
of Plackett-Luce models. In International Conference on
Machine Learning, 2906–2914. PMLR.
Zhao, Z.; Villamil, T.; and Xia, L. 2018. Learning mixtures
of random utility models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32.
Zhao, Z.; and Xia, L. 2018. Composite marginal likelihood
methods for random utility models. In International Confer-
ence on Machine Learning, 5922–5931. PMLR.
Zhao, Z.; and Xia, L. 2019. Learning mixtures of plackett-
luce models from structured partial orders. Advances in
Neural Information Processing Systems, 32.
Zitnik, M.; and Zupan, B. 2012. Nimfa: A Python Library
for Nonnegative Matrix Factorization. Journal of Machine
Learning Research, 13: 849–853.

9301



Technical Appendix: Efficient and Accurate
Learning of Mixtures of Plackett-Luce Models

Duc Nguyen, Anderson Y. Zhang

March 23, 2023

Contents
A Preliminaries 1

A.1 Useful Concentration Inequalities . . . . . . . . . . . . . . . . . . 1
A.2 Mixtures of Sub-gaussian Distributions . . . . . . . . . . . . . . . 3

B Spectral Initialization 7
B.1 The Inter-center Gap . . . . . . . . . . . . . . . . . . . . . . . . . 7
B.2 The Least Squares Estimator . . . . . . . . . . . . . . . . . . . . 10
B.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 12

C The Weighted LSR Algorithm 21

D Extra Experiments Discussions 26
D.1 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . 28

D.1.1 Random initialization vs spectral initialization . . . . . . 28
D.1.2 Comparison to other methods . . . . . . . . . . . . . . . . 29

A Preliminaries
In this section, we introduce extra definitions and notations that will be used
throughout the rest of the paper and some useful high-dimension concentration
inequalities. Many of these results apply not only to the Plackett-Luce model
but also other random utility models (see Definition 1). We believe these results
can be of independent interest.

A.1 Useful Concentration Inequalities
As a shorthand notation, a . b means that a ≤ Cb for some constant C and
a � b means that a . b, b . a.

1



Definition 1 (Random utility model generative process). A random utility
model of ranking data is parametrized by utilities θ∗ = [θ∗1 , . . . , θ∗n] and noise
distributions D1, . . . ,Dn. A ranking π is drawn by first drawing εi ∼ Di indepen-
dently. Define Ui = θ∗i + εi for i ∈ [n]. π = arg sortU .

When all the noise distributions are the same Di = D for some distribution
D, the ranking distribution is also referred to as a random utility model with
independently and identically distributed noise, or IID-RUM. The PL model
is an IID-RUM with a standard Gumbel noise distribution. The Thurstone
model [Thurstone, 1927] is another IID-RUM but with N (0, 1

2 ) being the noise
distribution.
Definition 2 (Sub-gaussian random variable, Proposition 2.5.2 of Vershynin
[2018]). A random variable X ∈ R is a sub-gaussian random variable with
variance parameter σ if the tails of X satisfies

P
(
|X − EX| ≥ t

)
≤ 2 exp

(
− t

2

σ2

)
and the sub-gaussian norm of X is defined as

‖X‖ψ2 = inf{t > 0 : E exp
(
(X − EX)2/t2

)
≤ 2}.

Definition 3 (Sub-gaussian distribution in high dimension, Definition 3.4.1 of
Vershynin [2018]). A random vector X ∈ Rd is a sub-gaussian random variable
if the one-dimensional marginals X>x are sub-gaussian random variables for all
x ∈ Rd. The sub-gaussian norm of X is defined as

‖X‖ψ2 = sup
x:‖x‖2=1

‖X>x‖ψ2 .

If a random vector X is a sub-gaussian random vector with sub-gaussian
norm σ, we write X ∼ SG(σ2).
Lemma 1 (Sub-gaussian norm of permutation vector, Proposition 3 of Shah
and Song [2018]). Consider the pairwise vector representation of permutations
described in Equation (7). Under any random utility model, there exists a constant
τ such that the sub-gaussian norm of the random variable X from such embedding
satisfies

‖X‖ψ ≤
√
τn .

Lemma 2. (Concentration of norm for sub-gaussian random variables, Theorem
3.1.1 of Vershynin [2018]) Let X = (X1, . . . Xn) ∈ Rn ∼ N (0, σ0In). Then there
exists a constant c such that

P
(∣∣‖X‖2 −√n∣∣ ≥ t) ≤ 2exp

(
−ct

2

σ4
0

)
.

Theorem 3. (Hoeffding’s inequality) Let X1, X2, . . . , Xm be independent random
variables such that Xi ∈ [ai, bi] for i ∈ [m]. Then

P
(∣∣ m∑

i=1
Xi − E[Xi]

∣∣ > t

)
≤ 2 exp

(
− 2t2∑m

i=1(ai − bi)2

)
.
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Theorem 4. (Concentration inequality for a sum of Normal random variables)
Let X1, . . . , Xn be independent normal random variables distributed as N(0, σ2).
Then

P
(∣∣ n∑

i=1
Xi

∣∣ > t

)
≤ 2exp

(
− t2

2σ2n

)
.

A.2 Mixtures of Sub-gaussian Distributions
We first introduce notations and theoretical quantities that bridge the gap be-
tween the analysis of mixtures of PL models and that of mixtures of sub-gaussian
distributions. Let the means of K sub-gaussian distributions be µ∗1, . . . , µ

∗
K

(µ∗k ∈ R(n2) in our algorithm). The observed pairwise vector Xl for l ∈ [m] can
be written as

Xl = µ∗zl + εl

where εl ∈ R(n2) is a random noise vector with gaussian norm .
√
n as shown

earlier. Let E = [ε1, . . . , εm] ∈ Rm×(n2) be the concatenation of all the noise
vectors. Let P ∈ Rm×(n2) be the concatenation of the ‘centers’ of the m random
vectors: P = [E[X1], . . . ,E[Xm]]>. In short,

X = P + E

Let ∆ = mink 6=k′‖µ∗k − µ∗k′‖2 denote the minimum inter-center gap.

The following lemma will be useful in deriving a bound on the operator norm
of E. This lemma is often found in the analysis of random graphs such as in
stochastic block model.

Lemma 5. [Theorem 5.2 of Lei and Rinaldo [2015]] Let A be the adjacency
matrix of a random graph on n∗ node in which edges occur independently. Set
P = E[A] = (p)ij and assume that maxij pij ≤ d

n∗ for some d ≥ c0 logn and
c0 > 0. Then for any r > 0, there is a constant C that depends only on r, c0
such that

‖E‖op = ‖A− P‖op ≤ C
√
d

with probability at least 1− n∗−r.

Lemma 6. Under the generative model for a mixture of K random utility
models, there exists a constant CE such that the operator norm of the error
matrix satisfies

‖E‖op ≤ CE
√
n(
√
m+ n)

with probability at least 1− (m+ n)−10.

Proof. Note that in the broad class of random utility models, the distribution
of the comparisons of two disjoint pairs are independent. Building on this idea,
we partition E> into O(n) blocks of size O(n)×m where each block consists of
entries corresponding to pairs that are mutually disjoint. This is so that within
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each block, the entries (comparisons) are independent. Specifically, consider the
set of all pairs

{(1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (n, n− 1)} .

Imagine that we place all these pairs into the upper diagonal entries of a n× n
matrix as shown in Figure 1.

(1, 2)

(2, 3)

(1, n)(1, 4)(1, 3)

(2, 4) (2, n)

(n− 2, n− 1) (n− 2, n)

(n− 1, n)

... ...

...

Figure 1:
(

n
2

)
pairs are arranged into the upper diagonal entries of a square matrix

with the super-diagonals highlighted.

Now for each super-diagonal of this matrix, partition the entries into half
by taking every other item. For example, for the first super-diagonal, partition
the entries as follows (WLOG assuming that n is even) to obtain two blocks of
entries.

{(1, 2), (3, 4), . . . , (n− 1, n)} ∪ {(2, 3), (4, 5), . . . , (n− 2, n− 1)} .

Repeat the same procedure for all super-diagonals and we obtain 2(n− 1)− 1 of
these sets. Note that these subsets are partitions of the pairs (columns of E),
we can rewrite E as a concatenation of block matrices, each corresponding to a
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subset of pairs.

E> =



E>1

E>2

...

E>O(n)


.

Each submatrix Ei is of dimension O(n) ×m. Note that permutation of the
columns of E does not change the operator norm. It follows that:

‖E‖op = ‖E>‖op ≤
√

2n max
i
‖Ei‖op .

To bound ‖Ei‖op, we need to use Lemma 5 with d = n. Using the symmetric
dilation trick,

‖Ei‖op = ‖S(Ei)‖op =
∥∥∥∥
 0 Ei

E>i 0

∥∥∥∥
op

.

The matrix S(Ei) is a symmetric, binary matrix of size O((n+m))×O((n+m))
with independently distributed entries (like an adjacency matrix). By Lemma 5,
there exists a constant CE such that, with probability at least 1− (n+m)−10,

‖Ei‖op = ‖S(Ei)‖op ≤ 1/
√

2CE
√
n+m.

This completes the proof.

The following theorem provides guarantees on the performance of the spectral
clustering algorithm with adaptive dimension reduction (Algorithm 1) when
applied to a mixture of K random utility models. Before showing the theorem,
let us introduce some definitions. Let ξ = 1

m/K mink∈[K] |{l : z∗l = k} and
ξm/K is the smallest cluster size. Assuming a mixture model with uniform
mixing distributions, when m is sufficiently large, ξ ≈ 1. Note that the clusters
are identifiable up to a change in label. Let Φ denote the set of all re-labelling
function. The mis-clustering rate of an assignment z is defined as

`(z, z∗) = min
a∈Φ

1
m

m∑
l=1

1[a(zl) 6= z∗l ] .

Theorem 7 (Theorem 3.2 of Zhang and Zhou [2022]). Consider the generative
model described above. Assume that εl ∼ SG(σ2) independently with mean zero
for l ∈ [m]. Asssume that βm/K4 ≥ 400. There exist constants C,C ′, C1, C2
such that under the assumption that

ψ :=
√
ξ
√
m∆

K2‖E‖op
> C ,
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and ρ = T
‖E‖op satisfies C1 ≤ ρ ≤ ψ

C2
, then the output z of Algorithm 1 satisfies

E`(z, z∗) ≤ exp
(
−(1− C ′(ρψ−1 + ρ−1)) ∆2

8σ2

)
+ exp

(
−m2

)
.

If we further assume that ψ, ρ→∞ and ρ/ψ = o(1), then

E[`(ẑ, z∗)] ≤ exp
(
−(1− o(1)) ∆2

8σ2

)
+ exp (−m/2) .
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B Spectral Initialization
This section is dedicated to proving Theorem 1. At a high level, the proof consists
of three main components. Firstly, we want to show that under the generative
model described in Theorem 1, the inter-center gap is large. This allows us to show
that the mis-clustering error incurred by Algorithm 1 is small using Theorem
7. The second component is the finite sample error bound for the least squares
estimator in Algorithm 2. Lastly, we combine the two results to show that under
the generative model in the theorem statement, the pairwise probability estimates
obtained from the clusters produced by the spectral clustering algorithm are
accurate and therefore Algorithm 2 and, by extension, Algorithm 3 also return
accurate parameter estimates.

B.1 The Inter-center Gap
Define κ to be the dynamic range, i.e., κ := maxi∈[n],k∈[K] |θ∗ki |. In our gen-
erative model, κ .

√
logn. The dynamic range is the reason why the term

exp
(
O(
√

logn)
)

appears in our bound. The rest of this section is devoted to
showing that the inter-center gap ∆ is sufficiently large under said generative
model. The following theorem shows that in the special case when L = n, the
mixture model in Theorem 1 has a large inter-center gap (with high probability).

Theorem 1. Fix a constant number of mixture components K. Suppose that
for mixture component k ∈ [K], θ∗k ∼ N(0, In). For a sufficiently large n, there
exist constants C, c > 0 such that

∆ ≥ c

exp
(
C
√

logn
) ·√n2 − n logn

with probability at least 1−O(K
2

n10 )− exp (O(−n)).

Proof. We restrict our analysis to just two mixture components θ and θ′ for now.
To obtain the high probability guarantee for K mixture components, a simple
union bound argument suffices.

The mapping function under the case Plackett-Luce is exactly the link
function for the BTL model. Specifically, for items i, j with partworths θ∗i , θ∗j
respectively,

Pij = 1
1 + exp

(
−(θ∗i − θ∗j )

) .
The separation of the two pairwise centers satisfies

∆2 =
∑
i<j

(Pij − P ′ij)2

≥
∑
i<j

l(κ)2 ·
(
(θ∗i − θ∗)− (θ∗i

′ − θ∗j
′)
)2
,
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where l(κ) satisfies∣∣∣∣ 1
1 + exp (−x) −

1
1 + exp (−y)

∣∣∣∣ ≥ l(κ) · |x− y| ∀x, y ∈ [−2κ,+2κ] .

Clearly, l(κ) is dependent on the dynamic range κ. Since the logit function is
continuous everywhere, we can lower bound l(κ) by lower bounding the gradient
of the logit function within the dynamic range, which is

exp (−x)
(1 + exp (−x))2

It is well known that for ε1, . . . , εn ∼ N(0, 1), there exists a constant C such
that maxi |εi| ≤ 2C

√
logn with probability at least 1− 1

n10 . There also exists a
constant c′ > 0 such that

l(κ) ≥
exp

(
−2C

√
logn

)
(1 + exp

(
−2C

√
logn

)
)2 ≥ c

′ exp
(
−2C

√
logn

)
.

We will now tackle the remaining term in the expression for ∆2. We have∑
i<j

(
(θ∗i − θ∗j )− (θ∗i

′ − θ∗j
′)
)2

= 1
2
∑
i 6=j

(
(θ∗i − θ∗j )− (θ∗i

′ − θ∗j
′)
)2

= 1
2
∑
i 6=j

(
(θ∗i − θ∗i

′)− (θ∗j − θ∗j
′)
)2

= 1
2
∑
i 6=j

(θ∗i − θ∗i
′)2 + (θ∗j − θ∗j

′)2 − 2(θ∗i − θ∗i
′)(θ∗j − θ∗j

′)

= (n− 1) · ‖θ∗ − θ∗′‖22 − (θ∗ − θ∗′)>(1n1>n − In)(θ∗ − θ∗′)
= n · ‖θ∗ − θ∗′‖22 − (θ∗ − θ∗′)>(1n1>n )(θ∗ − θ∗′)

= n · ‖θ∗ − θ∗′‖22 −
(
(θ∗ − θ∗′)>1n

)2 (∗) .

For the second term, note that θ∗ − θ∗′ ∼ N (0, 2In). Invoking Theorem 4, there
exists a constant c′′ (e.g., 80) such that

(θ∗ − θ∗′)>1n ≤
√
c′′ n logn

with probability n−10.

As for the ‖θ∗ − θ∗′‖2 term. Applying Lemma 2 gives

‖θ∗ − θ∗′‖22 ≥ 0.9n

with probability 1−O(exp (−n)).
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Going back to the display (∗), we have

∆ ≥ exp
(
−C
√

logn
)
·
√

0.9n2 − c′′ n logn

with probability at least 1−O(n−10)−O(exp (−n)). Applying union bound over
all pairs of mixture components in [K] gives us the conclusion in the theorem
statement.

The following theorem generalizes the previous theorem to a general L.

Theorem 2. Fix a constant number of mixture components K. Suppose that
for mixture component k ∈ [K], θ∗k1:L ∼ N(0, IL) and θ∗kL+1:n = 0. There exist
constants C, c > 0 such that

∆ ≥ c

exp
(
C
√

logn
) ·√nL− L logn

with probability at least 1−O(K
2

n10 )−O(K2exp (−L)).

Proof. Following the same argument as in the proof of Theorem 1, there exists a
constant c′ > 0 such that we decompose the gap between two cluster centers as

∆2 =
∑
i<j

(Pij − P ′ij)2

≥
∑
i<j

l(κ)2 ·
(
(θ∗i − θ∗j )− (θ∗i

′ − θ∗j
′)
)2
,

=
(

exp
(
−C
√

logn
))2

·
(
n ‖θ∗ − θ∗′‖22 −

(
(θ∗ − θ∗′)>1n

)2)
.

Note that by design,

θ∗ − θ∗′ = [(θ∗ − θ∗′)1:L, 0, . . . , 0] .

Applying Lemma 2, we have

‖θ∗ − θ∗′‖2 = ‖(θ∗ − θ∗′)1:L‖2 ≥
√

0.9L

with probability at least 1−O(exp (−L)).

For the second term, by Theorem 4, there exists a constant c such that

(θ∗ − θ∗′)>1n = (θ∗ − θ∗′)>1:L1L <
√
cL logn

with probability at least O(n−10). The rest of the proof proceeds similarly to
that of Theorem 1.

9



B.2 The Least Squares Estimator
In this section, we obtain a general finite sample error guarantees for the least
squares estimator (Algorithm 2). Recall that Algorithm 2 apply a mapping
function before solving a constrained least squares optimization problem. The
mapping function used in the algorithm, the logit function, is specific to the
Plackett-Luce/BTL model. If we change the mapping function to, say the inverse
Normal CDF, we can apply Algorithm 2 to parameter estimation under the
Thurstone model [Thurstone, 1927] (See Definition 1). We believe that these
results can be extended to other ranking or paired comparison models, or to an
incomplete observation setting where certain pairs of items are not compared.
Lemma 3. Let φ̂ ∈ Rn×n be the transformed pairwise measurement in Algorithm
2 and φ∗ be its ideal value. Then the output θ of the algorithm satisfies

‖N(θ)−N(θ∗)‖22 ≤
‖φ̂− φ∗‖2F

2n .

Proof. We first rewrite the least squares optimization problem in a more con-
venient form. Let vec(φ∗) denote the vectorization of φ∗ (row major order).
There exists a matrix Z ∈ {0, 1,−1}n(n−1)×n such that vec(φ∗) = Zθ∗ for any
θ∗. Specifically, Z = [Z1, . . . , Zn] is a block matrix consisting of of n blocks of
dimension n− 1× n as shown below.

φ∗12

φ∗13

. . .

φ∗1n

φ∗21

. . .

φ∗n,n−1



=



Z1

Z2

. . .

Zn


θ∗ ,

where

Z1 =



1 −1 0 0 . . . 0

1 0 −1 0 . . . 0

1 0 0 −1 . . . 0

. . . . . . . . . . . . . . . . . .

1 0 0 0 . . . −1


∈ Rn−1×n ,
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Z2 =



−1 1 0 0 . . . 0

0 1 −1 0 . . . 0

0 1 0 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 1 0 0 . . . −1


∈ Rn−1×n ,

and so on. One can see that the Zi’s are different column-permuted versions
of Z1. Namely, there exist permutation matrices R1, . . . , Rn−1 such that Z2 =
Z1R1, Z3 = Z1R1R2, .etc and Zn = Z1R1 . . . Rn−1. We can also check that
Z11n = 0.

Under our new notations, the least squares optimization problem in Algorithm
2 is

θ̂ = arg min
θ
‖vec(φ̂)− Zθ‖2 .

It is well known (cf., Strang et al. [1993]) that the least squares solution is

θ̂ = (Z>Z)†Z>vec(φ̂) ,

where (Z>Z)† is the pseudo-inverse of Z>Z. On the other hand, we also have

θ∗ = (Z>Z)†Z>vec(φ∗) .

Combining the above two equalities gives

θ̂ − θ∗ = (Z>Z)†Z>(vec(φ̂)− vec(φ∗)) .

Now, since we care about the normalized `2 norm between θ and θ∗, we have

‖N(θ̂)−N(θ∗)‖22 = ‖θ̂ − 1
n

1>θ̂ · 1− θ∗ + 1
n

1>θ∗ · 1‖22

= ‖θ̂ − θ∗ + ( 1
n

1>θ∗ − 1
n

1>θ̂) · 1‖22

= ‖θ̂ − θ∗‖22 − 2 〈 1
n

1>(θ̂ − θ∗) · 1, θ̂ − θ∗〉+ 〈 1
n

1>(θ̂ − θ∗) · 1, 1
n

1>(θ̂ − θ∗) · 1〉

= ‖θ̂ − θ∗‖22 −
2
n
· ((θ̂ − θ∗)>1)2 + 1

n2 · 1
>1((θ̂ − θ∗)>1)2

= ‖θ̂ − θ∗‖22 −
1
n
· (θ̂ − θ∗)>11>(θ̂ − θ∗)

= (θ − θ∗)>(I − 1√
n

1√
n

)(θ − θ∗)

= (vec(φ̂)− vec(φ∗))Z(Z>Z)†(I − 1√
n

1√
n

)(Z>Z)†Z>(vec(φ̂)− vec(φ∗)) .
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Therefore,

‖N(θ̂)−N(θ∗)‖22 ≤ λmax

(
Z(Z>Z)†(I − 1√

n

1>√
n

) (Z>Z)†Z>︸ ︷︷ ︸
A>

)
· ‖φ̂− φ∗‖2F

= λmax

(
A(I − 1√

n

1>√
n

)A>
)
· ‖φ̂− φ∗‖2F

= λmax,⊥⊥

(
A>A

)
· ‖φ̂− φ∗‖2F

= λmax,⊥⊥

(
(Z>Z)†Z> Z(Z>Z)†

)
· ‖φ̂− φ∗‖2F

= λmax,⊥⊥((Z>Z)†) · ‖φ̂− φ∗‖2F ,

where λmax,⊥⊥ is the maximum eigenvalue associated with the eigenspace orthog-
onal to the vector 1n. One can verify the following.

Z>Z = Z>1 Z1 + Z>2 Z2 + . . .+ Z>n Zn

=



n− 1 −1 −1 . . . −1

−1 1 0 . . . 0

−1 0 1 . . . 0
...

−1 0 0 . . . 1


+



1 −1 0 . . . 0

−1 n− 1 −1 . . . −1

0 −1 1 . . . 0
...

0 −1 0 . . . 1


+ . . .



1 0 0 . . . −1

0 1 0 . . . −1

0 0 1 . . . −1
...

−1 −1 −1 . . . n− 1


= 2n In − 2n 1√

n

1>√
n
.

Hence, λmin,⊥⊥(Z>Z) = 2n and λmax,⊥⊥((Z>Z)†) = 1
2n . This directly yields the

inequality in the theorem statement.

B.3 Proof of Theorem 1
Let us introduce some notations. Let C∗k = {l ∈ [m] | z∗l = k} for k ∈ [K] denote
the true cluster assignment. To avoid cluttering the notation, let us suppress the
relabeling operator here and consider Ĉk = {l ∈ [m] | zl = k} to be the cluster
assignment produced by Algorithm 1 corresponding to mixture component k.

As noted before, when the mixing probabilities are uniform, β∗ = 1
K1, ξ ≈ 1

and the size of each true cluster is ≈ m
K whp. In fact, for a cluster k, Hoeffding’s

inequality gives

P
(∣∣∣∣|C∗k| − m

K

∣∣∣∣ > t

)
≤ 2 exp

(
−2t2

m

)
.
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Hence, 0.9m
K ≤ |C∗k| ≤ 1.1m

K with probability at least 1 − O(exp
(
−m/K2)).

Applying union bound over all clusters, we conclude that the event

E0 =
{
|C∗k| ∈

[
0.9m
K

,
1.1m
K

]
∀k ∈ [K]

}
happens with probability at least 1−O(Kexp

(
−m/K2)).

On the choice of T . Theorem 6 gives ‖E‖op .
√
n(
√
m+

√
n) with probability

at least 1− 1
(n+m)10 . The technical condition in Zhang and Zhou [2022] sugggests

that T is at least a constant factor larger than ‖E‖. It therefore suffices to pick
T =

√
n
√
m+ n

√
logn. Additionally, the second bound in Theorem 6 holds if

the following event holds

E ′0 =
{√

lognK2‖E‖op
ξ
√
m∆

= o(1)
}
.

We will show that this is satisfied under the generative model described in
Theorem 1. For now, let us define the following events.

E1 =
{

∆ ≥
√
d

exp
(
D/2
√

logn
)√L√n− logn

}
∪ E0 ∪ E ′0 .

E2 =
{

∆ ≥
√
d

exp
(
D/2
√

logn
)√nα√n− logn

}
∪ E0 ∪ E ′0 .

d and D are the constants in Theorem 2. Recall the sub-gaussian norm of the
pairwise representation of permutations in Lemma 1. For the rest of the proof,
we use the same τ .
Lemma 4. Suppose that event E1 or event E2 holds and m ≥ cK4 or a suffi-
ciently large constant c. Then the clustering ẑ output of Algorithm 1 satisfies the
following.

P
(
m · `(ẑ, z∗) > m

K
exp

(
− ∆2

16τn

) ∣∣∣∣ E1)
≤ K · exp

(
−(1− o(1)) ∆2

16τn

)
+K · exp

(
−m2 + ∆2

16τn

)
,

Proof. Under the assumptions stated in the lemma, the output of Algorithm 1
achieves exponentially decaying mis-clustering error rate and

P
(
m · `(z, z∗) > t

∣∣∣∣ E1) = P
(
`(z, z∗) > t

m

)
≤ m

t
· exp

(
−(1− o(1)) ∆2

8σ2

)
+ m

t
· exp

(
−m2

)
,

where the last step comes from applying Markov’s inequality and ψ, ρ, C ′ are
defined in Theorem 7 and σ2 = τn. The theorem statement is obtained by
replacing t with m

K · exp
(
− ∆2

16τn

)
.
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Theorem 1. Consider a mixture of K Plackett-Luce models with uniform
mixing probabilities. Suppose that θ∗ki = 0 ∀i ∈ [L + 1 : n] and θ∗k1:L ∼ N(0, IL)
for k ∈ [K]. Fix a constant α > 0. There exist constants c, c1, C1, C2 such that
if m ≥ cmax{K4,Kn}, the output θ̂ of Algorithm 3 satisfies the following. If
L ≥ c1 exp

(
C1
√

logn
)
,

dist(θ̂,θ∗) = O

(
exp

(
O(
√

logn)
)
·
(√

K2n logn
m

+
√
Kn

eL0.99

))
with probability 1−O( Kn8 ) +O(K2n2exp

(
−L0.99)). If L ≥ C2n

α and assuming
that n = ω(logm),

dist(θ̂,θ∗) = O

(
exp

(
O(
√

logn)
) √K2n logn

m

)
with probability 1−O( Kn8 ) +O(K2n2exp (−nα)).

Proof. Since the output of Algorithm 1 are K clusters which are then used to
estimate the pairwise preference probabilities – the input to Algorithm 2 – it
suffices to show that each pairwise center P̂ k is close to the corresponding true
centers P ∗k.

Focusing on a cluster k ∈ [K] and a single pair (i, j), let Nk
ij denote the

number of times that item j ‘beats’ item i among the permutations in cluster
Ĉk.

Nk
ij =

∑
l∈C∗k

1[πl(i) < πl(j)]−
∑

l∈C∗k,l/∈Ĉk
1[πl(i) < πl(j)] +

∑
l/∈C∗k,l∈Ĉk

1[πl(i) < πl(j)] .

We will analyze these terms separately. By Hoeffding’s inequality, the first term
can be bounded as

P
(∣∣∣∣ ∑

l∈C∗k
1[πl(i) < πl(j)]− |C∗k| · P ∗ij

∣∣∣∣ > t

)
≤ 2exp

(
− 2t2

|C∗k|

)
≤ 2exp

(
−2K t2

1.1m

)
.

Therefore, there exists a constant d1 such that∣∣ ∑
l∈C∗k

1[πl(i) < πl(j)]− |C∗k| · P ∗ij
∣∣ ≤ d1

√
m/K logn

with probability at least 1− n−10.

For the other two terms in Nk
ij , note that by definition,∣∣∣∣ ∑

l∈C∗k,l/∈Ĉk
1[πl(i) < πl(j)]

∣∣∣∣+
∣∣∣∣ ∑
l/∈C∗k,l∈Ĉk

1[πl(i) < πl(j)]
∣∣∣∣ ≤ m · `(z, z∗) .

At this point, we consider the two regimes of L separately as the gap ∆ differs
substantially between the two regimes, leading to different bounds on the quantity
above.
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For the regime L ≥ c1exp
(
C1
√

logn
)
. By Theorem 2, the gap ∆ satisfies the

following, for some constants d,D.

∆2 ≥ d

exp
(
D
√

logn
)L(n− logn)

with probability at least 1 − K2

n10 − O(K2exp (−L)). Because exp
(√

logn
)

=
ω(logn), the ratio ρ/ψ in Theorem 7 satisfies

√
lognK2‖E‖op
ξ
√
m∆

�
√

lognK2√n
√
m+ n

exp
(
(C1 −D)

√
logn

) √
n− logn

√
m

= o(1) .

Then by Theorem 2, Lemma 6 and considering the generative model in
the theorem statement, event E1 happens with probability at least 1 − K2

n10 −
O(K2exp (−L)) − O(Kexp

(
−m/K2)) − 1

(n+m)10 . The last two terms in the
probability guarantee diminish much faster than the other terms so we can
simplify as

P(E1) ≥ 1−O(K
2

n10 )−O(K2exp (−L)) .

By Lemma 4,

P
(
m · `(ẑ, z∗) > m

K
exp

(
− ∆2

16τn

) ∣∣∣∣ E1)
≤ K · exp

(
−(1− o(1)) ∆2

16τn

)
+K · exp

(
−m2 + ∆2

16τn

)
= K · exp

(
− (1− o(1))d

16τ · L(n− logn)
exp

(
D
√

logn
)
n

)
+K · exp

(
−m2 + d

16τ ·
L(n− logn)

exp
(
D
√

logn
)
n

)

= K · exp
(
− (1− o(1))d

16τ · L

exp
(
D
√

logn
))+K · exp

(
−m2 + d(1− o(1))

16τ · L

exp
(
D
√

logn
))

There exists a constant c such that if m ≥ cn, then the second exponential term
is bounded as

K · exp
(
−m2 + d(1− o(1))

16τ · L

exp
(
D
√

logn
)) ≤ Kexp (−n) ,

which is dominated by the first exponential term. Hence, we can simplify the
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probability bound on the mis-clustering error as

P
(
m · `(ẑ, z∗) > m

K
exp

(
− ∆2

16τn

) ∣∣∣∣ E1)
≤ 2K · exp

(
− (1− o(1))d

16τ · L

exp
(
D
√

logn
))

= 2K · exp
(
− (1− o(1))dc1

16τ · exp
(

(C1 −D)
√

logn
))

[There exist values for constants c′1, C ′1 such that if
c1 > c′1, C1 > C ′1 then the above term is bounded by]

≤ 2K · exp
(
−c0.99

1 exp
(

0.99C1
√

logn
))

≤ 2K · exp
(
−L0.99)

Conditioned on event E1 and with the choice of c1, C1 above, the following
happens with probability at least 1− 2K · exp

(
−L0.99)− 1

n10 for a single pair
i, j and cluster k.∣∣∣∣Nij − m

K
· P ∗kij

∣∣∣∣ .√m/K logn+m`(z, z∗) �
√
m/K logn+ m

KeL0.99 .

Since C∗k � m
K and |Ĉk − C∗k| ≤ m

KeL0.99 , we have Ĉk � m
K . Consequently,

|P̂ kij − P ∗kij | =
∣∣∣∣ Nk

ij

|Ĉk|
− P ∗ij

∣∣∣∣ � 1
m/K

·
∣∣∣∣Nk

ij −m/K · P ∗ij
∣∣∣∣ .
√
K
√

logn√
m

+ 1
eL0.99 .

We apply union bound over all pairs i 6= j. Conditioned on event E1, with
probability at least 1− 2Kn2

exp(L0.99) −
1
n8 .

|P̂ kij − P ∗kij | .
√
K
√

logn√
m

+ 1
eL0.99

for all pairs i, j in cluster k. Apply a union bound argument over all clusters,
the above bound holds for all k ∈ [K] and all pairs with probability at least
1 − 2K2n2

exp(L0.99) −
K
n8 . Since the event E1 happens with probability at least 1 −
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O(K
2

n10 )−O(K2exp (−L)), we can show that

P
(
|P̂ kij − P ∗kij | &

√
K
√

logn√
m

+ 1
eL0.99 ∀k ∈ [K], i 6= j ∈ [n]

)
≤ P(∼ E1) + P(E1) · P

(
|P̂ kij − P ∗kij | &

√
K
√

log√
m

+ 1
eL0.99 ∀k ∈ [K], i 6= j ∈ [n]

∣∣∣∣ E1)
≤ O(K

2

n10 ) +O(K2exp (−L))

+ (1−O(K
2

n10 )−O(K2exp (−L))) ·
(

2K2n2

exp (L0.99) + K

n8

)
≤ O(K

n8 ) +O(K2n2exp
(
−L0.99)) .

For the regime L ≥ C2n
α. Again by Theorem 1,

∆2 ≥ d

exp
(
D
√

logn
) · (nL− L logn) � dC2n

α

exp
(
D
√

logn
) · C2n

α · (n− logn)

with probability at least 1− K2

n10 −O(K2exp (−C2n
α)). One can check that ρ/ψ =

o(1) since exp
(
D
√

logn
)

= o(nα) for any α > 0. Therefore, event E2 happens
with probability at least 1− K2

n10 −O(K2exp (−C2n
α))−O(Kexp

(
−m/K2))−

1
(n+m)10 . Following a similar argument as in the previous regime of L, we have

P
(
m · `(ẑ, z∗) > m

K
exp

(
− ∆2

16τn

) ∣∣∣∣ E2)
≤ 2K · exp

(
−(1− o(1)) ∆2

16τn

)
= 2K · exp

(
− (1− o(1))d

16τ · L(n− logn)
exp

(
D
√

logn
)
n

)

= 2K · exp
(
− (1− o(1))d

16τ · L

exp
(
D
√

logn
))

[There exist constants C ′2 such that if C2 > C ′2 then
the above term can be bounded as]
≤ 2Kexp (−nα)

By the assumption that n = ω(logm), there also exist constants C ′′2 , such
that if C2 > C ′′2 then ∆2

16τn � exp (nα) ≥
√
m and exp

(
− ∆2

16τn

)
≤ 1√

m
. Set

C2 = max{C ′2, C ′′2 }.
Conditioned on event E2 and with the choice of C2 above, the following happens
with probability at least 1− 2Kexp (−nα)− 1

n10 for a single pair i, j and cluster
k. ∣∣∣∣Nij − m

K
· P ∗kij

∣∣∣∣ .√m/K logn+m`(z, z∗) �
√
m/K logn+

√
m/K .
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Clearly the first term dominates. Since C∗k � m
K and |Ĉk − C∗k| ≤

√
m
K , we

have Ĉk � m
K . Consequently,

|P̂ kij − P ∗kij | =
∣∣∣∣ Nk

ij

|Ĉk|
− P ∗ij

∣∣∣∣ � 1
m/K

·
∣∣∣∣Nk

ij −m/K · P ∗ij
∣∣∣∣ .
√
K
√

logn√
m

.

We apply union bound over all pairs i 6= j and cluster k ∈ [K]. Conditioned on
event E2, with probability at least 1− 2K2n2

exp(−nα) −
K
n8 , the following holds for all

pairs in all cluster components.

|P̂ kij − P ∗kij | .
√
K
√

logn√
m

.

Since event E2 happens with probability at least 1−O(K
2

n10 )−O(K2exp (−C2n
α)),

we have

P
(
|P̂ kij − P ∗kij | &

√
K
√

logn√
m

∀k ∈ [K], i 6= j ∈ [n]
)

≤ P(∼ E2) + P(E2) · P
(
|P̂ kij − P ∗kij | &

√
K
√

logn√
m

∀k ∈ [K], i 6= j ∈ [n]
∣∣∣∣ E2)

≤ O(K
2

n10 ) +O(K2exp (−nα))

+ (1−O(K
2

n10 )−O(K2exp (−C2n
α))) ·

(
2K2n2

exp (−nα) + K

n8

)
= O(K

n8 ) +O(K2n2exp (−nα)) .

Bounding the Error introduced by the Logit Transformation. From
Lemma 3, the output θ̂ satisfies

‖θ̂k −N(θ∗k)‖2 ≤
‖φ̂k − φ∗k‖F√

2n
.

We have already obtain bound on |P̂ kij − P ∗kij |. We still need to account for the
error introduced by the logit mapping function. By the sub-gaussian property,
there exists a constant B′ such that |θi| ≤ B′

√
logn ∀i ∈ [n] with probability at

least 1− 1
n8 . Then for B = 2B′, we have for all pairs (i, j),

P ∗ij ≥ exp
(
−2B

√
logn

)
.

Recall that exp
(√

logn
)

=
√

logn√
n

and exp
(√

logn
)

= o
(
exp

(
exp

(√
logn

)) )
.

Therefore, there exist constants c, c′′′1 , C ′′′1 such that if m ≥ cKn and L ≥
c′′′1 exp

(
C ′′′1
√

logn
)
, the following holds for all pairs (i, j) and clusters k ∈ [K].

|P̂ kij − P ∗kij | .
√
K logn√
m

+ 1
e
√
L
≤ 1

2exp
(
−2B

√
logn

)
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with probability at least 1−O( Kn8 )−O( K2n2

exp(L0.99) ). In other words,

P̂ kij ≥
1
2exp

(
−2B

√
logn

)
∀i 6= j ∈ [n], k ∈ [K] .

Recall the logit mapping function φ(p̂) = ln
(

p̂
1−p̂

)
. Its gradient is

1
p̂

+ 1
1− p̂ .

Since the logit function is continuous, an upper bound on its function also
suffices as a Lipschitz constant. Namely, for any p, p′ ∈ [ 1

2exp
(
−2B

√
logn

)
, 1−

1
2exp

(
−2B

√
logn

)
],∣∣∣∣ ln(p/(1− p))− ln

(
p′/(1− p′)

)∣∣∣∣ ≤ 4 exp
(

2B
√

logn
)
|p− p′| .

Putting things together. For the small L regime, we have with probability
1−O( Kn8 )−O(K2n2exp

(
−L0.99)), the following holds for all k ∈ [K].

‖θ̂k − θ∗k‖22 ≤
‖φ̂k − φ∗k‖2F

2n

=
∑
i,j(φ̂kij − φ∗kij )2

2n

.

∑
ij exp

(
4B
√

logn
)
· (P̂ kij − P ∗kij )2

n

. exp
(

4B
√

logn
)
n ·
(√

K
√

logn√
m

+ 1
eL0.99

)
For the large L regime, we have with probability 1−O( Kn8 )−O(K2n2exp (−nα)),
the following holds for all k ∈ [K].

‖θ̂k − θ∗k‖22 ≤
‖φ̂k − φ∗k‖2F

2n

=
∑
i,j(φ̂kij − φ∗kij )2

2n

.

∑
ij exp

(
4B
√

logn
)
· (P̂ kij − P ∗kij )2

n

. exp
(

4B
√

logn
)
n ·
(√

K
√

logn√
m

)

By noting that
‖θ − θ∗‖F ≤

√
K ·max

k
‖θk − θ∗k‖2 ,

we obtain the bounds in the theorem statement. This finishes the proof.
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Technical Remarks. As noted earlier, the exp
(
O(
√

logn)
)

in the ∆ quantity
is related to the dynamic gap which scales as

√
logn in our generative model.

However, the reader might see that this term appears in the final bound as a
consequence of a worst case analysis. For this reason, we are not able to obtain
finite sample error bound for the very sparse regime L � logn or L = O(1).
However, it might be possible to obtain a more refined lower bound for ∆ that
removes this term. With this, one could extend the theorem to the small L
regime.

LSR versus Least Squares for Initialization. The reader might wonder
why the spectral initialization does not use the LSR algorithm after the initial
clustering step. This is a reasonable question since the algorithm is essentially a
cluster-then-learn algorithm so the learning component can be delegated to the
LSR algorithm. On the theoretical side, the least squares estimator presents an
elegant theoretical analysis that can also be extended to more general RUMs other
than PL. We propsoe the spectral initialization as a flexible algorithm for learning
mixtures of general RUMs, not just mixtures of PLs. On the practical side, the
least squares algorithm reduces the estimation problem to a constrained least-
squares optimization problem which can be efficiently solved using off-the-shelf
optimizers. Therefore, there are important reasons to consider applying the least
squares estimator to the spectral initialization algorithm over the (unweighted)
LSR algorithm. Experimentally, we observe that spectral initialization with
LSR produces similar estimates to spectral initialization with the least squares
estimator and the final estimates obtained by the EM algorithm are very similar.
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C The Weighted LSR Algorithm
In this section, we will prove that the output of the weighted LSR algorithm is
also the weighted MLE – Equation (6).

The Weighted Log-likelihood. The connection between the weighted ILSR
algorithm and the weighted log-likelihood estimate stems from the generative
model of the PL model as a sequence of choice. Namely, for a ranking π. The
log-likelihood decomposes as

logPPL(π | θ) =
n−1∑
i=1

log
(

eθπi∑
j≥i e

θπj

)
.

Given a ranking dataset Π and sample weight vector q, the weighted log-
likelihood is defined as

L(Π, q, θ) =
m∑
l=1

n−1∑
i=1

ql · log
(

eθπi∑
j≥i e

θπj

)
.

Similarly to the analysis of the unweighted LSR algorithm in Maystre and
Grossglauser [2015], we draw the connection between MLE and spectral ranking
via the following reparametrization. Let θ̂ be the weighted MLE. Now define

p̂i = eθ̂i∑
k∈[n] e

θ̂k
i ∈ [n] .

Naturally, p̂ ∈ Pn where Pn is the open probability symplex in n dimension. In
terms of p̂, the weighted log-likelihood is

L(Π, q, p̂) =
m∑
l=1

n−1∑
i=1

ql · log
(

p̂πi∑
j≥i p̂πj

)
.

Choice Breaking. Recall that the weighted ILSR algorithm first performs
choice breaking on the permutations and the notion of choice breaking as a
collection of choice enumerations composing the rankings. The weighted log-
likelihood can be written in terms of the choice breaking as follows.

L(Π, q, p̂) =
∑

(i,A,s)∈B

qs · log
(

p̂i∑
k∈A p̂k

)
.

Focusing on a single index i ∈ [n], the terms in the weighted log-likelihood that
depends on p̂i is

Li(Π, q, p̂) =
∑

(j,A,s)∈B:i=j

qs · log
(

p̂j∑
k∈A p̂k

)
+

∑
(j,A,s)∈B:i 6=j,i∈A

qs · log
(

p̂j∑
k∈A p̂k

)
.
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Taking the derivative of this function with respect to p̂i and setting the result to
0 gives

∂Li(Π, q, p̂)
∂p̂i

=
∑

(j,A,s)∈B:i=j

qs ·
(

1
p̂i
− 1∑

k∈A p̂k

)
+

∑
(j,A,s)∈B:i 6=j,i∈A

(
− qs∑

k∈A p̂k

)
= 0 .

Multiplying both sides by p̂i gives∑
(j,A,s)∈B:i=j

qs ·
(

1− p̂i∑
k∈A p̂k

)
+

∑
(j,A,s)∈B:i 6=j,i∈A

(
− qsp̂i∑

k∈A p̂k

)
= 0 .

Rearranging the terms gives∑
(j,A,s)∈B:i=j

qs ·
∑

u∈A,u 6=i

p̂u∑
k∈A p̂k

=
∑

(j,A,s)∈B:i6=j,i∈A

(
qsp̂i∑
k∈A p̂k

)
.

The reader may recognize that this equality is essentially∑
j 6=i

p̂j
∑

(i,A,s)∈Bi�j

qs∑
k∈A p̂k︸ ︷︷ ︸

M(p̂)ji

=
∑
j 6=i

pi
∑

(j,A,s)∈Bj�i

qs∑
k∈A p̂k︸ ︷︷ ︸

M(p̂)ij

,

where M(p̂)ij is defined in Equation (12). This is the stationarity condition for
a Markov chain with stationary distribution p̂ and state transition probabilities
M(p̂)ij ’s. This system of equation also means that the weighted MLE p̂ satisfies
a notion of self-consistency. Namely,

p̂>M(p̂) = p̂ .

If we consider the iterative process of Algorithm 4, then p̂ is a fixed point iterate.
The rest of this section is devoted to proving that, starting from any initial
distribution, the process converges to the weighted MLE p̂.

Theorem 2. The output of weighted LSR (Algorithm 4) is the maximum weighted
log-likelihood estimate:

θMLE
q = arg max

θ

m∑
l=1

ql · logPPL(πl | θ) ,

where PPL(πl |θ) is shown in Equation (1).

Proof. We adapt our proof from the proof of Theorem 1 in Maystre and Gross-
glauser [2015]. We first prove a result analogous to Lemma 1 in that paper.
Firstly, for a integer t ≥ 1, define

T (p>) = p>M(p)
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and
St(p>) = T (T (. . . T (p)))︸ ︷︷ ︸

t times

.

As shown previously, p̂ satisfies p̂> = T (p̂>). That is, p̂ is a fixed point of
the mapping T . If we can also show that T is a contraction mapping, i.e.,
‖T (x)− T (y)‖ ≤ c · ‖x− y‖ ∀x, y ∈ Pn for some c < 1, then we could guarantee
that

lim
t→∞

St(p>) = p̂> ∀p ∈ Pn .

Towards this end, we need to analyze the Jacobian J of the transformation T .
Firstly, note that J ∈ Rn×n. Recall that

M(p)ij =


ε ·
∑

(i,A,s)∈Bj�i
ws(∑
k∈A

pk

) if i 6= j

1− ε ·
∑

(i,A,s)∈Bj�i
ws(∑
k∈A

pk

) otherwise
.

By definition of the Jacobian, we have for an entry i, j where i 6= j (an off
diagonal entry),

[J(p>)]ij =
(
∂p>M(p)

∂pi

)
j

=
∂
(
p>M(p)

)
j

∂pi
=
∂
(∑

k pkM(p)kj
)

∂pi
.

We will now expand on this quantity.

[J(p>)]ij =
∂
(∑

k pkM(p)kj
)

∂pi

= ∂piM(p)ii
∂pi

+
∑
k 6=i

∂
(
pkM(p)kj

)
∂pi

= M(p)ij + pi ·
∂Pij
∂pi

+
∑
k 6=i

∂(pkM(p)kj)
∂pi

= M(p)ij + pi ·
∂Pij
∂pi

+ ∂(pjM(p)jj)
∂pi

+
∑
k 6=i,j

∂(pkM(p)kj)
∂pi

= M(p)ij + ∂(pjM(p)jj)
∂pi

+
∑
k 6=j

pk ·
∂M(p)kj
∂pi

(∗) .
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We will expand on the second and the third term.

∂(pjM(p)jj)
∂pi

+
∑
k 6=j

pk ·
∂M(p)kj
∂pi

=
∑
k 6=j

pk · ε ·
∑

j,A,s∈Bj�k,i

−ws
(
∑
k′∈A pk′)2 − pj · ε ·

∑
k 6=j

∂M(p)jk
∂pi

= ε ·
∑

j,A,s∈Bj�i

∑
k∈A,k 6=j

−wspk
(
∑
k′∈A pk′)2 + ε ·

∑
k 6=j

∑
k,A,s∈Bk�j,i

wspj
(
∑
k′∈A pk′)2

= −ε ·
∑

j,A,s∈Bj�i

∑
k∈A,k 6=j

ws ·
(

1∑
k′∈A pk′

− pj
(
∑
k′∈A pk′)2

)
+ ε ·

∑
k 6=j

∑
k,A,s∈Bk�j,i

wspj
(
∑
k′∈A pk′)2

= − ε ·
∑

j,A,s∈Bj�i

ws∑
k′∈A pk′︸ ︷︷ ︸

Mij

+ε ·
∑

j,A,s∈Bj�i

wspj
(
∑
k′∈A pk′)2 + ε ·

∑
k 6=j

∑
k,A,s∈Bk�j,i

wspj
(
∑
k′∈A pk′)2

= M(p)ij + ε ·
∑
k

∑
k,A,s∈Bk�j,i

wspj
(
∑
k′∈A pk′)2 ,

where, as an overload of notations, Bj�j,i = Bj�i. In the last step, we have
combined the last two terms into one. Subtituting the above into the display (∗)
gives

[J(p>)]ij = ε ·
∑
k

∑
k,A,s∈Bk�j,i

wspj
(
∑
k′∈A pk′)2 .

Recall that this is just for the off-diagonal terms of the Jacobian. For the
diagonal terms, note that

n∑
j=1

[J(p)]ij =
∑
j

M(p)ij +
∑
j

∑
k

pk ·
∂M(p)kj
∂pi

= 1 +
∑
k

pk
∑
j

∂

∂pi

(∑
j

M(p)kj
)

︸ ︷︷ ︸
=0

= 1

This means that the Jacobian matrix is a row-stochastic matrix (its rows sum
to 1). Now recall the operator St defined earlier as the successive application
of the operator T for t times. Following the same argument as in the proof of
Theorem 1 of Maystre and Grossglauser [2015], for any initial distribution p, so
long as p lies within the open probability simplex (its entries are strictly positive)
there exists an interger t0 such that St(p) is entrywise positive for t ≥ t0. Note
that by definition,

S′t(p) = (T t(p))′ =
t−1∏
o=0

T ′(So(p)) .

Since T ′ = J has been shown to be a row stochastic matrix and So(p) is entrywise
positive, S′t(p) is also entrywise positive and the rows of S′t(p) all sum to 1. The
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rest of the proof follows identically to the proof of Theorem 1 in Maystre and
Grossglauser [2015].
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D Extra Experiments Discussions

Datasets Metadata. Table 1 summarizes the metadata for all the real-life
datasets used in our experiments.

Dataset m n Reference

APA 18723 5 Diaconis [1989]

Irish-Meath 64081 14 Mattei and Walsh [2013]

Irish-North 43942 12 Mattei and Walsh [2013]

Irish-West 29988 9 Mattei and Walsh [2013]

SUSHI 4997 10 Kamishima [2003]

ML-10M 71567 10681 Harper and Konstan [2015]

Table 1: Datasets metadata and references.

Data Pre-processing. For the three Irish election datasets that contains ties,
we perform random tie breaking. The APA and SUSHI datasets contain no ties.
For the ML-10M dataset, we first construct a user-item rating matrix from the
ratings data. We then apply non-negative low rank matrix completion algorithm
(with rank 30) using the open-source implementation found in Zitnik and Zupan
[2012] to ‘fill in’ the missing entries. For each user, the ranking for the items is
determined by the value of the filled in entries. To select the subset of items for
use in the experiments, we select the items with the highest variance in user
rankings. For the small scale real life datasets, we use all the available training
rankings and Table 1 shows the performance for the algorithms when given all
available training data. For variants of the ML-10M datasets, we use up to 14k
rankings for training. For model selection, K is chosen from [2, 3, 4, 5, 6, 7, 8, 9, 10]
using Bayesian Information Criterion on the validation set. BIC is defined as
d log(mval)− 2 log(L) where d is the number of parameters in the mixture model,
mval is the number of validation rankings and L is the likelihood evaluated on
the validation set.

Some Notes on Implementations. We adopt the implementation of the MM
algorithm from Maystre [2015]. To solve the optimization problems in the M-
step in EM-CML and EM-GMM, we use scipy’s built-in SLSQP solver. Please
refer to our code in the supplementary materials for the implementation of all
algorithms used in our experiments. The final class probability estimates are
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taken as β̂k ∝
∑m
l=1 q

k
l where qkl is the posterior class probability computed

using the final estimate θ̂.

Partial rankings. Firstly, note that the EM-LSR algorithm proposed in our
paper can be decomposed into two steps. The first is an initialization procedure
and the second is an EM refinement procedure. In the case of full rankings,
initialization is delegated to a clustering-then-estimate approach where the
clustering algorithm is spectral clustering. For partial rankings, we can replace
spectral clustering by kernel clustering using semi-definite programming (SDP)
Peng and Wei [2007]. We can use either the Kendall kernel or the Mallows kernel
Jiao and Vert [2015] and their extensions to handle partial rankings Jiao and
Vert [2015], Lomeli et al. [2018]. Once we have partitioned the rankings into
clusters, the remaining of the spectral initialization proceeds in the same way.
One can estimate the pairwise preference probabilities for each cluster and apply
the least squares parameter estimation algorithm (Algorithm 2).

For the EM-procedure, note that the E-step can still be done efficiently
because the PL likelihood for partial rankings can still be evaluated in closed
form (see below). For the M-step, the weighted LSR algorithm can also handle
partial rankings as it takes advantage of the decomposability of the Plackett-Luce
likelihood function. The intuition for this comes from the interpretation of the
generative process behind PL as a sequence of choice. Consider a partial ranking
π, of s items where s < n, the universe size. The likelihood function for partial
ranking is given as

P(π | θ) = eθπ1∑
j≥1 θπj

. . .
eθπs−1

eθπs−1 + eθπs
.

Following the same construction as described in Section , one can perform
choice breaking on partial rankings just like for full rankings and the algorithm
requires little modifications. One can also inspect the proof of Theore 2 and see
that the log-likelihood function decomposes into individual choice enumerations.
Therefore, Theorem 2 also applies to the partial rankings setting as well.

Ties. As an example, we might observe a ranking

π = [π1, π2, {π3, . . . , πu}, πu+1, . . . , πs] ,

where the items {π3, . . . , πu} are tied. To handle ties, we consider the size of
the set of the tied items. If the set of tied items is small, we generate multiple
copies of the original ranking, each with a possible permutation among the tied
items, and divide the ranking weight by the number of such permutations. If
the set of tied items is large, repeat this process but with a constant number
of random permutations from the tied items. Alternatively we can also use
a sampling algorithm recently proposed by Liu et al. [2019]. This sampling
algorithm draws linear extensions (full rankings) consistent with given partial
rankings and specified model parameters.
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D.1 Additional Experiments
D.1.1 Random initialization vs spectral initialization

As mentioned in our main paper, we observe that spectral initialization out-
performs random initialization. To help the reader see more clearly how much
initialization helps, we augment Figure 1 in the main paper with results for
random initialization and spectral initialization. The figure below shows how
a random guess and the spectral initialization algorithm (no EM refinement)
perform against the algorithms in the paper. We can see that the EM refinement
step does result in a more accurate final estimate than spectral initialization
alone. More importantly, spectral initialization provides a significantly better
initial estimate than random initialization.

Figure 2: Synthetic datasets: The EM refinement procedure results in more accurate
estimate than spectral initialization alone. Spectral initialization outperforms random
initialization.
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D.1.2 Comparison to other methods

Bayesian Methods. In the main paper we focus on parameter estimation and
frequentist algorithms. Besides the frequentist (maximum likelihood) approach,
some authors have also proposed Bayesian algorithms for PL parameter inference
Guiver and Snelson [2009], Caron and Doucet [2012] for the classical PL model.
For a mixture of PL models, we are only aware of the works by Mollica and
Tardella [2017] and Caron et al. [2014]. The latter focus on clustering mixtures
of Plackett Luce models while the former presented a learning algorithms for a
finite mixture of PLs. Here we include extra experiments comparing EM-LSR and
this Bayesian algorithm. To obtain final parameter estimates from the Bayesian
model, we sample a 1000 samples from the posterior distribution and compute
the average. Smooth vs Stochastic M-step. As noted in our main paper,
Liu et al. [2019] used the unweighted LSR algorithm in their EM algorithm for
learning mixtures of PL models. In order to incorporate unweighted LSR, they
perform a probabilistic clustering in the M-step. The class posterior probabilities
computed in the E-step are used to perform the clustering.

We perform additional experiments on synthetic datasets and ML-10M
datasets comparing these three algorithms. Figure 3 shows the results on synthetic
datasets and Figure 4 shows the results on ML-10M datasets. EM-LSR and the
Bayesian algorithm have their own advantages over the other algorithm. EM-LSR
is faster and requires little tuning. The Bayesian method, on the other hand, can
be used to obtain uncertainty quantification as we learn a posterior distribution
over the parameters θ and produces slightly better estimates, especially in the
data-poor regime. The tradeoff is of course speed. While the EM-LSR algorithm
with a probabilistic clustering M-step is approximately faster by a constant factor
than the original EM-LSR algorithm (both are orders of magnitude faster than
the Bayesian method), it produces significantly worse estimates. We suspect that
the noise introduced by the stochastic M-step causes the trajectory of the EM
algorithm to end up in a bad local optimum.
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Figure 3: Synthetic datasets: The Bayesian method produces slightly better esti-
mates than smooth EM-LSR but is much slower than the EM-LSR algorithms. Smooth
EM-LSR is significantly more accurate than stochastic EM-LSR.
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Figure 4: ML-10M datasets: On real datasets, soft EM-LSR is more accurate than
stochastic EM-LSR. Smooth EM-LSR is similar in accuracy to the Bayesian method
but is orders of magnitude faster.
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