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Abstract

Mixture models of Plackett-Luce (PL), one of the most fun-
damental ranking models, are an active research area of both
theoretical and practical significance. Most previously pro-
posed parameter estimation algorithms instantiate the EM
algorithm, often with random initialization. However, such
an initialization scheme may not yield a good initial estimate
and the algorithms require multiple restarts, incurring a large
time complexity. As for the EM procedure, while the E-step
can be performed efficiently, maximizing the log-likelihood
in the M-step is difficult due to the combinatorial nature of
the PL likelihood function. Therefore, previous authors favor
algorithms that maximize surrogate likelihood functions. How-
ever, the final estimate may deviate from the true maximum
likelihood estimate as a consequence. In this paper, we ad-
dress these known limitations. We propose an initialization
algorithm that can provide a provably accurate initial estimate
and an EM algorithm that maximizes the true log-likelihood
function efficiently. Experiments on both synthetic and real
datasets show that our algorithm is competitive in terms of ac-
curacy and speed to baseline algorithms, especially on datasets
with a large number of items.

Introduction
Learning to rank is an active area of research with wide-
ranging applications in recommendation systems, informa-
tion retrieval, crowdsourcing and the social sciences. The
Plackett-Luce (PL) model (Plackett 1975; Luce 1959) is one
of the most fundamental ranking models. In a universe of
n items, the PL model posits that item i has a latent utility
θ∗i ∈ R. The probability of observing a full ranking π given
by the user (most preferred item first) is given as

PPL(π = [π1, .., πn] |θ∗) =
n−1∏
i=1

exp
(
θ∗πi
)∑n

j=i exp
(
θ∗πj

) . (1)

The maximum likelihood estimate (MLE) can be obtained
using iterative algorithms such as the Minorize-Maximize
(MM) algorithm of Hunter (2004) and enjoys favorable theo-
retical properties (Hajek, Oh, and Xu 2014). In recent years,
an algorithm known as Luce spectral ranking (LSR) (Maystre
and Grossglauser 2015) has become the method of choice for
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maximum likelihood inference for PL models. LSR outputs
the MLE just like MM but is often much faster.

The PL model is closely connected to the Bradley-Terry-
Luce (BTL) model (Luce 1959) for pairwise comparisons.
For two items i 6= j, the probability that i is ranked ahead of
j in a ranking is equal to the probability that i beats j in a
pairwise comparison under the BTL model. That is,

PPL(π(i) < π(j)) = PBTLij =
1

1 + exp
(
−(θ∗i − θ∗j )

) ,
(2)

where π(i) is the position of item i in ranking π.
The classical PL model assumes that there is a universal

preference ordering of the items according to their utilities.
However, in practice, there might be multiple subpopula-
tions of users with different preference profiles which cannot
be fully captured by a single PL model. In such settings, a
mixture of PL models is a more appropriate modeling as-
sumption.

Problem Descriptions. Consider a mixture model with
K components and n items for some constant K. Let β∗ =
[β∗1 , . . . , β

∗
K ]>, β∗>1 = 1 denote the mixing distribution.

For component k ∈ [K] (where [a] denotes [1, . . . , a]), the
utility parameters for the items are

θ∗k = [θ∗k1 , . . . , θ∗kn ]> ∈ Rn .

Let θ∗ = [θ∗1, . . . , θ∗K ] ∈ Rn×K denote the concatena-
tion of the K sets of parameters. A ranking dataset Π is a
collection of full rankings.

Consider the following generative model for a ranking
dataset of size m. For l ∈ [m], let z∗l ∈ [K] denote the
mixture component membership where P(z∗l = k) = β∗k .
Then a permutation πl is drawn from the PL distribution
parametrized by θ∗zl . That is,

PPL(πl = [πl,1, . . . , πl,n] | z∗l ,θ∗) =
n−1∏
i=1

exp
(
θ
∗z∗l
πl,i

)
∑n
j=i exp

(
θ
∗z∗l
πl,j

) ,
(3)

where πl,i denote the i-th item in permutation πl. The reader
may recognize two identifiability issues here. The first is
parameter translation. For each component, the distributions
parametrized by θ∗k and θ∗k + c · 1n are the same for any
c ∈ R. The second is mixture components (columns of θ∗)
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relabeling. To account for these issues, we consider the fol-
lowing error metric.

dist(θ,θ∗) := min
R∈OK×K

‖N(θ)R−N(θ∗)‖F , (4)

where OK×K is the set of all permutation matrices (Strang
et al. 1993, Chapter 2) of size K ×K and N is the normal-
ization operator (i.e., N(θ)· k = θk − 1

n (θk)>1n).
Prior Works. Generalizing the PL model to mixtures adds

a layer of complexity to the inference problem. In general,
the likelihood function is non-convex in the model parame-
ters. Most previously proposed algorithms instantiate the EM
algorithm (Dempster, Laird, and Rubin 1977). As a general
recipe, an EM algorithm is initialized with some parameter
θ(0) (e.g., using random initialization). It then repeats the
following two steps for t = 1, 2, . . . until convergence.

The E-step computes the posterior class probability condi-
tioned on the current estimate:

qkl = P(z∗l = k |πl,θ(t−1)) ∝ βk ·PPL(πl |z∗l = k, θ(t−1))
(5)

for l ∈ [m], k ∈ [K] where PPL is given in Equation (3) and
β the prior class probability. Thanks to the closed form of
the PL likelihood function, the E-step can be done efficiently.
The M-step obtains the next estimate θ(t) by maximizing
the joint log-likelihood function which decomposes into K
weighted log-likelihood functions. Namely,

θ(t) = arg max
θ

K∑
k=1

( m∑
l=1

qkl logPPL(πl, z
∗
l = k |θ)

)
.

(6)
Due to the combinatorial nature of the PL likelihood func-
tion, the derivative of the log likelihoood function has a com-
plicated form. As a result, maximizing the (weighted) log-
likelihood via gradient-based algorithms quickly becomes
inefficient as n grows.

The first practical approach towards solving the M-step
uses the Minorize-Maximize algorithm of Hunter (2004),
yielding the EMM algorithm of Gormley and Murphy (2008).
While guaranteed to solve the M-step, it has been observed
that the MM subroutine converges slowly even for datasets
with a moderate number of items (e.g., Figure 2). Motivated
by practical concerns, researchers have developed pseudo-
likelihood estimators that optimize, instead of the true log-
likelihood function, alternative objective functions. Two such
algorithms are the Generalized Method of Moments (GMM)
of Azari Soufiani et al. (2013) and Composite Marginal Like-
lihood (CML) of Zhao and Xia (2018). It has been observed
experimentally that GMM is considerably faster than MM
and CML is even faster than GMM with comparable accu-
racy. Besides maximum likelihood (ML) inference methods,
previous authors have also proposed Bayesian inference al-
gorithms (Guiver and Snelson 2009; Mollica and Tardella
2017). In this paper, we focus primarily on ML algorithms
but include additional experiments with Bayesian methods in
the supplementary materials.

Using GMM and CML to solve the M-step gives us the
EM-GMM algorithm (Zhao, Villamil, and Xia 2018) and
the EM-CML algorithm (Zhao, Liu, and Xia 2020), respec-
tively. The only non-EM algorithm for learning PL mixtures

that we are aware of is a GMM-based algorithm proposed in
Zhao, Piech, and Xia (2016); Zhao and Xia (2019). However,
the construction of the algorithm is quite ad-hoc and the au-
thors did not show extension of the algorithm to more than 2
mixture components. In addition, previous authors primarily
restrict their experiments to datasets with a small number of
items such as the SUSHI datasets (Kamishima 2003) with
n = 10. It is unknown how the previous methods perform
when n is large. Recent works have also studied PL mixtures
learning with features and partial rankings (Tkachenko and
Lauw 2016; Liu et al. 2019). While we include possible ex-
tensions of our algorithm in the supplementary materials, our
main focus in this paper is an improved algorithm for the
classical setting.

Our Contributions. We propose a new EM algorithm for
learning mixtures of PL models that
• Has a provably accurate initialization procedure with a

finite sample error guarantee, the first of its kind in the
literature;

• Efficiently maximizes the weighted log-likelihood func-
tion in the M-step without using a surrogate likelihood
or objective function, thus returning the true maximum
likelihood estimate;

• Performs competitively with the previously proposed al-
gorithms in terms of accuracy and speed, and is scalable
to datasets with n ≥ 100.

The Spectral EM Algorithm
In this section, we present our algorithmic contributions. Sec-
tion describes the spectral initialization algorithm and Sec-
tion describes the EM refinement procedure.

Spectral Initialization
The initialization for our algorithm is delegated to spectral
clustering (Algorithm 1) and a least squares minimization
algorithm (Algorithm 2). To apply spectral clustering, we
first embed each ranking πl into a ‘pairwise vector’ – Xl ∈
{0, 1}(

n
2) where each entry corresponds to a pair of items. As

an overload of notation, we use d = (d1, d2) where d1 < d2

to denote the entry corresponding to the pair (d1, d2). Define

Xl,d(π) =

1 if πl(d1) < πl(d2)

0 otherwise

. (7)

Let X ∈ Rm×(n2) denote the concatenation of the embed-
dings of m rankings in dataset Π. Given a target number of
components K, Algorithm 1 can then be applied to the rows
of X to obtain K clusters, {Ĉk}Kk=1 ⊆ [m].

For each cluster of rankings Ĉk, we estimate the preference
probability for a pair (i, j) as

P̂ kij =
1

|Ĉk|

∑
l∈Ĉk

1[πl(i) < πl(j)] . (8)

From the preference probability estimates for all pairs, Al-
gorithm 2 recovers the utility parameter θ̂k. It applies the
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Algorithm 1 Spectral Clustering with Adaptive Dimension
Reduction

Input: Dataset Π = {π1, . . . , πm}, number of mixture
components K and threshold T .

Output: K clusters of rankings.

1: Embed the rankings as the rows of a matrix X ∈
{0, 1}m×(n2) according to Equation (7).

2: Perform SVD: X = USV >, where the singular values
are arranged from largest to smallest.

3: Let r̂ be largest index in [K] such that the difference
between the successive singular values is greater than T ,
i.e., r̂ = max{a ∈ [K] : Saa − S(a+1)(a+1) ≥ T} .

4: Run k-means on the rows of XV1:r̂ with K clusters:(
ẑ, {ĉk}Kk=1

)
= arg min
z∈{1,...,K}m

{ck}∈Rr̂

m∑
l=1

‖V >1:r̂Xl − czl‖22 .

5: Return clusters Ĉk = {l ∈ [m] : ẑl = k} for k ∈ [K].

Algorithm 2 Least Squares Parameter Estimation

Input: Pairwise preference matrix P̂ ∈ Rn×n.
Output: Normalized parameter estimate θ̂.

1: Solve the least squares optimization problem

θ̂ = arg max
θ:θ>1=0

∑
i6=j

(φ̂ij − (θi − θj))2 ,

where φ̂ij = ln(P̂ij/(1− P̂ij)) .

logit function on the pairwise probabilities and solves a con-
strained least squares minimization problem, which can be
efficiently done using off-the-shelf solvers (Virtanen et al.
2020). Algorithm 3 summarizes the spectral initialization
algorithm.

Remarks. The application of spectral clustering to mix-
tures of PL models has also appeared in a manuscript by
Shah and Song (2018). There, the authors apply the clas-
sical spectral clustering algorithm – clustering the rows of
XV1:K – and their analysis requires a spectral gap condition
which is hard to verify. We use spectral clustering with adap-
tive dimension reduction and our analysis does not require
any spectral gap condition (Zhang and Zhou 2022). Further-
more, we focus on parameter estimation while Shah and
Song (2018) only focus on clustering, resulting in different
theoretical guarantees. The choice of threshold T in Algo-
rithm 3 is to satisfy a mild technical condition in the analysis
of spectral clustering. In our experiments, the performance
of the EM algorithm does not seem to critically depend on
this threshold.

Intuition behind Algorithm 2. Recall the connection be-
tween the PL model and the BTL model in Equation (2).
Suppose we observe a large sample drawn from a single
PL distribution. Then P̂ij ≈ P ∗ij = 1/

(
exp

(
−(θ∗i − θ∗j )

) )
and φ̂ij = ln(P̂ij/1 − P̂ij) ≈ θ∗i − θ∗j . Solving the least

Algorithm 3 Spectral Initialization
Input: Dataset Π = {π1, . . . , πm}, number of mixture

components K.
Output: Parameter estimates for K mixture components

θ̂ = [θ̂1, . . . , θ̂K ] ∈ Rn×K .

1: Run Algorithm 1 on Π with T =
√
n
√
m+ n

√
log n to

obtain K clusters Ĉ1, . . . , ĈK .
2: Estimate the pairwise preference probabilities P̂ kij per

Equation (8) for each cluster.
3: Run Algorithm 2 on {P̂ k}Kk=1 and return the parameter

estimates for K mixture components.

squares optimization problem recovers θ̂ ≈ θ∗. In the mix-
ture setting, if the estimates P̂ k’s are accurate, we obtain
good parameter estimates (e.g., Theorem 1). Rajkumar and
Agarwal (2016) apply a similar idea in their algorithm for
ranking from comparisons of O(n log n) pairs under a single
BTL model. They first apply the logit function on the pair-
wise preference probabilities, followed by a low rank matrix
completion algorithm (Keshavan, Montanari, and Oh 2009).
Their algorithm produces a ranking. On the other hand, our
goal is mixture learning and the resulting theoretical analysis
is different.

Iterative Refinement via EM
The Weighted LSR Algorithm. As noted before, we wish to
maximize the weighted log-likelihood (6) efficiently. Towards
this goal, we generalize the Luce spectral ranking (LSR)
algorithm (Maystre and Grossglauser 2015) to incorporates
sample weights. The original LSR algorithm produces the
MLE. Our generalized algorithm outputs the weighted MLE
(see Theorem 2).

The intuition behind LSR is an interpretation of the PL
ranking generative process as a sequence of choices (Plackett
1975). Given a ranking πl, define its choice breaking as

Bπl = {(πl,1, {πl,1, . . . , πl,n}, l), (πl,2, {πl,2, . . . , πl,n}, l)
. . . , (πl,n−1, {πl,n−1, πl,n}, l)} .

Each tuple (i, A, l) ∈ B(πl) is a choice enumeration of the
ranking πl. Given a ranking dataset Π = {π1, . . . , πm}, de-
fine the choice breaking of Π as the union of all ranking-level
choice breakings:

BΠ = Bπ1 ∪ . . . ∪ Bπm . (9)

Note that |BΠ| = m(n−1). When the dataset Π is clear from
context, we simply use B to denote the dataset-level choice
breaking.

We now introduce sample weights. Firstly, define the
‘weight’ of a choice breaking B with weight vector w and
parameter θ ∈ Rn as

γ(B, w, θ) = w>
(

1∑
j∈A e

θj

)
(i,A,l)∈B

, (10)

where w ∈ Rm(n−1)
+ is an arbitrary weight vector;
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(
1∑

j∈A e
θj

)
(i,A,l)∈B

is also vector in Rm(n−1)
+ where each

entry corresponds to a choice enumeration (i, A, l).
The reader may recognize that the weight vector w has the

same size as the choice breaking while sample weights are
often given at the ranking level – each ranking πl is assigned
a weight ql for l ∈ [m] as in (6). Given sample weights
q = (q1, . . . , qm), one simply sets

w = [q1, . . . , q1︸ ︷︷ ︸
n−1 terms

, q2, . . . , q2︸ ︷︷ ︸
n−1 terms

, . . . , qm, . . . , qm︸ ︷︷ ︸
n−1 terms

]> . (11)

Given a choice breaking B and items i, j, define the set of
choice enumerations where i ‘beats’ j as

Bi�j = {(i, A, l) ∈ B : j ∈ A} .

As a shorthand notation, for a weight vector w corresponding
to choice breaking B, define wj�i as the sub-vector of w
corresponding to Bi�j .

Similarly to the original LSR algorithm, we construct a
Markov chain (MC) and recover PL parameters from its
stationary distribution. This MC has n states. Given choice
breaking B, weight vector w and parameter θ, the pairwise
transition probabilities of M are given as

Mij =


1
d · γ(Bj�i, wj�i, θ) if i 6= j

1− 1
d ·
∑
k 6=i γ(Bk�i, wk�i, θ) if i = j

, (12)

where d is a sufficiently large normalization constant such
that M does not contain any negative entries. Intuitively,
Mij is proportional to the sum of the weights of all choice
enumerations where j ‘beats’ i.

Algorithm 4 summarizes the weighted LSR algorithm. It
repeatedly constructs a Markov chain based on the current
estimate, computes its stationary distribution and recovers
the next estimate until convergence. When sample weights
are not given, the weighted LSR algorithm reduces to the
original LSR algorithm.

The EM-LSR Algorithm. In the E-step, we compute the
posterior class probabilities qk ∈ Rm, k ∈ [K]. The M step
consists of K maximization problem as shown in Equation
(6). These can be solved in parallel by running Algorithm 4
on Π using qk as sample weights for k ∈ [K]. Algorithm 5
summarizes the overall algorithm.

In another EM-based approach for learning PL mixtures,
Liu et al. (2019) use the unweighted LSR algorithm. There,
the E-step remains the same. The key differences lie in ini-
tialization (they use random initialization) and in the M-step.
Our algorithm maximizes the weighted log-likelihood via
weighted LSR and is therefore an exact EM algorithm. On
the other hand, Liu et al. use the posterior class probabilities
to perform a random clustering of the rankings and then run
unweighted LSR on each cluster, making their algorithm an
inexact EM algorithm. From additional experiments in the
supplementary materials, one can observe that the stochastic
M-step actually leads to worse estimates without a significant
reduction in inference time.

Algorithm 4 Weighted Luce Spectral Ranking
Input: Dataset Π = {π1, . . . , πm}, (optional) weight

vector q ∈ Rm+ and (optional) initial estimate θ̂(0) ∈ Rn.
Output: Normalized estimate of the item parameters

θ̂ ∈ Rn.

1: Obtain choice breaking B from Π per Equation (9).
2: If the weight vector q is not given, set q = 1m.
3: Construct w from q per Equation (11).
4: If the initial estimate is not given, set θ̂(0) = 0n.
5: For t = 1, . . . until convergence

5.1: Construct a Markov chain M with pairwise transi-
tion probability per Equation (12) from choice breaking
B, weight vector w and parameter θ̂(t−1).

5.2: Compute the stationary distribution of M (e.g.,
via power iteration), p and return the normalized estimate
θ̂(t) = log(p)−

(
1
n

∑n
i=1 log(p)

)
· 1n

Algorithm 5 Spectral EM (EM-LSR)
Input: Dataset Π = {π1, . . . , πm}, number of com-

ponents K, prior distribution β, (optional) initial estimate
θ̂(0) ∈ Rn×K .

Output: Normalized estimate θ̂ = [θ̂1, . . . , θ̂K ].

1: If θ̂(0) is not given, run Algorithm 3 on Π withK mixture
components and set θ̂(0) to the output.

2: For t = 1, 2, . . . until convergence
2.1: E-step – Compute the class posterior probabilities

qkl = p(z∗l = k|πl, θ̂(t−1)) for l ∈ [m], k ∈ [K].
2.2: M-step – Estimate θ̂k(t) by running Algorithm 4

on Π with sample weight vector qk = [qk1 , . . . , q
k
m] and

initial estimate θ̂k(t−1) for k ∈ [K].

Theoretical Analysis
In this section, we study the theoretical properties of EM-
LSR. Specifically we present the finite sample error guarantee
for the spectral initialization algorithm and study the M-
step of not only our EM-LSR algorithm but also related EM
algorithms.

Spectral Initialization
Central to the analysis of the spectral initialization algorithm
is the accuracy of spectral clustering (Algorithm 1). Our anal-
ysis starts from the fact that, under the pairwise representation
in Equation (7), the PL distribution exhibits sub-gaussian
characteristics (Vershynin 2018; Shah and Song 2018). The
detailed descriptions of these characteristics are not immedi-
ately important to our discussions so we refer the interested
reader to the supplementary materials. However, we empha-
size that these characteristics also appear in a broad class of
ranking models known as random utility models (RUMs) that
subsume the PL model. The spectral clustering algorithm is
model-agnostic. It can be applied to mixtures of sub-gaussian
distributions and enjoys high clustering accuracy if the signal-
to-noise ratio (SNR) is high. We also show how, by changing
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the mapping function used in Algorithm 2, we can perform
parameter estimation for a general RUM, not just PL. Thanks
to this flexibility, Algorithm 3 can be a useful tool for learning
mixtures of general RUMs.

We now consider an expressive generative model for mix-
tures of K PLs where Algorithm 3 produces a provably ac-
curate estimate. The generative model assumes that for all
mixture components, only the utilities of the first L items
are different while the those of the remaining n − L items
are the same. This model reflects the phenomenon where
users from different sub-populations differ in their preference
among a few items while the remaining items are essentially
interchangeable. Intuitively, one would expect that when L
is small, so is the difference between the subpopulations and
it is harder to separate the rankings into the correct clusters.
On the other hand, when L is large, the difference among the
subpopulations is large and it is easier to separate the clusters.
The following theorem captures this intuition.
Theorem 1. Consider a mixture of K Plackett-Luce models
with uniform mixing probabilities. Suppose that θ∗ki = 0 ∀i ∈
[L+ 1 : n] and θ∗k1:L ∼ N(0, IL) for k ∈ [K]. Fix a constant
α > 0. There exist constants c, c1, C1, C2, D such that if
m ≥ cmax{K4,Kn} then the output θ̂ of Algorithm 3
satisfies the following. If L ≥ c1 exp

(
C1

√
log n

)
, then

dist(θ̂,θ∗)

= O

(
exp

(
D
√

log n
)(√K2n log n

m
+

√
Kn

eL0.99

))
with probability 1 − O( Kn8 ) − O(K2n2exp

(
−L0.99

)
). If

L ≥ C2n
α and assuming that n = ω(logm), then

dist(θ̂,θ∗) = O

(
exp

(
D
√

log n
) √K2n log n

m

)
with probability 1−O( Kn8 )−O(K2n2exp (−nα)).

The first error bound is a sum of two terms. The first
is the estimation error incurred by Algorithm 2 which di-
minishes with increasing m. The second comes from the
clustering error incurred by Algorithm 1 and is controlled by
the SNR of the generative model. One can also check that
exp

(√
log n

)
= o(nα) for any α > 0 and exp

(√
log n

)
=

ω(log n). When L ≈ exp
(
O(
√

log n)
)

(low SNR), there is
significant clustering error and the second term scales ap-
proximately as O(

√
n

eL
) = O

(
1

poly(n)

)
. Hence, Algorithm 3

converges to within a small radius around θ∗ given a suffi-
ciently large m. However, when L is polynomial in n (high
SNR), estimation error dominates clustering error, giving us
the second error bound which diminishes with sample size m.
In this regime, the spectral initialization algorithm works well
as a standalone mixture learning algorithm. Note that this
guarantee holds even for a small α > 0, when the fraction of
‘informative’ items diminishes: L/n = o(1). Our proposed
generative model is new and could be a useful analysis frame-
work for future works. To the best of our knowledge, the
finite sample error bounds are also the first of their kind in
the literature.

Iterative Refinement via EM
Accuracy of the M-step. The following theorem generalizes
Theorem 1 of Maystre and Grossglauser (2015).
Theorem 2. The output of weighted LSR (Algorithm 4) is
the maximum weighted log-likelihood estimate:

θMLE
q := arg max

θ

m∑
l=1

ql · logPPL(πl, zl | θ) .

As noted before, the EMM algorithm is an alternative
approach that exactly solves the M-step using the (weighted)
MM algorithm. In other words, assuming perfect numerical
precision and the same initialization, EMM and EM-LSR
will produce the same final estimate. However, our EM-LSR
algorithm is often much faster than EMM (e.g., Figure 1).

Convergence of EM. It is well known that the EM algo-
rithm converges to a stationary point (Wu 1983). There is,
unfortunately, no guarantee how close such a point is to the
global optimum. However, assuming correct model specifica-
tion and that the initial estimate falls within a neighborhood
around θ∗ which satisfies certain high SNR conditions, the
EM algorithm will converge to θ∗ (Wang et al. 2015; Wu
et al. 2016; Balakrishnan, Wainwright, and Yu 2017). The
area around θ∗ where this desirable behaviour occurs is re-
ferred to as the basin of attraction. We leave the detailed
characterization of the basin of attraction as a subject of
future studies.

True Likelihood versus Surrogate Likelihood. For two
other commonly used EM algorithms in the literature – EM-
CML and EM-GMM – previous authors use random initial-
ization. On the other hand, ours uses spectral initialization.
However, initialization is not the only differentiating charac-
teristic of our algorithm. In fact, our algorithm, EM-CML and
EM-GMM are fundamentally different EM-based algorithms.
To see why, one needs to inspect the objective function of the
M-step. Suppose that all three algorithms are initialized at
some θ̂(0). Let {qkl }

k∈[K]
l∈[m] denote the posterior class proba-

bilities conditioned on θ̂(0) per Equation (5).
In the first iteration, EM-LSR and EMM maximize the

weighted log-likelihood.

θ̂
(1)
LSR = arg max

θ

m∑
l=1

K∑
k=1

[
qkl · logPPL(πl, zl | θk)

]
.

On the other hand, EM-CML maximizes the composite (sur-
rogate) marginal likelihood. θ̂(1)

CML = arg maxθ

m∑
l=1

K∑
k=1

[ ∑
i,j:

πl(i)<πl(j)

qkl log

(
1

1 + exp
(
−(θki − θkj )

))] .
Lastly, EM-GMM minimizes the following function.

θ̂
(1)
GMM = arg min

θ

K∑
k=1

∑
i6=j

(
F̂ kij−

1

1 + exp
(
−(θki − θkj )

))2

,

where F̂ kij =
∑m
l=1 1[πl(i)<πl(j)] q

k
l∑m

l=1 q
k
l

.
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One can see that the objective functions are different and
so are their solutions. Hence, even if we initialize all three
algorithms with the same estimate, their trajectories will be
different in general. While EM-LSR and EMM converges to
the true MLE when initialized within the basin of attraction,
this may not be true for EM-GMM and EM-CML. This dif-
ference is supported by our experiments, where even with
the same initialization, the algorithms produce different final
estimates.

Experiments
We compare our spectral EM algorithm to the following
baselines: EMM, EM-GMM and EM-CML.

Synthetic Datasets. We simulate data from the genera-
tive model as described in Theorem 1. We set n = 100 and
L = 5 while varying the number of mixture components K
for different experiments. Figure 1 shows estimation error
and total inference time against the sample size m, averaged
over 25 trials. Spectral initialization consistently gives better
initial estimates than both random initialization and GMM
initialization (Zhao, Piech, and Xia 2016). To keep a fair
comparison, we use spectral initialization for all algorithms.
When K is small (e.g., Figures 1a and 1b) all four methods
are quite accurate. When the number of mixture components
are moderate (e.g., Figures 1c and 1d), the advantages that
EM-LSR enjoys over the other methods become more ap-
parent. While EMM becomes too inefficient for practical
purposes, EM-LSR remains relatively efficient and produces
more accurate estimates than both EM-CML and EM-GMM.

Real Datasets. We include commonly used datasets in
previous works such as APA, Irish Elections (West, North,
Meath) and SUSHI all with n < 15. We partition all the
rankings with a 80-20 training-testing split; and the train
rankings into 80% for inference and 20% for validation. K
is chosen using Bayesian Information Criterion (Gelman,
Hwang, and Vehtari 2014) on the validation set and the log-
likelihood of the final model is evaluated using the test set.
For these datasets, EM-LSR and EMM are the most accurate
while EM-CML is the fastest, especially on datasets with a
large m such as the Irish election datasets. To understand
the relative speed between EM-LSR and EM-CML, note that
the bottle neck in these EM algorithms is the M-step. The
most time-consuming procedure in the M-step of EM-LSR is
constructing the Markov chain in Algorithm 4 with time com-
plexity O(mn2). For EM-CML, it is solving a constrained
concave maximization problem via SLSQP (Virtanen et al.
2020) and may scale at least as Ω(n3). 1. Therefore, EM-
CML tends to be faster for datasets with a small n and a large
m. However, its inference time could grow significantly with
n.

Indeed, the setting where EM-LSR outperforms the base-
lines is when n is large. We perform additional experiments
on the ML-10M movie ratings datasets (Harper and Konstan
2015). To generate rankings, we first run a low rank matrix
completion algorithm (Zitnik and Zupan 2012) on the user-

1SLSQP solves a sequence of quadratic optimization problems
with n variables. Each solves a linear system with n variables and
n equations and generally takes O(n3) (Strang et al. 1993).

(a) For a small number of mixture compo-
nents, all methods are quite accurate. As
the theory implies, EMM and EM-LSR pro-
duce similar estimates.

(b) EM-LSR is comparatively efficient (fig-
ure shows total inference time).

(c) For a moderate number of mixture
components, EM-LSR is the most accurate
method (EMM not shown due to timeout).

(d) EM-LSR and EM-CML are the only
two methods that are efficient for a moder-
ate number of mixture components.

Figure 1. `2 error and inference time on synthetic datasets.
EM-LSR is competitive in terms of accuracy and speed to
the baseline algorithms.
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item rating matrix to fill in the missing entries. We then select
n movies from the set of all movies and the rankings are
obtained from the completed matrix. Figure 2 shows the per-
formance of the four methods on two versions of the ML-10M
datasets with n = 25 and n = 100 given increasing training
data up to 14k. In the supplementary materials (Nguyen and
Zhang 2023), we also include additional experiments, strate-
gies to extend EM-LSR to handle partial rankings with ties
and comparisons to a Bayesian method (Mollica and Tardella
2017). Table 1 summarizes the experimental results on real
datasets.

Test log-likelihood (inference time)

Dataset LSR CML GMM EMM

APA -4.6 (600) -4.6 (33) -4.6 (2.2K) -4.6 (9.24K)

West -11.9 (810) -12.0 (200) -11.9 (5.8K) -11.9 (25K)

Sushi -13.6 (746) -14.0 (24.6) -13.8 (489) -13.8 (1.2K)

North -18.7 (1.5K) -18.9 (120) -18.7 (3.1K) -18.8 (14K)

Meath -23.6 (1.5K) -23.9 (497) -23.7 (30K) -23.6 (70K)

ML (25) -49.2 (3.7K) -50.1 (2.5K) -49.8 (26K) -49.2 (63K)

ML (50) -131 (5.8K) -132 (6.8K) -132 (125K) NA

ML (100) -326 (12K) -330 (27K) -332 (490K) NA

ML (200) -787 (25K) -799 (81K) NA NA

Table 1. Test log-likelihood and inference time on real
datasets. ‘NA’ denotes not available due to timeout. Best
performances are in bold.

Conclusion
We have proposed an accurate and efficient algorithm for
learning a mixture of Plackett-Luce models. For future works,
we would like to consider other initialization methods such
as the method of moments or tensor decomposition. Detailed
characterization of the basin of attraction within which the
EM algorithm converges to the true parameter is also a chal-
lenging open question. On a more practical note, incorporat-
ing the representation power of deep neural networks into
our algorithm will further increase its utility for large scale
recommendation systems applications.
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